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Abstract. The task of blind source separation (BSS) is to recover orig-
inal signal sources which are observed only via their superposition with
unknown weights. Since we are interested in estimation of the number of
relevant sources in noisy observation, we use the Bayesian formulation
which automatically removes spurious sources. A tool for this behavior
is joint estimation of the unknown prior covariance matrix of the sources
in tandem with the sources. In this work, we study the effect of vari-
ous choices of the covariance matrix structure. Specifically, we compare
models using the automatic relevance determination (ARD) principle
on the first and the second diagonal, as well as full covariance matrix
with Wishart prior. We obtain five versions of the variational BSS algo-
rithm. These are tested on synthetic data and on a selected dataset from
dynamic renal scintigraphy. MATLAB implementation of the methods is
available for download.

Keywords: Blind source separation - Covariance model - Variational
bayes approximation - Non-negative matrix factorization

1 Introduction

The blind source separation (BSS) problem arises in situations where several
sources are observed only via their superposition such as in case of audio or
medical signal processing [8] or hyperspectral imaging [10]. The task is to sep-
arate original sources, e.g. in the form of images and their related weights. The
classical separation methods include principal or independent component analy-
sis [6], non-negative matrix factorization [7], or projection methods [1,4].

In this work, we are focused on the Bayesian approach to the BSS problem
which has advantages under poor signal to noise conditions and is capable to
provides an estimate of the number of relevant sources. Another advantage for
further processing of the results is the availability of uncertainty bounds around
the estimate in the form of full probability distribution function. The ability to
estimate the number of relevant sources is available due to a specific choice of
the prior structure, typically unknown covariance matrix [9,12]. In this paper,
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we study various choices of the structure of the prior covariance matrix and
their effects on the behavior of the resulting separation algorithm. Specifically,
we study three different assumptions leading to different covariance structures:
(i) the source weights are most likely sparse which can be modeled using auto-
matic relevance determination (ARD) approach [2,14], (ii) the source weights
are smooth with occasional abrupt changes which can be modeled by sparse
differences of the weights, and (iii) both weights and their differences can be
sparse, which can be modeled by bi-diagonal covariance matrix. Since evalua-
tion of exact posterior densities is not tractable, we apply the Variational Bayes
method to obtain approximate posterior densities [11]. The first two structures
are standard and the algorithms are well known, however, the last model is com-
putationally intractable even under the Variational Bayes approach. Therefore,
we propose to derive the posterior distribution for a full prior covariance matrix
of the source weights using Wishart distribution. The introduced overparame-
trization is mitigated by the use technique known as matrix localization [5]. This
heuristics is very successful in atmospheric modeling. Similar approach has been
also applied for model of convolution kernels in blind deconvolution [13].

The resulting variants of the variational BSS algorithm are tested on a syn-
thetic dynamic image data where advantages and disadvantages of the tested
priors are demonstrated. The advantages of the proposed method were also
observed on a real data set from dynamic renal scintigraphy, where the pro-
posed method compares favorably with competing approaches such as the NMF
algorithm [7]. Matlab implementations of the algorithms are freely available for
download.

2 Bayesian Blind Source Separation

We introduce the Bayesian model of blind source separation. Prior models for all
parameters of the model are described here except the prior for source weights
which is described in the next section.

2.1 Observation Model

A sequence of recorded data vectors, d, € RP*!, t =1,...,n, is stored column-
wise in matrix D € RP*"™. The assumed decomposition is

D=AXT+E, (1)

where matrix A € RP*" represents the source images in its columns, matrix
X € R™" represents source weights in its columns, matrix £ € RP*™ represents
noise term of the observation model, and symbol ()?" denotes transposition of a
vector or a matrix in this paper.

We assume that all elements of the matrices D, A, X, and E are positive;
however, modification to full support is straightforward.



354 0. Tichy and V. Smidl

2.2 Noise Model

We use the isotropic Gaussian noise model [15] with zero mean and common
variance for all pixels, e; ; ~ N, (0,w™1). Then, the observation model can be
rewritten as

f(D‘AvXa W) = Hth (Aizwvwil-[p) ) f(w) = gw(ﬁOap())v (2)

t=1

where symbol N denotes normal distribution and symbol I, denotes identity
matrix of the given size. In the Bayesian methodology, all unknown parameters
have their prior distribution. The prior distribution for the precision of the noise,
w, has a conjugate prior in the form of the Gamma distribution, denoted as G,
with selected prior constants ¥, pg.

2.3 Prior Model of Source Images

The prior model of the source images is common for all methods in the paper.
Each source image, i.e. column of the matrix A, ay, has prior in the form of the
normal distribution with unknown precision parameter related to each source
image as

f(ak|£k) = tNak, (Op,hf};ljp» [Oa OOD 5 f(gk) = gﬁk (¢07¢0)7 (3)
where tA denotes truncated normal distribution with given support and & is
an unknown precision parameter with the Gamma prior for £ = 1,...,r where

o, are selected prior constants. This parameter acts as the automatic rele-
vance determination (ARD) term [14].

3 Prior Models of Covariance Matrix of Source Weights

3.1 Isotropic Prior

The only assumption in this case is that the elements of each weights vector
are isotropic [11], i.e. that their covariance matrix is identity matrix as f(xy) =
tN%, (01,15, [0,00]) for k=1,...7r.

3.2 Sparse Prior

The key assumption of this prior is that the source weights are most likely sparse.
Once again, we employ the ARD principle; however, in a different way than in
Sect. 2.3. Here, each element of source weight, xy j, has its own ARD prior with
relevance parameter, vy ;j, which can be written in vector form as

f(Xk,|vk') = tka (071,17diag(vlzl)a [07 OO]) 5 f(vk,,j) = g/l)khj (040750)7 (4)

Vj =1,...,n, where diag() denotes square matrix with argument vector in its
diagonal and zeros otherwise and «y, By are selected prior constants.

The purpose of this approach is to favor zeros in estimates of the elements
of the weights.
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3.3 Sparse Differences Prior

Sparse prior from Sect. 3.2 could possibly lead to very non-smooth solutions. If
smooth solutions are preferred, a model of sparse differences instead of sparse
elements could be more appropriate. The differences of x; can be expressed using
V operator as Vxg, where V € R"*" is the matrix with ones on its diagonal,
—1s on its superdiagonal, and zeros otherwise. We employ the ARD principle
on each element of Vx; with relevance parameter vkv. This can be formulated
equally using full vector xj as

f(VXk|’UkV) A f(xk|'Uk') = tka (On,h vildiag(vlzl)(vil)Ta [07 OO]) 5 (5)
f(vk,j) = g‘uk,j (050’60)7 \V/j = 17 RN (6)

with selected prior constants aq, 3g.

3.4 Wishart Prior

Till this moment, we have modeled only selected diagonals of the covariance
matrix. However, it is possible to model the full covariance matrix. For this
task, we use vectorized form of the matrix X as X = vec(X) = [x7,...,x!]T €
R"*! where the covariance between all elements is a full covariance matrix
T € R, Prior distribution on an unknown full covariance matrix is usually

chosen in the form of Wishart matrix distribution,
f(?|T) = tNY (Onr,lvT_lv [07 OOD ) f(T) = WT(aOI’ruﬁO), (7)

where W() denotes the Wishart matrix distribution and ag, 3y are selected prior
constants.

The weak point of this prior model is that n?r? additional parameters have
to be estimated which makes this problem very ill-posed.

3.5 Wishart Prior with Localization

We assume that the most relevant prior knowledge is located only in several
diagonals of the covariance matrix and its sub-matrices. This idea originates in
data assimilation of atmospheric models [5]. Therefore, we replace the remaining
entries in the estimate by zeros. Formally, we use the Hadamard matrix product
which is defined between two matrices of the same size as C' = Ao B where ¢; j =
a; jb; ;. Then, the localization of the posterior estimate of the full covariance
matrix from Sect. 3.4 is R R

Noc =T oL, (8)

where T denotes estimate of ¥ and L is the localization matrix of the same
size as the matrix 7. There could be many possible localization matrices L [3]
however their study is out of the scope of this paper. Here, we will show results
with two localization matrices (i) matrix of ones, i.e. without any localization
(denoted as Wishart), and (ii) localization matrix L with ones on the first and the
second diagonals of all sub-matrices and zeros otherwise (denoted as Localized
Wishart).
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3.6 Approximate Solution Using Variational Bayes Method

The whole probabilistic prior model is formed using equations (2)—(3) and prior
model from Sects. 3.1-3.5. Estimation algorithm for each prior model was derived
using the Variational Bayes method [11] where equations for shaping parame-
ters of the posterior probability densities of the model parameters are found in
the form of a set of implicit equations which has to be solved iteratively. Solu-
tions for the first three models are available from previous publications, equation
for the proposed version with Wishart prior and localization are given in the
Appendix A. This yields five different versions of the variational BSS algorithm
(two versions with Wishart prior, with and without localization). All prior para-
meters (with subscript 0) are set to 10710 in order to yield non-informative priors
while all algorithms are not sensitive to this selection.
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Fig. 1. The results of the five studied methods (the second to the sixth rows) together
with NMF algorithm results (the seventh row) in synthetically generated data (the first
row).
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4 Experiments

4.1 Experiment on Synthetic Dataset

All five derived algorithms are now being tested on synthetic dataset in order to
study the impact of covariance matrix models on resulting estimates. The data
are generated according to model (1) using three sources with different time-
dependent weights as displayed in Fig. 1, top row, degenerated by homogeneous
Gaussian noise. All algorithms run with the same conditions such as starting
point of iterations and expected number of sources which is set to » = 4 in order
to study the ability of algorithms to recognize the correct number of sources
since the modeled number of sources is 3.

The results from all tested algorithms are given in Fig. 1, rows 26, together
with the state of the art non-negative matrix factorization (NMF) algorithm
[7], row 7. There are estimated source images and source weights in row-wise
schema where four images in each row are accompanied with related four weights
vectors. It can be seen that all algorithms are capable to correctly estimate
source images. The main differences between the algorithms is in estimates of
the source weights. The fourth redundant source from BSS with isotropic prior
of NMF has been estimated such that its activity is taken from the first and
the second source. The same behavior can bee seen on the result of BSS with
the Sparse prior; however, the tendency to favor zeros in source weights can
be nicely observed here. The BSS with sparse differences prior provides smooth
estimates of the source weights; however, the algorithm estimated the fourth
source as a combination of the second and the third source. The BSS with the
Wishart prior does not penalizes redundant sources and the activity in fourth
source is taken from the first. Only the BSS with Wishart prior and localization
achieves suppression of the redundant source. It is still estimated, however, with
negligible activity which is under the displayed resolution.

4.2 Experiment on Dynamic Scintigraphy Dataset

In this experiment, we will use a selected data from dynamic renal scintigraphy!
to demonstrate the performance of the methods on real data. The data has
original resolution 128 x 128 pixels; however, we select a region with one kidney of
the size 37 x 47 where medically relevant sources (kidney pelvis and parenchyma)
are located. The whole sequence is composed of 100 images with sampling period
of 10s.

We compare only BSS algorithms based on the Sparse differences prior and
the Wishart prior with localization with the NMF algorithm. The » = 3 for
the tested algorithms. The results are summarized in Fig. 2. Estimated source
images and source weights are in a row-wise schema. Two methods, BSS with
Sparse differences prior and the NMF, estimate threes significant sources where
sources 2 and 3 correspond to biological activity of the pelvis. Only the BSS with

! www.dynamicrenalstudy.org.
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Fig. 2. Results of selected BSS algorithms on dynamic renal scintigraphy data. Source
images are in the first three columns and related TACs are in the second three columns.

Wishart prior and localization estimates only two sources which correspond very
well with the expected biological function of pelvis and parenchyma.

5 Discussion and Conclusion

The problem of blind source separation (BSS) is generally ill-posed, especially
under the conditions such as noisy observations or unknown number of sources.
Bayesian approach is generally valuable for its ability to estimate the number of
relevant sources using hierarchical priors. In this work, we study various choices
of prior covariance structure of the source weights. Covariance structures with
ARD and ARD principle of the differences were already published. We propose
another model using Wishart prior and develop Variation Bayes estimation algo-
rithm with non-standard step of covariance localization. The proposed algorithm
was found to have superior ability to suppress redundant sources in blind source
separation of noisy image sequences. All versions of the variational BSS algo-
rithm are implemented in Matlab and freely available for download from http://
www.utia.cz/AS/softwaretools/image_sequences/.
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A Shaping Parameters of Posterior Distributions

Posterior distributions are f(~A|D) = tNa(pa, I, ®X4), ~(§k|D) = G, (D1, Vk) 5
f(x|ID) = tNx(x, 2x), f(TID) = Wrpne (Zr,0), f(wlD) = G, (9,p),
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with shaping parameters 221 = (wﬁ—i—é), ha = (wD)?) Ya, ¢ =
G0+ Bln1, ¥ = o + Ldiag (@), ol = ((@ﬁ)@[n+foL) fe =

2x

(@Vec (DTE)) et = (7&\T+04511m-> B=p0+10="00+5, p=

po+ Ltr ((D ~ AXT)(D - Eﬁ)T) .
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