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1. Introduction

We are concerned with the problem of determination of a source term
of an atmospheric release. In its simplest form, the problem can be
viewed as a liner system y = Mx with vector of observations y and
source-receptor-sensitivity (SRS) matrix M, where solution x can be
found using least-square method. In reality, this is usually not possible
since the system is ill-conditioned and an optimisation of a regularised
cost function must be used:

J(x) = (y — Mx) "R (y — Mx) + x " Bx, (1)
where the first term minimizes the error of the measurements with co-
variance matrix A, and the second term is the regularization with weight
«. Various types of regularization arise for different choices of matrix B.
For example, Tikhonov regularization arises for B in the form of identity
matrix, and smoothing regularization for Laplacian operator. In this con-
tribution, we interpret B probabilistically as a covariance matrix of the
prior distribution of x.

Traditionally, B is chosen in a fixed form, e.g.

B=al+pBATA, 2
where A is a differentiating operator and «. 3 are chosen scalar factors.
The choise is often done manually by a trial and error procedure, e.g.

[1, 3]. We propose to relax the assumption of known structure of B and
use an objective Bayesian approach for their estimation from data.

2. Bayesian approach

In Bayesian approach, the task of inferring data from observations is
formalized as an update of prior belief about the parameter values up-
dated by the available observations. Formally, our knowledge about the
parameter vector x is described by the probability density function

py|x, M)p(x)

Xy, M) = ——=—=— o x, M)p(x), 3
p(xly, M) TPlyIx. M)p(x)ax p(y|x, M)p(x) (©)]
where p(x) is the prior distribution, p(y|x, M) is the likelihood of the
measurements. For the choice of Gaussian models

plylx. M) =N csx. vaq p(x|B) = N ? vaq ()

the result of the Bayes rule (3) is again a Gaussian distribution p(x|y) =
N (X.Zx), where X coincides with the optimizer of (1) and the covari-

—1
ance matrix is Ly = Am +MTR-1 iv . Hence, the standard approach
to the source term estimation is equivalent to maximum aposteriori es-
timate of the outlined Bayesian solution.

In common with the standard approach, the precision matrices R, B are
assumed to be known. A key advantage of the of Bayesian approach is
its ability to infer even these parameters from the data.

3. Prior model for unknown covariance

Consider the following structure of matrix B:

10 00 vy 0 0 0
T |h1 0O | 0w o0oO
B=LTL L=l 1 0] " |00 o0
00 Ipqt 00 0 wvp

where the vectors of unknowns are | = [/y,..., I, {].v = [v1,....vp).

The Bayesian formalism requires to define prior distribution on all un-
knowns. We choose

p(vj) = G (ao. bo) p(l) = N (=1, 00) ()
The formal solution of the estimate is difficult to evaluate:
plxly. M.v.1) = [ plylx Mp(xiL o)p(, v)dl . ®)
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4. Variational solution of unknown B 7.1 Subjective method - single vertical layer

Analytical solution of (6) is not available and a suitable approximation
has to be found. Following the Variational Bayes approximation [2], the
posterior estimate can be obtained by solving the following equations:
p(xy, M) o mi\ P(vly)p(lly)log p(x, y,1,v|M)dv dl)),
Bllly. M) o exp( \ B(x|y)p(v]y)log p(x. y. 1, v|M)dx dv)),
Bloly. M) o exp( \ B(x1y)B(lly)log p(x, y, 1, v|M)dx dl)),

which can be solved iteratively [2].

Performance of presented adaptive method will be compared to a well
established method based on minimisation of (1) with

R=13x10%1 B=al

When analytically minimised, optimal x and its posterior error covari-
ance P are given by LSE

(M'TR'M+Bx=M'R 'y, P=(M'R'M+B)"". (8
Negative parts of the solution are iteratively suppressed by reduction
of prior error variance of those elements where negative solutions oc-
curred. Such elements are then forced to stay close to its prior value
(here 0). lterations are stopped when the majority of release is positive,
here 99.9%. The method is linear and robust but its drawback is that co-
efficients r and « must be selected subjectively or tuned by a try and
error approach, e.g. [1, 3]. To show that the solution is highly dependent
on o we evaluate x \/a € {1,50,500}:

5. Positivity enforcement

Since the source term can not be negative, we seek only for positive
solutions of the problem. Hence, we may restrict the support of prior
p(x) to positive domain only using truncated normal distribution
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Plx) = V(0. 5. (0.50)) s s =
which moments are non-trivial but available as 2% bt >
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Figure: Example of the normal distribution A/(1. 1), blue line, and the truncated
normal distribution tA/(1.1. < 0.0c >), red line.
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Figure 1: Scatter plot of model vs. measurements (x; is true source term).
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Figure 4: Nondiagonal Adaptive Covariance (NAC): /; estimated.

8.1 Subjective method - vertical profile

Following source term for all three vertical layers were obtained using
LSE method with R = 1.3 x 105/ and B = al, a = 25. Since the
structure of SRS matrix M is quite similar for all vertical layers, source
terms given by the inversion are quite similar and it is hard to determine
in which vertical layer the release occurred.
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Source term for all three vertical layers were obtained using NAC.

level=1(267.3kg) _  level=2(313.1kg) __ level=3 (308.1kg)

= 70 70 70
3 60 60 60
o 50 50, 50
€ 40 40 40
g 30 30 30
S 20] 20 20
& 10 10] 10

30 40 50 60 70 80 90
Source time step

30 40 50 60 70 80 90
Source time step

30 40 50 60 70 80 90
Source time step

Adaptive method also provides a similar estimates for all vertical
layers. However, as a Bayesian method, it gives us also probabilities
of releases at each layer using Bayesian model selection:

pMly) [ plylx. M. B)o(x B)p(B)d. ©
which is also approximated by the Variational Bayes method.

Model selection
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Figure 5: Probabilities of release occurrence at difference vertical layers.

Conclusion

This methodology is very flexible and can be also used for mutual prob-
abilistic evaluation of different SRS matrices, which can be used for
source localization.
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