
A Comparison of Traditional and New Inverse Modelling Techniques for Source Term
Identification in the Atmosphere
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1. Introduction
Inverse modelling plays an important role in identifying the amount of
harmful substances released into atmosphere during major incidents
such as power plant accidents or volcano eruptions. Another possible
application of the inverse modelling lies in the monitoring of CO2 emis-
sion limits where only measurements at certain places are available and
the task is to estimate the total releases at given locations.

Assume that vector (x1, . . . , xn) ∈ Rn stands for unknown parameters
in spatial–time domain and consider a mapping M : Rn → Rm such
that M(x) is the predicted measurement vector at given points. Having
a vector (y1, . . . , ym) ∈ Rm of known measurements, we would like to
find x such that the following quantity

‖M(x)− y‖
is minimized, where ‖ · ‖ denotes the Euclidean norm. In atmo-
spheric modelling, mapping M is often linear, represented by a matrix
M ∈ Rm×n. This leads to an optimization problem

minimize
x

‖Mx − y‖. (1)

Matrix M is often denoted as source–receptor sensitivity matrix . The
reason for this is that element mij of matrix M represents the sensitivity
of the measurement at point j to the release at point i .

There are two main approaches to finding a solution to (1). The first one
is a deterministic approach and makes use directly of formula (1) and
tries to solve it by optimization techniques. Since the problem is often
ill–conditioned, various regularizations are used to make the problem
more tractable. This approach usually results in the necessity of solving
a constrained quadratic program. The second approach is a stochastic
one and instead of solving (1), it assumes that

y = Mx + ε, (2)

where ε is a random vector. Provided that ε has normal distribution
with independent components having zero mean and the same vari-
ance, then applying the maximal likelihood estimate reduces precisely
to solving (1) which can be seen as ordinary least squares.

Our first goal is to propose a modification of the deterministic approach
for solving problem (1) by adding nondiagonal weighting matrix W to
obtain (8), see below. This approach is closely connected with Bayesian
modelling, where the weighting matrix enters as a covariance matrix of
the measurements. However, we base the weighting matrix purely on
the topology of the measurement points.

The second goal is to show a new approach of dealing with ill–
conditioned sensitivity matrix M. To the best of our knowledge, the usual
approach is either to use some regularization or to ignore certain mea-
surements, which reduces the number of rows in M. This, however, may
lead to a suboptimal solution when the solution of the reduced problem
is not a solution to the original problem. We try to prevent this behaviour
and suggest to look for a sparse solution x , which means that x should
contain as many zeros as possible. This problem may be formulated
as a multiobjective optimization: we try to minimize the measurement
error ‖Mx − y‖ and at the same time, we try to minimize the number of
nonzeros, which is denoted by ‖x‖0.

2. Spatial and temporal locations weighting

It could be advantageous not to compare Mx and y componentwise but
to take into account their spatial and temporal locations and compare
the sum on a neighborhood of every component. We assume that for
every measurement yj we know additional data zj = (zx

j , z
y
j , z

t
j ), where

pair (zx
j , z

y
j ) represents the longitude and latitude of a measurement

point and z t
j the measurement time. We would like to define the dis-

tance between the measurement points in an easily tractable manner.

2. Spatial and temporal locations weighting – cont.

First, we define the space and time distances as follows

dS(zi , zj) :=


exp(−αS‖(zx

i , z
y
i )− (zx

j , z
y
j )‖)

if ‖(zx
i , z

y
i )− (zx

j , z
y
j )‖ ≤ smax ,

0 otherwise,
(3a)

dT (zi , zj) :=

{
exp(−αT‖z t

i − z t
j ‖) if ‖z t

i − z t
j ‖ ≤ tmax ,

0 otherwise,
(3b)

where αS ≥ 0, αT ≥ 0 and smax ∈ [0,∞], tmax ∈ [0,∞] are given
parameters; the last two are known as cutoff distances. Since both
quantities in (3) lie in interval [0,1], we may define the distance between
zi and zj as

d(zi , zj) := dS(zi , zj)dT (zi , zj). (4)
Note that this distance is zero if the measurements are performed at
distant places (as specified by smax) or at distant times (as specified
by tmax). Moreover, the distance decreases with increasing spatial or
temporal distance. This rate of decrease is determined by parameters
αS and αT .

When considering ordinary least squares, instead of minimizing discrep-
ancy

∣∣∣(Mx)j − yj

∣∣∣ at given point j , we will minimize the difference be-
tween Mx and y on a neighborhood of point j . If we relate this neighbor-
hood to distance d defined in (4), for every measurement j = 1, . . . ,m
we try to minimize the following quantity∣∣∣∣∣∣

m∑
i=1

d(zj , zi)∑m
k=1 d(zj , zk)

(Mx)i −
m∑

i=1

d(zj , zi)∑m
k=1 d(zj , zk)

yi

∣∣∣∣∣∣ , (5)

where the denominator is a weighting factor. Thus, adding weighting
matrix W moves uncertainties from a point to its neighborhood. When
we combine components (5) into one vector, we arrive at minimizing

‖W (Mx − y)‖2, (6)

where weighting matrix W consists of elements

wij =
d(zi , zj)∑m

k=1 d(zi , zk)
. (7)

To conclude this approach, we propose to minimize weighted least
squares (WLS) under nonnegativity constraints

minimize
x

‖WMx −Wy‖2

subject to x ≥ 0
(8)

instead of problem (1). Similar extensions may be performed for prob-
lems with Tikhonov regularization or for any problem based on the ordi-
nary least squares method.

3. Sparse optimization techniques

We will now concentrate on finding sparse solutions to problem (8).
Since such solution is uniquely determined provided the system is
overdetermined, it is usually assumed that matrix WM has more
columns than rows, thus m < n. Then there exist multiple solutions
and the task of sparse optimization is to select the one with the lowest
number of nonzero components. In the opposite case of m > n, the
solution of (8) is usually uniquely determined but the solution may be
dense. In such cases it is possible to trade higher density for a slightly
worse error ‖WMx − Wy‖. An advantage of sparse solutions is that
columns corresponding to zero components of a solution are ignored,
i.e. we deal with ill–conditioned matrices M in a natural way.

We employ the l0 “norm”, which is defined as

‖x‖0 := #{i | xi 6= 0},
where #A denotes the number of elements in a set A. Thus, sparse
optimization tries to minimize ‖x‖0, together with criterion (6).

3. Sparse optimization techniques – cont.

In sparse optimization, instead of (8) one usually solves
minimize

x
‖x‖0

subject to ‖WMx −Wy‖2 ≤ εtol ,

x ≥ 0,

(9)

where εtol ≥ 0 signifies the maximal possible error between WMx and
Wy . Another possibility is to solve

minimize
x

‖WMx −Wy‖2

subject to ‖x‖0 ≤ ktol ,

x ≥ 0,

(10)

where ktol ∈ N is a natural number which denotes the maximal number
of nonzeros in x . To compare problems (9) and (10), we observe first
that parameter εtol is a real one while ktol is an integer. This implies that
it may be simpler to choose the value of ktol which is not sensitive to
scaling in variables. Moreover, the optimal value of (10) will provide bet-
ter error ‖WMx −Wy‖ under the same sparsity. However, this problem
is generally more difficult to solve.

We may approximate nonconvex problem (9) by a convex one using l1
norm instead of ‖x‖0 leading to

minimize
x

n∑
i=1

xi

subject to ‖WMx −Wy‖2 ≤ εtol ,

x ≥ 0.

(11)

Using artificial binary variables zi ∈ {0,1} such that

zi = 0 ⇐⇒ xi = 0,
zi = 1 ⇐⇒ xi > 0,

(12)

we obtain

‖x‖0 =
n∑

i=1

zi .

Then, instead of (10) we consider mixed-integer problem

minimize
x ,z

‖WMx −Wy‖2

subject to
n∑

i=1

zi ≤ ktol ,

zi · lbi ≤ xi ≤ zi · ubi , i = 1, . . . ,n,
zi ∈ {0,1}.

(13)

For a solution x of this problem, we always have that at most ktol com-
ponents xi are positive and if this is the case, then they are greater than
lbi . We can also control the highest value by setting ubi .

4. Application to ETEX

Now we are ready to compare the methods on real data. ETEX (Eu-
ropean Tracer Experiment) is a controlled tracer experiment performed
in 1994 near Rennes in France with detailed information about the re-
lease. This experiment was performed twice, for the first time on 23
October 1994 and for the second time on 14 November 1994. A total
of 340kg of PMCH was released into the atmosphere during the course
of 12 hours. The sampling network consisted of 168 stations. These
stations are depicted in Figure 1. Each station was supposed to sample
over the period of 72 hours with the time difference between two subse-
quent measurements being 3 hours. Thus, every station was to provide
24 measurements. The stations closest to the release point started to
sample 3 hours before the release was performed while the stations far
away from the release ended their sampling activity 90 hours after the
release had started.

4. Application to ETEX – cont.

Figure 1: Locations of measurement stations for the ETEX experiment. The first letter
denotes a country in which the station is located..

We set parameters to αS = 2, αT = 1, tmax = 1 and slightly modified
smax by considering

dS(zi , zj) :=

{
exp(−αS‖(zx

i , z
y
i )− (zx

j , z
y
j )‖) if exp(−αS‖(zx

i , z
y
i )− (zx

j , z
y
j )‖) > 10−5,

0 otherwise.

We can compare the original release with the solutions of the methods
introduced above.
Figure 2: Original release (Upper Left plot), solution of (8) (Upper Right),
(11) (Lower Left), (13) (Lower Right).
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It is clear from Figure 2UR that the WLS solution is not sparse. It can
be seen that the solutions of (11) , (13) estimate the true release plotted
in Figure 2UL in a good way. In particular, the time profile of the release
is very similar to the true one. This holds true especially for Figure
2LR which is based on the sparse optimization technique with maximal
allowed sparsity ktol = 10. This complies Table 1 where one can see
that for ktol = 10, error ‖WMx −Wy‖ is the lowest possible one.
Table 1: Methods comparison.

Method Error ‖WMx −Wy‖ Sparsity ‖x‖0
WLS (8) 9.77e-12 30
l1 approximation (11) 9.41e-12 9
Mixed-integer problem (13) 9.38e-12 10

A reference

I L. Adam and M. Branda: Sparse optimization for inverse problems in
atmospheric modelling. Optimization Online (submitted).

Data and codes
We emphasize that all data and Matlab codes are available online at
I http://staff.utia.cas.cz/adam/research.html
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