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1.Introduction
W

e
are

concerned
w

ith
the

problem
ofdeterm

ination
ofa

source
term

of
an

atm
ospheric

release.
In

its
sim

plest
form

,
the

problem
can

be
view

ed
as

a
liner

system
y

=
M

x
w

ith
vector

of
observations

y
and

source-receptor-sensitivity
(S

R
S

)
m

atrix
M

,
w

here
solution

x
can

be
found

using
least-square

m
ethod.

In
reality,this

is
usually

notpossible
since

the
system

is
ill-conditioned

and
an

optim
isation

ofa
regularised

costfunction
m

ustbe
used:

J
(
x
)
=

(
y
�

M
x
) >

R

�
1(

y
�

M
x
)
+

x

>
B

x
,

(1)

w
here

the
firstterm

m
inim

izes
the

error
ofthe

m
easurem

ents
w

ith
co-

variance
m

atrix
R

,and
the

second
term

is
the

regularization
w

ith
w

eight
↵.Various

types
ofregularization

arise
fordifferentchoices

ofm
atrix

B
.

Forexam
ple,Tikhonov

regularization
arises

for
B

in
the

form
ofidentity

m
atrix,and

sm
oothing

regularization
forLaplacian

operator.In
this

con-
tribution,

w
e

interpret
B

probabilistically
as

a
covariance

m
atrix

ofthe
priordistribution

of
x.

Traditionally,
B

is
chosen

in
a

fixed
form

,e.g.

B
=

↵
I
+
�
�
>
�
,

(2)

w
here

�
is

a
differentiating

operatorand
↵
,�

are
chosen

scalarfactors.
The

choise
is

often
done

m
anually

by
a

trialand
error

procedure,e.g.
[1,3].W

e
propose

to
relax

the
assum

ption
ofknow

n
structure

of
B

and
use

an
objective

B
ayesian

approach
fortheirestim

ation
from

data.

2.B
ayesian

approach

In
B

ayesian
approach,

the
task

of
inferring

data
from

observations
is

form
alized

as
an

update
ofprior

beliefaboutthe
param

eter
values

up-
dated

by
the

available
observations.Form

ally,ourknow
ledge

aboutthe
param

etervector
x

is
described

by
the

probability
density

function

p
(
x|

y
,
M
)
=

p
(
y|

x
,
M
)
p
(
x
)

R
p
(
y|

x
,
M
)
p
(
x
)
d
x

/
p
(
y|

x
,
M
)
p
(
x
),

(3)

w
here

p
(
x
)

is
the

prior
distribution,

p
(
y|

x
,
M
)

is
the

likelihood
of

the
m

easurem
ents.Forthe

choice
ofG

aussian
m

odels

p
(
y|

x
,
M
)
=

N
⇣

M
x
,
R

�
1 ⌘

,
p
(
x|

B
)
=

N
⇣0

,
B

�
1 ⌘

,
(4)

the
resultofthe

B
ayes

rule
(3)is

again
a

G
aussian

distribution
p
(
x|

y
)
=

N
(
x̂
,⌃

x ),
w

here
x̂

coincides
w

ith
the

optim
izer

of
(1)

and
the

covari-

ance
m

atrix
is
⌃

x

=
⇣

B
+

M

T

R

�
1
M

⌘
�

1.H
ence,the

standard
approach

to
the

source
term

estim
ation

is
equivalentto

m
axim

um
aposteriories-

tim
ate

ofthe
outlined

B
ayesian

solution.

In
com

m
on

w
ith

the
standard

approach,the
precision

m
atrices

R
,
B

are
assum

ed
to

be
know

n.A
key

advantage
ofthe

ofB
ayesian

approach
is

its
ability

to
infereven

these
param

eters
from

the
data.

3.P
rior

m
odelfor

unknow
n

covariance

C
onsiderthe

follow
ing

structure
ofm

atrix
B

:

B
=

L >
⌥

L
,

L
=

0BB@

1
0

0
0

l1
1

0
0

0
...

1
0

0
0

l

n�
1

1

1CCA
,

⌥
=

0BB@

�1
0

0
0

0
�2

0
0

0
0

...
0

0
0

0
�

n

1CCA
.

w
here

the
vectors

of
unknow

ns
are

l
=

[
l1 ,...,

l

n�
1 ],�

=
[�1 ,...,�

n ].
The

B
ayesian

form
alism

requires
to

define
prior

distribution
on

allun-
know

ns.W
e

choose

p
(�

i )
=

G
(
a

0 ,
b

0 )
p
(
l

i )
=

N
(�

1
,�

0 )
(5)

The
form

alsolution
ofthe

estim
ate

is
difficultto

evaluate:

p
(
x|

y
,
M
,�

,l)
=

Z
p
(
y|

x
,
M
)
p
(
x|l,�

)
p
(l,�

)
d

l,�
.

(6)

4.Variationalsolution
ofunknow

n
B

A
nalyticalsolution

of(6)
is

not
available

and
a

suitable
approxim

ation
has

to
be

found.
Follow

ing
the

VariationalB
ayes

approxim
ation

[2],the
posteriorestim

ate
can

be
obtained

by
solving

the
follow

ing
equations:

p̃
(
x|

y
,
M
)/

exp
( Z

p̃
(�|

y
)
p̃
(l|

y
)log

p
(
x
,
y
,l,�|

M
)
d
�

d
l)),

p̃
(l|

y
,
M
)/

exp
( Z

p̃
(
x|

y
)
p̃
(�|

y
)log

p
(
x
,
y
,l,�|

M
)
d
x

d
�
)),

p̃
(�|

y
,
M
)/

exp
( Z

p̃
(
x|

y
)
p̃
(l|

y
)log

p
(
x
,
y
,l,�|

M
)
d
x

d
l)),

w
hich

can
be

solved
iteratively

[2].

5.Positivity
enforcem

ent

S
ince

the
source

term
can

not
be

negative,
w

e
seek

only
for

positive
solutions

of
the

problem
.

H
ence,

w
e

m
ay

restrict
the

support
of

prior
p
(
x
)to

positive
dom

ain
only

using
truncated

norm
aldistribution

p
(
x

j )
=

tN
(0
,�

�
1

x

j

,h0
,1

i),

w
hich

m
om

ents
are

non-trivialbutavailable
as

bx
=

µ
�

p
� p

2
[exp

(�
�

2)�
exp

(�
↵

2)]
p
⇡
(
e
r
f(�

)�
e
r
f(↵

))
.

(7)

−
3

−
2

−
1

0
1

2
3

0

0
.1

0
.2

0
.3

0
.4

0
.5

 

 

N
(0
,1
)

tN
(0
,1
,[0

,1
])

Figure:
E

xam
ple

ofthe
norm

aldistribution
N
(1
,1
),blue

line,and
the

truncated
norm

aldistribution
tN

(1
,1
,<

0
,1

>
),red

line.

6.N
um

ericalexperim
ent

For
testing

w
e

use
data

from
E

TE
X

-1.
W

e
have

3012
concentration

sam
ples

from
168

stations
w

ith
resolution

of3
hours.

S
R

S
m

atrix
w

as
calculated

by
LD

P
M

FLE
X

PA
R

T.R
elease

w
as

vertically
hom

ogeneously
distributed

betw
een

0
and

50
m

.340
kg

oftracerw
as

released
betw

een
23

O
ct16:00

U
TC

-24
O

ct3:50
U

TC
,1994,i.e.

11:50
h

duration,here
approxim

ates
as

12
hours.Tem

poralresolution
of

x
is

1h.

Figure
1:

S
catterplotofm

odelvs.m
easurem

ents
(
x

t is
true

source
term

).

S
ource

receptorsensitivities
w

ere
calculated

forthree
verticallayers:0–

50m
,50–300m

and
300–1000m

.S
hape

ofthe
true

source
term

follow
s:

7.1
S

ubjective
m

ethod
-single

verticallayer

Perform
ance

ofpresented
adaptive

m
ethod

w
illbe

com
pared

to
a

w
ell

established
m

ethod
based

on
m

inim
isation

of(1)w
ith

R
=

1
.3

⇥
10

25
I,

B
=

↵
I

W
hen

analytically
m

inim
ised,

optim
al

x
and

its
posterior

error
covari-

ance
P

are
given

by
LS

E

(
M

>
R

�
1
M

+
B
)
x
=

M

>
R

�
1
y
,

P
=

(
M

>
R

�
1
M

+
B
) �

1.
(8)

N
egative

parts
of

the
solution

are
iteratively

suppressed
by

reduction
ofprior

error
variance

ofthose
elem

ents
w

here
negative

solutions
oc-

curred.
S

uch
elem

ents
are

then
forced

to
stay

close
to

its
prior

value
(here

0).Iterations
are

stopped
w

hen
the

m
ajority

ofrelease
is

positive,
here

99.9%
.The

m
ethod

is
linearand

robustbutits
draw

back
is

thatco-
efficients

r
and

↵
m

ustbe
selected

subjectively
or

tuned
by

a
try

and
errorapproach,e.g.[1,3].To

show
thatthe

solution
is

highly
dependent

on
↵

w
e

evaluate
x

p
↵
2
{1

,50
,500}:

7.2
A

daptive
m

ethod
-single

verticallayer
R

esults
in

this
section

w
ere

using
adaptive

m
ethod

w
here

along
x

w
e

adaptively
estim

ate
also

both
R

and
B

.
H

ere,
three

versions
of

B
is

studied,
(2)

w
ith

selected
w

eights
↵

and
�

and
its

generalization
B

=
L
⌥

L >
.

Figure
2:

S
parse

solution:
l

i =
0
,8

i.

Figure
3:

S
parse

differences:
l

i =
�

1
,8

i.

Figure
4:

N
ondiagonalA

daptive
C

ovariance
(N

AC
):

l

i estim
ated.

8.1
S

ubjective
m

ethod
-verticalprofile

Follow
ing

source
term

for
allthree

verticallayers
w

ere
obtained

using
LS

E
m

ethod
w

ith
R

=
1
.3

⇥
10

25
I

and
B

=
↵

I,
↵

=
25.

S
ince

the
structure

ofS
R

S
m

atrix
M

is
quite

sim
ilar

for
allverticallayers,source

term
s

given
by

the
inversion

are
quite

sim
ilarand

itis
hard

to
determ

ine
in

w
hich

verticallayerthe
release

occurred.

8.2
A

daptive
m

ethod
-verticalprofile

S
ource

term
forallthree

verticallayers
w

ere
obtained

using
N

AC
.

A
daptive

m
ethod

also
provides

a
sim

ilarestim
ates

forallvertical
layers.H

ow
ever,as

a
B

ayesian
m

ethod,itgives
us

also
probabilities

ofreleases
ateach

layerusing
B

ayesian
m

odelselection:

p
(
M

i |
y
)/

Z
p
(
y|

x
,
M

i ,
B
)
p
(
x|

B
)
p
(
B
)
d
x
d
B
,

(9)

w
hich

is
also

approxim
ated

by
the

VariationalB
ayes

m
ethod.

Figure
5:

P
robabilities

ofrelease
occurrence

atdifference
verticallayers.

C
onclusion

This
m

ethodology
is

very
flexible

and
can

be
also

used
form

utualprob-
abilistic

evaluation
of

different
S

R
S

m
atrices,

w
hich

can
be

used
for

source
localization.
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