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THIN AND HEAVY TAILS IN STOCHASTIC
PROGRAMMING

Vlasta Kaňková and Michal Houda

Optimization problems depending on a probability measure correspond to many applica-
tions. These problems can be static (single-stage), dynamic with finite (multi-stage) or infinite
horizon, single- or multi-objective. It is necessary to have complete knowledge of the “under-
lying” probability measure if we are to solve the above-mentioned problems with precision.
However this assumption is very rarely fulfilled (in applications) and consequently, problems
have to be solved mostly on the basis of data. Stochastic estimates of an optimal value and an
optimal solution can only be obtained using this approach. Properties of these estimates have
been investigated many times.

In this paper we intend to study one–stage problems under unusual (corresponding to re-
ality, however) assumptions. In particular, we try to compare the achieved results under the
assumptions of thin and heavy tails in the case of problems with linear and nonlinear depen-
dence on the probability measure, problems with probability and risk measure constraints, and
the case of stochastic dominance constraints. Heavy-tailed distributions quite often appear in
financial problems [26] while nonlinear dependence frequently appears in problems with risk
measures [22, 30]. The results we introduce follow mostly from the stability results based on
the Wasserstein metric with the “underlying” L1 norm. Theoretical results are completed by a
simulation investigation.

Keywords: stochastic programming problems, stability, Wasserstein metric, L1 norm, Lip-
schitz property, empirical estimates, convergence rate, linear and nonlinear
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1. INTRODUCTION

Let (Ω,S,P) be a probability space, ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω)) an s–dimensional
random vector defined on (Ω,S,P), F := Fξ(·) the distribution function of ξ, and PF and
ZF the probability measure and the support corresponding to F , respectively. Moreover,
let g0 : Rs × Rn → R be a real-valued function, X ⊂ Rn a nonempty deterministic
set, and XF ⊂ X its nonempty subset, in general depending on F . The operator of
mathematical expectation corresponding to F will be denoted by EF . To further simplify
the notation, we will also use the abbreviation P{A} standing for P{ω ∈ Ω | ω ∈ A} for
a random event A from (Ω,S,P).

DOI: 10.14736/kyb-2015-3-0433

http://doi.org/10.14736/kyb-2015-3-0433
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Assuming that for an x ∈ X there exists EF g0(x, ξ), we introduce a general one-stage
(static) “classical” stochastic optimization problem in the form

to find ϕ(F,XF ) := inf
{
EF g0(x, ξ) | x ∈ XF

}
. (1)

The objective function in (1) linearly depends on the probability measure PF . We also
consider the following relaxed version of the problem (with nonlinear dependence):

to find ϕ̄(F,XF ) := inf
{
EF ḡ0(x, ξ,EFh(x, ξ)) | x ∈ XF

}
, (2)

where h : Rn × Rs → Rm1 is an m1-dimensional vector function (with components
h1, . . . , hm1), and ḡ0 : Rn × Rs × Rm1 → R.

The type of problems represented by (2) have recently appeared in the literature
(see, e. g., Ermoliev and Norkin [8]). The classical problem (1) is also covered by the
problem (2) if ḡ0(x, z, y) := g0(x, z) for every y ∈ Rm1 . “Mean-Risk” problems can also
be covered by the form (2), see [21, 30, 40].

In this paper we restrict our focus only to several special cases of XF :

1. fixed constraint set :
XF := X; (3)

2. individual probability constraints:

XF := XF (p) :=
s⋂
i=1

{
x ∈ X | P[gi(x) ≤ ξi] ≥ pi

}
, (4)

where p = (p1, . . . , ps), pi ∈ (0, 1), and gi : Rn → R for i = 1, . . . , s;

3. constraints with loss functions:

XF := XF (u0, p) =
s⋂
i=1

{
x ∈ X | min

{
ui | P[Li(x, ξ) ≤ ui] ≥ pi

}
≤ ui0

}
, (5)

where u0 = (u1
0, . . . , u

s
0) and p = (p1, . . . , ps) with ui0 > 0, pi ∈ (0, 1) for i =

1, . . . , s. In our setting, the loss functions are defined for i = 1, . . . , s by

Li(x, z) = gi(x)− zi

where gi : Rn → R and z = (z1, . . . , zs) ∈ Rs. Such type of loss functions can
appear for example in connection with an inner problem in two-stage stochastic
(generally nonlinear) programming problems (for a definition of two-stage problems
see, e. g., Birge and Louveaux [3]).

4. stochastic (first and second order) dominance constraints: given g : Rn × Rs → R
(such that g(x, ξ) is a random variable for every x ∈ X) and a random variable
Y := Y (ξ) with the distribution function FY , we define a first-order stochastic
dominance constraint by

XF :=
{
x ∈ X | Fg(x,ξ)(u) ≤ FY (u) for every u ∈ R

}
, (6)
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and a second order stochastic dominance constraint by

XF :=
{
x ∈ X | F (2)

g(x,ξ)(u) ≤ F (2)
Y (u) for every u ∈ R

}
, (7)

where, for u ∈ R,

F
(2)
g(x,ξ)(u) :=

u∫
−∞

Fg(x,ξ)(y)dy, F
(2)
Y (u) :=

u∫
−∞

FY (y)dy.

For more information about stochastic dominance see, e. g., [40].

In applications we often have to replace the measure PF by an empirical measure
PFN determined from a random sample (not necessarily independent) corresponding to
the measure PF . Consequently, instead of solving the problems (1) and (2), the following
problems are solved:

to find ϕ(FN , XFN ) = inf
{
EFN g0(x, ξ) | x ∈ XFN

}
, (8)

to find ϕ̄(FN , XFN ) = inf
{
EFN ḡ0(x, ξ,EFNh(x, ξ)) | x ∈ XFN

}
. (9)

Solving (8) and (9) we obtain (empirical) estimates of the optimal values and optimal
solutions of the problems (1) and (2) in question. The aim of this paper is to compare the
properties of the above-mentioned estimates when the underlying distributions possess
thin or heavy tails. We shall see that the properties of empirical estimates are more
favorable in the case of thin tails, although the fundamental limit properties are mostly
valid also in the case of heavy-tailed distributions.

The paper is organized as follows: first, we recall a short historical survey on em-
pirical estimates for the classical stochastic programming problem (1) with XF = X in
Section 2. In the text, we emphasize a significance of heavy-tailed distributions. Aux-
iliary definitions and assertions can be found in Section 3. The main results will be
presented in Section 4. The paper is completed by a simulation study in Section 5, and
concluded by a discussion in Section 6.

2. BRIEF HISTORICAL SURVEY

Investigation of empirical estimates in stochastic programming started in [44] for the
problem of type (1) with XF = X, see also [13]. It was followed by many papers, see,
e. g., [4, 6, 12, 14, 17, 29, 34, 37, 38]. Consistency, convergence rate, and asymptotic
distributions have been studied there under the assumptions of thin-tailed distributions
and XF = X. Exceptional examples introducing heavy-tailed distributions are the
papers [11, 21, 31]. Nonlinear dependence on probability measure appeared, e. g., in
[8, 23, 31]. However, we will demonstrate in this section that many of the original
results already intrinsically cover the case of heavy-tailed distributions as well. To recall
these assertions we start with the following consistency theorem.
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Theorem 2.1. (Kaňková [13]) If

1. X is a compact set, g0(x, z) is a uniformly continuous bounded function on X×Rs,

2. {ξi}+∞i=−∞ is an ergodic sequence, and FN is determined by {ξi}Ni=1,

then
P
{
|ϕ(FN , X)− ϕ(F, X)| −−−−→

N→∞
0
}

= 1.

Theorem 2.1 was proven under the assumption that {ξi}+∞i=−∞ is an ergodic sequence
and g0 is a bounded function (for the definition of the ergodic random sequence see [2]).
Of course, the ergodic property covers the independent case. It is very important to
note that the theorem is valid independently of the distribution tails. Observe that it
also covers stable distributions.

Later we shall see that the consistency is guaranteed (under some additional assump-
tions) by the existence of finite first moments. Let us recall one of the essential results
concerning this question in which g0 is not assumed to be bounded.

Theorem 2.2. Let X be a nonempty compact set. If

1. g0(·, z) is a continuous function for almost every z ∈ ZF (with respect to PF ),

2. g0(x, ·) is dominated by a function integrable with respect to F ,

3. {ξi}Ni=1, N = 1, 2, . . . is an independent random sample,

then
P
{
|ϕ(FN , X)− ϕ(F,X)| −−−−→

N→∞
0
}

= 1.

P r o o f . The assertion of Theorem 2.2 follows immediately from Proposition 5.2 and
Theorem 7.48 proven in [40]. �

Investigation of the convergence rate dates back to 1978 [14] when it was started by
the following assertion.

Theorem 2.3. (Kaňková [14]) Let t > 0, X be a nonempty compact, convex set. If

1. g0(x, z) is a uniformly continuous function on X × ZF , bounded by M ′ > 0 (i. e.,
|g0(x, z)| ≤M ′),

2. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L′ not depending
on z,

3. {ξi}Ni=1, N = 1, 2, . . . is an independent random sample,

then there exist constants K(t,X, L′), k1(M ′) > 0 such that

P
{
ϕ(F,X)− ϕ(FN , X)| > t} ≤ K(t,X, L′) exp{−Nk1(M ′)t2

}
.
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The assertion of Theorem 2.3 is valid independently of the distribution tails. However,
the integrand function g0(x, ξ) in the problem (1) is supposed to be bounded.

Remark 2.4. The estimation of the constants K(t,X, L′), k1(M ′) [14] gives a possibil-
ity to determine a sample size that guarantees reasonable error estimates, and to prove
that

P{Nβ |ϕ(F,X)− ϕ(FN , X)| > t} −−−−−→
N−→∞

0 for β ∈ (0, 1
2 )

(see [15]).

Later it was the theory of large deviations which was employed to investigate the
convergence rate (see, e. g., [4, 12]). To present this, we define the moment generating
function Mḡ corresponding to a function ḡ : ZF → R by the relation

Mḡ(u) := EF eu[ḡ(ξ)−EF ḡ(ξ)], u ∈ R.

We also denote ‖·‖2 to be the Euclidean norm in Rn. The following assertion was proven
in [39].

Theorem 2.5. (Shapiro and Hu [39]) Let X be a nonempty compact set. If

1. for every x ∈ X the moment generating function Mg0(u) is finite-valued for all u
in a neighborhood of zero,

2. there exists a measurable function κ : ZF → R+ and a constant γ′ > 0 such that

|g0(x′, z)− g0(x, z)| ≤ κ(z)‖x′ − x‖γ
′

2 for z ∈ ZF and x, x′ ∈ X,

3. the moment generating function Mκ(u) of κ is finite-valued for all u in a neigh-
borhood of zero,

4. {ξi}Ni=1, N = 1, 2, . . . is an independent random sample,

then for any t > 0 there exist positive constants C̄ := C̄(t) and β̄ := β̄(t), independent
of N , such that

P
{

sup
x∈X
|EFN g0(x, ξ)− EF g0(x, ξ)| ≥ t

}
≤ C̄(t)e−Nβ̄(t).

In Theorem 2.5, it is assumed that the function g0 is Hölder continuous with respect
to the decision vector x; the Hölder constant can depend on the random element and
its moment generating function is supposed to exist. The upper bound introduced in
Theorem 2.5 is, under the remaining assumptions, exponential; however, the form of
functions C̄(·), β̄(·) is not explicitly specified. Consequently, the result of Theorem 2.5
cannot be employed to determine N that would guarantee an acceptable error of this
estimate. An assumption similar to assumption 2 of Theorem 2.5 also appeared in [4].

Summarizing this part: while the first results formulated by Theorem 2.1, Theo-
rem 2.3, and Remark 2.4, are valid independently of distribution tails, later results
represented by Theorem 2.5 are valid only if the “underlying” distributions exhibit thin
tails. This is probably due to the boundedness of the function under the operator of
mathematical expectation in the former papers.
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3. SOME DEFINITIONS AND AUXILIARY ASSERTIONS

In this section we recall basic notions, definitions and auxiliary assertions useful in our
investigation of empirical estimates in the stochastic programming problems. First, we
recall that the distribution function Fη of a random variable η (defined on (Ω,S,P))
has thin tails if there exists its finite moment generating function in a neighborhood of
zero. Similarly, η is said to have a distribution function with heavy tails if its finite
moment generating function does not exist (for the definition of the moment generating
function see, e. g., [9]). Consequently, all moments of a thin-tailed distribution are
finite; however, the existence of all finite moments does not guarantee the finite moment
generating function and consequently, thin tails.

We consider several examples of distributions. The first of these is the Weibull dis-
tribution, defined by the probability density function

f(z) =

β
η

(
z
η

)β−1

exp
{
−
(
z
η

)β}
for z > 0,

0 for z ≤ 0,

where β > 0 is the shape parameter, and η > 0 the scale parameter of the distribution.
According to the definition mentioned above, the Weibull distribution lies on a boundary
between thin- and heavy-tailed distributions: its finite moment generating function exists
only for some parameter values, but the rate of the convergence of empirical estimates
remains the same as in the exponential case. A log-normal distribution presents a similar
situation where the finite moment generating function no longer exists.

The situation is rather different in the case of a Pareto distribution. The type I
Pareto probability density function is given by

f(z) =

{
αCαz−(α+1) for z ≥ C,
0 for z < C,

where α > 0 is the shape parameter, and C > 0 the scale parameter. For this distri-
bution, the finite moment generating function does not exist, and neither do most of
the moments (only the moments up to α exist). The convergence rate is worse for this
distribution – see Section 4.

First, we recall some stability results.

3.1. Stability

Consider F,G to be two s-dimensional distribution functions with finite EF g0(x, ξ),
EGg0(x, ξ) for x ∈ X, and denote X (F,XF ) a solution set of the problem (1). If we
employ triangular inequality we can obtain

|ϕ(F,XF )− ϕ(G,XG)| ≤ |ϕ(F,XF )− ϕ(G,XF )|+ |ϕ(G,XF )− ϕ(G,XG)|. (10)

If, moreover, X (F,XF ), X (G,XF ), X (G,XG) are singletons, then also

‖X (F,XF )−X (G,XG)‖2 ≤ ‖X (F,XF )−X (G,XF )‖2+‖X (G,XF )−X (G,XG)‖2. (11)
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Evidently, relations similar to (10) and (11) are also valid in the case of problem (2).
To recall the first auxiliary assertion, let P(Rs) denote the set of all (Borel) probability

measures on Rs and let the system M1
1(Rs) be defined by the relation

M1
1(Rs) :=

{
ν ∈ P(Rs) |

∫
Rs

‖z‖1dν(z) <∞
}

where ‖ · ‖1 denotes the L1-norm in Rs. We introduce the following systems of assump-
tions:

A.1 • g0(x, z) is either a uniformly continuous function onX×Rs, or there exists ε >
0 such that g0(x, z) is a function convex on X(ε) and bounded on X(ε)×ZF ,
where X(ε) denotes the ε–neighborhood of the set X;

• g0(x, z) is, for x ∈ X, a Lipschitz function of z ∈ Rs with the Lipschitz
constant L (corresponding to the L1 norm) not depending on x.

B.1 PF ,PG ∈M1
1(Rs) and there exists ε > 0 such that

• for every x ∈ X(ε) and z ∈ Rs, the function ḡ0(x, z, y) is a Lipschitz function
of y ∈ Y (ε) with a Lipschitz constant Ly where

Y (ε) =
{
y ∈ Rm1 | y = h(x, z) for some x ∈ X(ε), z ∈ Rs

}
,

and EFh(x, ξ), EGh(x, ξ) ∈ Y (ε);

• for every x ∈ X(ε) and y ∈ Y (ε), there exist finite mathematical expecta-
tions EF ḡ0(x, ξ,EFh(x, ξ)), EF g1

0(x, ξ,EGh(x, ξ)), EGg1
0(x, ξ,EFh(x, ξ)), and

EGg1
0(x, ξ,EGh(x, ξ));

• for every x ∈ X(ε), the functions hi(x, z), i = 1, . . . ,m1 are Lipschitz func-
tions of z with the Lipschitz constants Lih, corresponding to L1 norm,

• for every x ∈ X(ε) and y ∈ Y (ε), the function ḡ0(x, z, y) is a Lipschitz
function of z with the Lipschitz constant Lz, corresponding to L1 norm.

B.2 EF ḡ0(x, ξ,EFh(x, ξ)), EGḡ0(x, ξ,EGh(x, ξ)) are continuous functions on X.

Proposition 3.1. (Kaňková [19, 23]) Let PF ,PG ∈ M1
1(Rs) and let X be a compact

set. If

1. Assumption A.1 is fulfilled, then

|ϕ(F, X)− ϕ(G, X)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi. (12)

2. Assumptions B.1, B.2 are fulfilled, then there exist Ĉ > 0 such that

|ϕ̄(F, X)− ϕ̄(G, X)| ≤ Ĉ
s∑
i=1

∞∫
−∞

|Fi(zi)−Gi(zi)|dzi. (13)
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Proposition 3.1 reduces (from the mathematical point of view) an s-dimensional case
to a one-dimensional one. Of course, a stochastic dependence between the components
of the random vector is neglected there. The idea to reduce an s-dimensional case, s > 1
to a one-dimensional case is credited to Pflug [28], see also Šmı́d [43].

Furthermore, we introduce some auxiliary assertions dealing with optimal solution
sets. To this end, we recall the definition of strongly convex functions.

Definition 3.2. Let h̄(x) be a real-valued function defined on a nonempty convex set
K ⊂ Rn. h̄(x) is said to be a strongly convex function with parameter ρ > 0 if for every
x1, x2 ∈ K and λ ∈ [0, 1]

h̄(λx1 + (1− λ)x2) ≤ λh̄(x1) + (1− λ)h̄(x2)− λ(1− λ)ρ‖x1 − x2‖22.

Proposition 3.3. (Kaňková [16]) Let K ⊂ Rn be a nonempty compact convex set.
Let, moreover, h̄(x) be a continuous real-valued function defined on K, strongly convex
with a parameter ρ > 0. Let x0 = arg min

x∈K
h̄(x). Then

‖x− x0‖22 ≤
2
ρ
|h̄(x)− h̄(x0)| for every x ∈ K.

To recall equivalent forms of the constraint sets XF , we first introduce the following
notation: let Fi(zi), i = 1, . . . , s, denote one-dimensional distributions corresponding to
F and let us define

kF (p) = (kF1(p1), . . . , kFs
(ps)),

kFi
(pi) = sup

{
zi | PFi

[zi ≤ ξi] ≥ pi
} (14)

for p = (p1, . . . , ps), pi ∈ (0, 1), i = 1, . . . , s. We also denote by ∆[·, ·] := ∆n[·, ·] the
Hausdorff distance on Rn (for its definition see [32]) .

Lemma 3.4. Let gi(x), i = 1, . . . , s be real-valued continuous functions defined on Rn.
Let, moreover, PFi

, i = 1, . . . , s be absolutely continuous with respect to the Lebesgue
measure on R. Then

XF = X̄(kF (p)),

where, for v = (v1, . . . , vs) ∈ Rs,

X̄(v) :=
s⋂
i=1

{x ∈ X | gi(x) ≤ vi} (15)

if XF is defined by (4), or

X̄(v) :=
s⋂
i=1

{x ∈ X | gi(x)− ui0| ≤ vi} (16)

if XF is defined by (5).
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P r o o f . The first assertion has been proven in [18], the second in [23]. �

Proposition 3.5. Let X be a nonempty set. If

1. ĝ0(x) is a real-valued function, Lipschitz on X with a Lipschitz constant L,

2. X̄(v) are nonempty sets for every v ∈ ZF ,

3. there exists a constant Ĉ > 0 such that for all v(1), v(2) ∈ ZF ,

∆
[
X̄(v(1)), X̄(v(2))

]
≤ Ĉ

∥∥v(1) − v(2)
∥∥

2
,

then ∣∣∣∣ inf
x∈X̄(v(1))

ĝ0(x)− inf
x∈X̄(v(2))

ĝ0(x)
∣∣∣∣ ≤ LĈ∥∥v(1) − v(2)

∥∥
2
.

Proposition 3.5 is a slightly modified version of Proposition 1 in [18]. The conditions
under which gi, i = 1, . . . , s fulfill assumption 3 of Proposition 3.5 can be found in the
same paper.

To recall an equivalent form of the constraint set XF defined by the second-order
stochastic dominance (7), we introduce the following lemma.

Lemma 3.6. Let g(x, z), Y (z) be, for every x ∈ X, Lipschitz functions of z ∈ Rs with
the Lipschitz constant Lg not depending on x. Let, moreover, PF ,PG ∈M1

1(Rs). If XF

is defined by relation (7), then

1. [u − g(x, z)]+, [u − Y (z)]+ are Lipschitz functions of z ∈ Rs with the Lipschitz
constant Lg not depending on u ∈ R, x ∈ Rn;

2. XF = {x ∈ X | EF [u− g(x, ξ)]+ ≤ EF [u− Y (ξ)]+, u ∈ R};

3. for u ∈ R, x ∈ X it holds that

∣∣EF [u− g(x, ξ)]+ − EG[u− g(x, ξ)]+
∣∣ ≤ Lg s∑

i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi,

∣∣EF [u− Y (ξ)]+ − EG[u− Y (ξ)]+
∣∣ ≤ Lg s∑

i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi,

x ∈ XF =⇒ EG[u− g(x, ξ)]+ − EG[u− Y (ξ)]+ ≤ 2Lg
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi,

x ∈ XG =⇒ EF [u− g(x, ξ)]+ − EF [u− Y (ξ)]+ ≤ 2Lg
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi.

P r o o f . The first assertion of Lemma 3.6 follows from the properties of the Lipschitz
functions, the second assertion follows from relation (4.7) in [40]. The third assertion
follows from the first and second assertions and from the assertion of Proposition 3.1.

�
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3.2. Empirical estimates

If we replace the distribution G by the empirical distribution function FN in the con-
clusions of the previous section, then we can formulate auxiliary assertions concerning
empirical estimates useful for the investigation of problems (1) and (2). To this end we
first introduce the following system of assumptions:

A.2 • {ξi}∞i=1 is an independent random sequence corresponding to F , and

• FN is an empirical distribution function determined by {ξi}Ni=1, N = 1, 2, . . . .

A.3 PFi
, i = 1, . . . , s are absolutely continuous with respect to the Lebesgue measure

on R.

A.4 For every i ∈ {1, . . . , s} there exist δ > 0 and ϑ > 0 such that fi(zi) > ϑ for every
zi ∈ ZFi

with |zi − kFi
(pi)| < 2δ.

According to Proposition 3.1, it is reasonable to first focus on the case s = 1 and to
recall the following auxiliary assertions.

Lemma 3.7. (Shor [42]) Let s = 1, PF ∈ M1
1(R1) and Assumption A.2 be fulfilled.

Then

P
{ ∞∫
−∞

|F (z)− FN (z)|dz −−−−→
N→∞

0
}

= 1.

Proposition 3.8. (Houda and Kaňková [11]) Let s = 1, t > 0 and Assumptions A.2,
A.3 be fulfilled. If there exist β > 0, and R := R(N) > 0 defined on N (the set of natural
numbers) such that R(N) −−−−−→

N→+∞
∞ and, moreover,

Nβ

−R(N)∫
−∞

F (z)dz −−−−→
N→∞

0, Nβ

∞∫
R(N)

[1− F (z)]dz −−−−→
N→∞

0,

2NF (−R(N)) −−−−→
N→∞

0, 2N [1− F (R(N))] −−−−→
N→∞

0,(
12NβR(N)

t
+ 1
)

exp

{
−2N

(
t

12NβR(N)

)2
}
−−−−−→
N−→∞

0,

(17)

then

P

Nβ

∞∫
−∞

∣∣F (z)− FN (z)
∣∣dz > t

 −−−−→N→∞
0. (18)

According to the assertion of Proposition 3.8 and to old results of Dvoretzky–Kiefer–
Wolfowitz (see [7]) we can recognize that fulfillment of relation (18) depends on the
distribution tails. To introduce the corresponding assertions, we first recall one well-
known result concerning distribution tails.
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Lemma 3.9. (Gut [9]) Let r > 0, s = 1. Suppose that ξ is a non-negative random
variable with EF ξr < +∞. Then

zrP{ξ > z} → 0 as z → +∞.

The above recalled Lemma 3.9 is a basis for the next proposition.

Proposition 3.10. (Houda and Kaňková [11]) Let s = 1, t > 0, r > 0, and the
assumptions A.2, A.3 be fulfilled. Let, moreover, ξ be a random variable such that
EF |ξ|r <∞. If a constant β > 0 fulfills the inequalities

0 < β <
1
2
− 1
r
,

then

P

Nβ

∞∫
−∞

|F (z)− FN (z)|dz > t

 −−−−→N→∞
0.

P r o o f . The assertion of Proposition 3.10 follows immediately from Theorem 19 [22].
�

The value of the convergence rate β := β(r) introduced in Proposition 3.10 depends
on the existence of finite absolute moments. Evidently, it is seen that the convergence
rate β ∈ (0, 1/2) is the same for the distributions with exponential tails as for the Weibull
or log-normal distribution. In fact, for nearly every distribution for which all absolute
moments exist and are finite, the convergence rate exhibits this behavior – that is, it
is also true for some distributions with heavy tails. However, the convergence rate β
is much smaller if only some of absolute moments are finite (as in the case of a Pareto
distribution, where only moments up to a certain r > 0 exist).

It follows from the results published in [41] that Pareto tails can approximate the
heavy tails of the continuous stable distributions (it means of all stable distributions
with exception of the normal distribution). The class of univariate stable distributions
can be considered a “generalization” of the class of normal distributions. There are
four known equivalent definitions of the stable distributions. We recall one of them (see
[36]); a direct relationship to the normal distribution can be seen from this definition.
A random variable ξ is said to have a (univariate) stable distribution if, for all positive
numbers A and B, there are a positive number C and a real number D such that

Aξ1 +Bξ2 =d Cξ +D,

where ξ1 and ξ2 are independent copies of ξ, and “ =d ” denotes equality in distribution.
The stable distributions are characterized by four parameters: index of stability ν ∈

(0, 2], which says how heavy the tails of the distributions are; the scale parameter σ ≥ 0;
the skewness parameter b ∈ [−1, 1] (usually denoted β, but we use b here to avoid the
notation conflict); and the shift parameter µ ∈ R. The stable distribution is Gaussian
when ν = 2, and in this case σ is proportional to the standard deviation, b can be taken
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as zero and µ is the mean. It is known that the probability densities of stable random
variables exist and are continuous but, with a few exceptions, they are not known in a
closed form. Moreover, it is known that the finite first moment exists if ν > 1.

Unfortunately, we cannot obtain (by this approach) any results similar to Proposi-
tion 3.10 if there exist EF |ξ|r only for r < 2 . It is known (see, e. g., [24]) that this is
an example of heavy-tailed stable distributions. However, to obtain at least a weaker
result for this case we recall the result of [1].

Proposition 3.11. (Bario et al. [1]) Let s = 1, {ξi}Ni=1, N = 1, 2, . . . be a sequence of
independent random values corresponding to a stable distribution F with the index of
stability ν ∈ (1, 2). Then the sequence

N

N1/ν

∞∫
−∞

|FN (z)− F (z)|dz, N = 1, 2, . . . (19)

is stochastically bounded if and only if

sup
t>0

tν P{|ξ| > t} <∞. (20)

The assertion of Proposition 3.11 follows from Theorem 2.2 [1]. According to the
definition of the stochastically bounded random sequences it holds (under the validity
of relation (20)) that

lim
M→∞

sup
N

P

 N

N1/ν

∞∫
−∞

|F (z)− FN (z)|dz > M

 = 0. (21)

To complete this Section, we recall the assertion corresponding to the case β = 1
2 .

Proposition 3.12. (Houda [10]) Let the assumptions A.2 and A.3 be fulfilled, s = 1,
and PF ∈M1

1(R). If
+∞∫
−∞

√
F (z)(1− F (z)dz < +∞,

then
+∞∫
−∞

√
N |FN (z)− F (z)|dz →d

+∞∫
−∞

|U(F (z))|dz,

where U denotes the Brownian bridge.

Furthermore, we recall some auxiliary assertions useful for “empirical” estimates of
the constraint set XF fulfilling (4) and (5).

Lemma 3.13. (Kaňková [22]) Let s = 1, p ∈ (0, 1). If the assumptions A.2, A.3 and
A.4 are fulfilled, and 0 < t′ < δ, then

P{|kFN (p)− kF (p)| > t′} ≤ 2 exp{−2N(ϑt′)2}, N ∈ N,

(kF (p), kFN (p) are defined by the relation (14)).
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4. EMPIRICAL ESTIMATES IN OPTIMIZATION PROBLEMS

4.1. The case XF = X

First, according to Proposition 3.1 and Lemma 3.7, we can obtain the following consis-
tency result for optimal values of stochastic optimization problems.

Theorem 4.1. Let PF ∈M1
1(Rs), X be a compact set.

1. If the assumptions A.1, A.2 and A.3 are fulfilled, then

P{|ϕ(FN , X)− ϕ(F,X)| −−−−→
N→∞

0} = 1;

2. if the assumptions B.1, B.2, A.2 and A.3 are fulfilled, then

P{|ϕ̄(FN , X)− ϕ̄(F,X)| −−−−→
N→∞

0} = 1.

According to Theorem 4.1 we can see that ϕ(FN , X), ϕ̄(FN , X) are consistent esti-
mates of ϕ(F,X) and ϕ̄(F,X) if the underlying distributions have finite first moments
(and under the remaining assumptions mentioned above). It means that these esti-
mates are also consistent for the heavy-tailed distributions (if there exist first absolute
moments); for example, for the stable distributions with the index of stability ν ∈ (1, 2].

The next result deals with the convergence rate.

Theorem 4.2. (Houda, Kaňková [11, 23]) Consider an r > 2 for which EFi
|ξi|r < +∞,

i = 1, . . . , s. Let, moreover, β̂ = 1/2− 1/r.

1. If the assumptions A.1, A.2, A.3 are fulfilled, PF ∈M1
1(Rs), t > 0, X is a compact

set, then

P
{
Nβ |ϕ(F, X)− ϕ(FN , X)| > t

}
−−−−→
N→∞

0 for 0 < β < β̂; (22)

2. if the assumptions A.2, A.3. B.1 and B.2 are fulfilled, PF ∈ M1
1(Rs), t > 0, X is

a compact set, then

P
{
Nβ |ϕ̄(F,X)− ϕ̄(FN , X)| > t

}
−−−−→
N→∞

0 for 0 < β < β̂. (23)

Generally, the convergence rate β̂ := β̂(r) introduced in Theorem 4.2 depends on the
existence of finite absolute moments. In particular, the following relation is valid:

β̂(r) −−−−−→
r→+∞

1
2
, β̂(r) −−−−→

r→2+
0.

Consequently, relations (22) and (23) hold with β ∈ (0, 1/2) not only for the distributions
with exponential tails, but also for every distribution for which all moments exist and
are finite (that is, Weibull or log-normal distributions). The convergence rates become
worse for distributions like the Pareto one (see, e. g., [11]) if only some moments (for
a certain r > 2) are finite. For a more detailed analysis see the commentary following
Proposition 3.10.

The following weaker assertion covering the stable distribution with ν ∈ (1, 2) can be
formulated.
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Theorem 4.3. (Kaňková [22]) Let the assumptions A.2, A.3 be fulfilled, PF ∈M1
1(Rs),

M > 0, and X be a compact set. Let the one-dimensional components ξi, i = 1, . . . , s of
the random vector ξ have the stable distribution functions Fi with the indices of stability
νi ∈ (1, 2) and fulfill the relations

sup
t>0

tνi P{|ξi| > t} <∞, i = 1, . . . , s.

Then

1. if the assumption A.1 is fulfilled, it holds that

lim
M→∞

sup
N

P
{

N

N1/ν
|ϕ(FN , X)− ϕ(F,X)| > M

}
= 0 (24)

with ν = min(ν1, . . . , νs);

2. if the assumptions B.1 and B.2 are fulfilled, it holds that

lim
M→∞

sup
N

P
{

N

N1/ν
|ϕ̄(FN , X)− ϕ̄(F,X)| > M

}
= 0 (25)

with ν := min{ν1, . . . , νs}.

Let us assume that the assumptions of Theorem 4.3 are fulfilled and define β :=
β(ν) = 1 − 1/ν (that corresponds to “convergence rate”). Then β(ν) is an increasing
function of ν and

lim
ν→1+

β(ν) = 0, lim
ν→2−

β(ν) =
1
2
.

It will be seen in Section 5 that the convergence rate is much worse for a stable distri-
bution with an index of stability ν ∈ (1, 2).

4.2. The case of probability and risk constraints

In this subsection we admit a constraint set depending on the probability measure. In
particular, we assume that one of the relations (4) or (5) is fulfilled. We prove the
following theorem.

Theorem 4.4. Let the assumptions A.2, A.3, and A.4 be fulfilled, p = (p1, . . . , ps),
u0 = (u1

0, . . . , u
s
0), pi ∈ (0, 1), ui0 > 0, i = 1, . . . , s, and t > 0. Let, moreover, g0(x, z) be

a real-valued Lipschitz function on X with the Lipschitz constant L′ not depending on
z ∈ ZF . If

1. XF is defined by relation (4) as XF = XF (p), or by relation (5) as XF = XF (u0, p),

2. for every v ∈ ZF , X̄(v) are nonempty sets and, moreover, there exists a constant
Ĉ > 0 such that

∆
[
X̄(v(1)), X̄(v(2))] ≤ Ĉ‖v(1) − v(2)‖2 for v(1), v(2) ∈ ZF ,
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3. there exists β ∈ (0, 1/2) such that

P
{
Nβ |ϕ(F,XF )− ϕ(FN , XF )| > t

}
−−−−→
N→∞

0, (26)

then
P
{
Nβ | inf

X̄(kF (p))
EF g0(x, ξ)− inf

X̄(kF N (p))
EFN g0(x, ξ)| > t

}
−−−−→
N→∞

0.

If, moreover, g0(x, z) is, for every z ∈ ZF , a strongly convex function of x ∈ X with
a parameter ρ > 0, then also

P
{
Nβ‖X (F,XF )−X (FN , XFN )‖22 > t

}
−−−−→
N→∞

0

(where X̄(v) is defined by relation (15) or (16) according to the definition of XF ; and
∆[·, ·] denotes the Hausdorff distance, see p. 440).

P r o o f . Let FN be determined by {ξi}Ni=1. First, under the assumptions of the the-
orem, EFN g0(x, ξ) is a Lipschitz function of x ∈ X with the Lipschitz constant L′ not
depending on ξ1, . . . , ξN ; consequently also not depending on ω ∈ Ω. According to
Proposition 3.5 and Lemma 3.4 there exists C ′ such that, successively,∣∣∣∣∣ inf

X̄(kF (p))
EFN g0(x, ξ)− inf

X̄(kF N (p))
EFN g0(x, ξ)

∣∣∣∣∣ ≤ L′C ′‖kF (p)− kFN (p)‖2,

P
{

inf
X̄(kF (p))

EFN g0(x, ξ)− inf
X̄(kF N (p))

EFN g0(x, ξ)| > t
}

≤ P
{
L′C ′‖kFN (p)− kF (p)‖2 ≥ t

}
.

Employing now this last inequality, the inequality (26), Lemma 3.13 and properties of
the exponential function we obtain the first assertion of Theorem 4.4. If, moreover,
g0(·, z) is strongly convex on X with a parameter ρ > 0, then employing relation (11),
Proposition 3.3 we obtain the second assertion. �

The following result follows immediately from Theorem 4.4.

Corollary 4.5. Let the assumptions of Theorem 4.4 be valid and let a function ĝ0(x)
defined on X be such that g0(x, z) = ĝ0(x) for x ∈ X, z ∈ ZF . Then the assertions of
Theorem 4.4 are valid with β ∈ (0, 1/2).

It follows from Corollary 4.5 that, if the objective function does not depend on the
probability measure, the convergence rate β ∈ (0, 1/2) (under very general assumptions)
is independent of the underlying distribution function. Consequently, this assertion is
also valid for all heavy-tailed distributions, including the stable case.
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4.3. The case of second order stochastic dominance constraints

To consider the constraint set XF fulfilling the relation (7), or if g(x, ξ) ∈ M1
1(R) for

x ∈ X, equivalently the relation

XF := X0
F :=

{
x ∈ X | EF [u− g(x, ξ)]+ − EF [u− Y (ξ)]+ ≤ 0, u ∈ R

}
,

let us first define, for ε > 0, a modified constraint set Xε
F by the relation

Xε
F =

{
x ∈ X | EF [u− g(x, ξ)]+ − EF [u− Y (ξ)]+ ≤ ε, u ∈ R

}
. (27)

We prove the following assertion.

Proposition 4.6. Let PF ∈ M1
1(Rs), g(x, z) be a Lipschitz function of z ∈ ZF with

the Lipschitz constant not depending on x ∈ X, and δ > 0, then

X
δ−ε(N)

FN ⊂ Xδ
F ⊂ X

δ+ε(N)

FN with ε(N) = 2Lg
s∑
i=1

+∞∫
−∞

|Fi(zi)− FNi (zi)|dzi.

If, moreover, the assumptions A.1, A.2, and A.3 are fulfilled, then also

ϕ(F,Xε(N)

FN ) ≤ ϕ(F,X0
F ) ≤ ϕ(F,X−ε(N)

FN ),

ϕ(FN , Xε(N)

FN ) ≤ ϕ(FN , X0
F ) ≤ ϕ(FN , X−ε(N)

FN ).

P r o o f . Employing the assertion of Lemma 3.6 and setting G := FN we obtain∣∣EFN [u− g(x, ξ)]+ − EFN [u− Y (ξ)]+ − EF [u− g(x, ξ)]+ + EF [u− Y (ξ)]+
∣∣

≤ 2Lg
s∑
i=1

+∞∫
−∞

|Fi(zi)− FNi (zi)|dzi, u ∈ R;

hence also

x ∈ Xδ
F =⇒ x ∈ Xδ+ε(N)

FN , x ∈ Xδ−ε(N)

FN =⇒ x ∈ Xδ
F .

Now we can already see that the first assertion of Proposition 4.6 follows from re-
lation (27). The second assertion follows from the first one and from the properties of
infimum. �

We can even prove a stronger assertion.

Theorem 4.7. Let PF ∈ M1
1(Rs), t > 0, and X be a compact set, with Assumptions

A.1, A.2 and A.3 fulfilled. If

1. • g(x, z) is a Lipschitz function of z ∈ ZF with the Lipschitz constant not
depending on x ∈ X,
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• g0(x, z) is a Lipschitz function of x ∈ X with the Lipschitz constant L′ not
depending on z ∈ ZF ,

2. there exists ε0 > 0 such that Xε
F are nonempty compact sets for every ε ∈ [−ε0, ε0],

and, moreover, there exists a constant Ĉ > 0 such that

∆[Xε
F , X

ε′

F ] ≤ Ĉ|ε− ε′| for ε, ε′ ∈ [−ε0, ε0],

3. for some r > 2 it holds that EFi
|ξi|r < +∞, i = 1, . . . , s and a constant β fulfills

the inequality

0 < β <
1
2
− 1
r
,

then
P
{
Nβ |ϕ(F,X0

F )− ϕ(FN , X0
FN )| > t

}
−−−−−→
N→+∞

0. (28)

P r o o f . Setting G := FN in relation (10) we obtain

|ϕ(F,X0
F )− ϕ(FN , X0

FN )| ≤ |ϕ(F,X0
F )− ϕ(FN , X0

F )|+ |ϕ(FN , X0
F )− ϕ(FN , X0

FN )|.
(29)

According to assumption 2, X0
F is a nonempty compact set. Consequently it follows

from Theorem 4.2 that

P{Nβ |ϕ(F,X0
F )− ϕ(FN , X0

F )| > t} −−−−−→
N→+∞

0. (30)

It follows from Proposition 4.6 that for every δ ≥ 0

X
δ−ε(N)

FN ⊂ Xδ
F ⊂ X

δ+ε(N)

FN with ε(N) = 2Lg
s∑
i=1

+∞∫
−∞

|Fi(zi)− FNi (zi)|dzi. (31)

Since the Hausdorff distance is a metric in the space of compact subsets of Rn (see, e. g.,
[35]) we can obtain that

∆[X0
F , X

0
FN ] ≤ ∆[X0

F , X
−ε(N)
F ] + ∆[X−ε(N)

F , X0
FN ]. (32)

According to (31) we can obtain that also

X
−ε(N)
F ⊂ X0

FN ⊂ Xε(N)
F with ε(N) = 2Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)− FNi (zi)|dzi (33)

and, consequently, according to the definition of the Hausdorff distance, assumption 2,
relation (32) and definition (27) we can successively obtain that

∆
[
X
−ε(N)
F , X0

FN

]
≤ ∆

[
X
−ε(N)
F , X

ε(N)
F

]
≤ C ′′ε(N) for some C ′′ > 0, ε(N) < ε0,

∆
[
X0
F , X

0
FN ] ≤ D

′
ε(N) for some D

′
> 0, ε(N) < ε0.
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Furthermore, since it follows from assumption 1 that EFN g0(x, ξ) is a Lipschitz func-
tion of x ∈ X with the Lipschitz constant not depending on ξ1, . . . , ξN (and consequently
not depending on ω ∈ Ω), employing a slightly modified assertion of Proposition 1 of
[18] (see also Proposition 3.5) and the last inequalities we obtain that

|ϕ(FN , X0
F )− ϕ(FN , X0

FN )| ≤ D̄ε(N) if ε(N) < ε0

for some D̄ > 0.
Consequently, it follows (successively) from the properties of probability measure for

t > 0

P{Nβ |ϕ(FN , X0
F )− ϕ(FN , X0

FN )| > t}
= P{Nβ |ϕ(FN , X0

F )− ϕ(FN , X0
FN )| > t ∧ ε(N) ≥ ε0}

+ P{Nβ |ϕ(FN , X0
F )− ϕ(FN , X0

FN )| > t ∧ ε(N) ≤ ε0}
≤ P{ε(N) ≥ ε0}+ P{NβD̄ε(N) > t}.

Now already it follows from Lemma 3.7, Proposition 3.10 and definition of ε(N) that

P{Nβ |ϕ(F,X0
F )− ϕ(FN , X0

FN ) > t} −−−−→
N→∞

0. (34)

The assertion of Theorem 4.7 follows now from the relations (30), (31) and (34). �

Theorem 4.7 deals with the second-order stochastic dominance constraints. In par-
ticular, it is shown that the convergence rate (of the empirical estimates of the optimal
value) is determined by the distribution’s tails – in a way similar to deterministic con-
straint set X.

5. SIMULATION STUDY

To illustrate convergence properties treated in previous sections, we provide a simple
simulation study. In particular, we compute values for the integrated empirical process
(IEP)

Nβ

∞∫
−∞

|F (z)− FN (zi)|dz (35)

for different distributions, namely for

• the standard normal distribution N(0; 1),

• the Pareto I distribution with scale parameter C = 1 and different values of shape
parameter α (from 3 to 1.8),

• a symmetric stable distribution with scale parameter γ = 1, location parameter
δ = 0, and a selected value α = 1.8 of tail parameter,
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Convergence of integr. empirical process

N × Wasserstein.metric
Process value: N=100 (dotted), N=1000 (dashed), N=5000 (blue), N=10000 (red)
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Convergence of integr. empirical process
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Fig. 1. Normal distribution, IEP with β = 1/2 and 2/5.

and for two different values of β, namely 1/2 and 2/5. We select N = 100, 1000, 5000,
and 10000, respectively, as sample sizes. Each simulation is repeated 200 times to get
a kernel estimator of the resulting density. The convergence properties of the IEP are
particularly interesting for such problems of stochastic programming where the stability
of optimal values is driven by the Wasserstein distance, see, e. g., [10, 20].

1. Standard Normal Distribution. According to Propositions 3.10 and 3.12, the IEP
converge to zero if β < 1

2 , and to an integrated Brownian bridge of the standard
normal distribution function, if β = 1

2 . We provide normal distribution results as
a benchmark for the other computational results. The convergence is illustrated
in Figure 1.

2. Pareto distribution. The shape parameter α is the largest available moment of
the considered distribution. If α → +∞ then the IEP converges to zero for some
β(α) ∈ (0; 1

2 ), approaching to 1
2 . If α → 2− then the tails of IEP converge to

zero for a certain β(α) ∈ (0; 1
2 ), approaching 1

2 . The convergence is illustrated in
Figures 2 (for β = 1/2) and 3 (for β = 2/5). One can notice poor convergence
properties in the case of small values of α (represented here by α = 1.8) – the
limiting distribution is not clearly identified even after 10,000 samples in that
case.

3. Symmetric stable distribution. The tail parameter α is again the largest available
moment of this distribution. If α = 2 then it is the standard normal distribution.
The general convergence properties follow the same rules as for the Pareto distri-
bution. Fourth of the images in Figures 2 and 3 represents the convergence of the
IEP with stable distribution with α = 1.8.
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Convergence of integr. empirical process

N × Wasserstein.metric
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Convergence of integr. empirical process

N × Wasserstein.metric
Process value: N=100 (dotted), N=1000 (dashed), N=5000 (blue), N=10000 (red)
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Convergence of integr. empirical process

N × Wasserstein.metric
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Convergence of integr. empirical process
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Fig. 2. Pareto (α = 3.0, 2.0, 1.8) and stable (α = 1.8) distributions,

IEP with β = 1/2.

6. CONCLUSION – DISCUSSION

The aim of the paper is to summarize and to compare the rates of convergence for
empirical estimates in stochastic optimization problems from the point of view of thin-
and heavy-tailed distributions. The paper covers the case of a deterministic constraint
set, a constraint set depending on a probability measure, and a constraint set de-
fined through stochastic second-order dominance. In spite of the fact that the intro-
duced convergence properties also cover the stable distributions in the case of proba-
bility and risk constraints, the situation is more complicated in the case of stochastic
dominance constraints. First, it is possible to follow the approach of Dentcheva and
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Convergence of integr. empirical process
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Convergence of integr. empirical process

Nβ × Wasserstein.metric
Process value: N=100 (dotted), N=1000 (dashed), N=5000 (blue), N=10000 (red)

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

Pareto I. distribution (alpha=1.8)

Convergence of integr. empirical process
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Fig. 3. Pareto (α = 3.0, 2.0, 1.8) and stable (α = 1.8) distributions,

IEP with β = 2/5.

Ruszczyński (see [5]) with relaxing the constraints set; in particular, they propose re-
placing the constraint set (7) by

XF =
{
x ∈ X | EF [u− g(x, ξ)]+ ≤ EF [u− Y (ξ)]+, u ∈ [a, b]

}
for some a, b ∈ R. A question remains how to select the constants a, b in the case of
stable distributions. However, the main question arises if the constraint set is nonempty.
A detailed investigation in this direction still remains open.
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[6] J. Dupačová and R. J. B.Wets: Asymptotic behaviour of statistical estimates and opti-
mal solutions of stochastic optimization problems. Ann. Statist. 16 (1984), 1517–1549.
DOI:10.1214/aos/1176351052

[7] A. Dvoretzky, J. Kiefer, and J. Wolfowitz: Asymptotic minimax character of the sample
distribution function and the classical multinomial estimate. Ann. Math. Statist. 56 (1956),
642–669. DOI:10.1214/aoms/1177728174

[8] Y. M. Ermoliev and V. Norkin: Sample everage approximation method for com-
pound stochastic optimization problems. SIAM J. Optim. 23 (2013), 4, 2231–2263.
DOI:10.1137/120863277

[9] A. Gut: Probability: A Graduate Course. Springer, New York 2005.

[10] M. Houda: Stability and Approximations for Stochastic Programs. Doctoral Thesis,
Faculty of Mathematics and Physics, Charles University Prague, Prague 2009.
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[20] V. Kaňková and M. Houda: Dependent samples in empirical estimation of stochastic
programming problems. Austrian J. Statist. 35 (2006), 2 – 3, 271–279.
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[23] V. Kaňková: Risk measures in optimization problems via empirical estimates. Czech
Econom. Rev. VII (2013), 3, 162–177.

[24] L. B. Klebanov: Heavy Tailed Distributions. MATFYZPRESS, Prague 2003.

[25] M. M. Meerschaert and H.-P.Scheffler: Limit Distributions for Sums of Independent Ran-
dom Vectors (Heavy Tails in Theory and Practice). John Wiley and Sons, New York
2001.

[26] M. M. Meerschaert and H.-P.Scheffler: Portfolio Modelling with Heavy Tailed Random
Vectors. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.),
Elsevier, Amsterdam 2003, pp. 595–640.

[27] M. M. Meerschaert and H.-P.Scheffler: Portfolio Modeling with Heavy Tailed Random
Vectors. In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.),
Elsevier, Amsterdam 2003, pp. 595–640.

[28] G. Ch. Pflug: Scenario tree generation for multiperiod financial optimization by optimal
discretization. Math. Program. Ser. B 89 (2001), 251–271. DOI:10.1007/pl00011398

[29] G. Ch. Pflug: Stochastic Optimization and Statistical Inference. In: Handbooks in Opera-
tions Research and Managemennt 10, Stochastic Programming (A. Ruszczynski and A. A.
Shapiro, eds.) Elsevier, Amsterdam 2003, pp. 427–480.

[30] G. Ch. Pflug and W. Römisch: Modeling Measuring and Managing Risk. World Scientific
Publishing Co. Pte. Ltd, New Jersey 2007.

[31] S. T. Rachev and W. Römisch: Quantitative stability and stochastic program-
ming: the method of probabilistic metrics. Math. Oper. Res. 27 (2002), 792–818.
DOI:10.1287/moor.27.4.792.304

[32] R. Rockafellar, and R. J. B. Wets: Variational Analysis. Springer, Berlin 1983.

[33] W. Römisch and A. Wakolbinger: Obtaining Convergence Rate for Approximation in
Stochastic Programming. In: Parametric Optimization and Related Topics (J. Guddat,
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