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Abstract Many economic and financial applications lead (from the mathematical
point of view) to deterministic optimization problems depending on a probability
measure. These problems can be static (one stage), dynamic with finite (multistage) or
infinite horizon, single objective or multiobjective.We focus on one-stage case in mul-
tiobjective setting. Evidently, well known results from the deterministic optimization
theory can be employed in the case when the “underlying” probabilitymeasure is com-
pletely known. The assumption of a complete knowledge of the probability measure is
fulfilled very seldom.Consequently, we havemostly to analyze themathematicalmod-
els on the data base to obtain a stochastic estimate of the corresponding “theoretical”
characteristics. However, the investigation of these estimates has been done mostly
in one-objective case. In this paper we focus on the investigation of the relationship
between “characteristics” obtained on the base of complete knowledge of the proba-
bility measure and estimates obtained on the (above mentioned) data base, mostly in
the multiobjective case. Consequently we obtain also the relationship between analy-
sis (based on the data) of the economic process characteristics and “real” economic
process. To this end the results of the deterministic multiobjective optimization theory
and the results obtained for stochastic one objective problems will be employed.
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310 V. Kaňková

1 Introduction

To introduce a “rather general” multiobjective stochastic programming problem let
(Ω,S, P) be a probability space; ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω)) s-dimensional
random vector defined on (Ω,S, P); F(:= F(z), z ∈ Rs), PF and ZF denote the
distribution function, the probability measure and the support corresponding to ξ .
Let, moreover, gi := gi (x, z), i = 1, . . . , l, l ≥ 1 be real-valued (say, continuous)
functions defined on Rn × Rs ; XF ⊂ X ⊂ Rn be a nonempty set generally depending
on F, and X ⊂ Rn be a nonempty deterministic set. If the symbol EF denotes the
operator of mathematical expectation corresponding to F and if for every x ∈ X there
exist finite EFgi (x, ξ), i = 1, . . . , l, then a rather general “multiobjective” one-stage
stochastic programming problem can be introduced in the form:

Find minEFgi (x, ξ), i = 1, . . . , l subjectto x ∈ XF . (1)

The multiobjective problem (1) corresponds evidently to economic situation in
which a “result” of an economic process is simultaneously influenced by a random
factor ξ and a decision parameter x . It is reasonable to evaluate this process by a few
(say l, l ≥ 1) objective functions; moreover, the decision vector has to be determined
without knowledge of the random element realization and it seems to be reasonable to
determine “the decision” with respect to the mathematical expectation of the objec-
tives.

Evidently, an “underlying” multiobjective problem with a random element can be
in the form

Find min ĝi (x, ξ), i = 1, . . . , l
subject to g∗

j (x, ξ) ≤ 0, j = 1, . . . , l ′,

where ĝi (x z), i = 1, . . . , l, g∗
j (x, z), j = 1, . . . , l ′ are functions defined on

Rn × Rs . Generally gi (x, z), i = 1, . . . , l can depend on ĝi (x, z), g∗
j (x, z), i =

1, . . . , l, j = 1, . . . , l ′. Of course, the approach defined by the last introduced prob-
lems with random elements is only one of possibilities. Evidently, there exists many
others.

Other approaches how to treat the multiobjective problems with random elements
are known from the literature [see e.g., in Ben Abdelaziz (2012), Caballero et al.
(2001), Dupačová et al. (2002), Kuchta (2011) and Gutjahr and Pichler (2013)—
where new approaches to stochastic multiobjective problems (including stochastic
dominance) can be found]. A relationship between efficient points corresponding to
the different approaches are discussed in Caballero et al. (2001). In this paper we study
the approach that is defined by the multiobjective problem (1), generally with con-
straints set depending on F . Moreover, we restrict our consideration to the case when
the functions EFgi (x, ξ), i = 1, . . . , l are (mostly strongly) convex. The Markowitz
model fulfills e.g., this condition [for the definition of the Markowitz model see e.g.,
Dupačová et al. (2002)]. But objective function in Problem (1) depends linearly on
the probability measure and this condition is not fulfilled in the case of the Markowitz
model. According to this fact, generalized stability results Kaňková (2013a) have to
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be employed to obtain practically the same results (to guarantee the same rate of the
convergence it is necessary the support ZF to be a bounded set.)

Applications to the multiobjective problems can be found also e.g., in Stancu-
Minasian (1984) and Jablonský (1993). Many of them correspond (under some addi-
tional conditions) to two-stage stochastic problems with multiobjective inner prob-
lems. The assumptions, guaranteing convexity of the inner problems, can be found in
the literature [see e.g., (Ahmed 2004, where convexity simultaneously with numer-
ical tractability were studied; and Shapiro et al. 2009)]. Moreover, in Römisch and
Schulz (1993a, b) and Schulz (1994) the assumptions are introduced under which the
inner objective functions are strongly convex. Employing the results of Römisch and
Schulz (1993b) we can see that even well known risk measure CVaR [for the defin-
ition see e.g., Shapiro et al. (2009)] is, under rather general conditions, the strongly
convex function. Namely considering CVaRwith the “underlying” linear problem and
employing the results presented in Kall andMayer (2005) we can see that CVaR can be
reformulated in the form of a simple recourse problem. Consequently, employing the
results of Römisch and Schulz (1993b) we can obtain for continuous PF (with respect
to the Lebesgue measure on Rs) that mostly CVaR is a strongly convex function.

The riskmeasures appear also often in a constraints set [see e.g.,Dupačová andKopa
(2012)]. Replacing a variance byCVaR inMarkowizmodelwe can obtain optimization
problem with the strongly objective function (for more details about applications see
the Sect. 5). At the end of this discussion we mention that a relationship between
convex and strongly convex functions can be found e.g., in Merentes and Nikodem
(2010).

It is possible only very seldom to find out simultaneously the solution with respect
to all criteria in (1) and moreover, these problems depend on a probability measure PF
that usually has to be estimated on the data base. Consequently, in applications very
often the “underlying” probability measure PF has to be replaced by empirical one.
Evidently, then the “solution” and an analysis of the problem have to be done with
respect to an empirical problem:

Find minEFN gi (x, ξ), i = 1, . . . , l subject to x ∈ XFN , (2)

where FN denotes an empirical distribution function determined by a random sample
{ξ i }Ni=1 (not necessary independent) corresponding to the distribution function F .

Evidently, if l = 1 we obtain “classical” one objective stochastic programming
problem. Solving the problem (2) we obtain empirical estimates of an optimal value
and optimal solutions. Let us denote the optimal values of (1) and (2) (in the case
l = 1) by ϕ1(F, XF ), ϕ1(FN , XFN ) and the corresponding optimal solutions sets by
X 1(F, XF ),X 1(FN , XFN ). It follows from the stochastic programming literature that
ϕ1(FN , XFN ),X 1(FN , XFN ) are under rather general assumptions “good” statistical
estimates of ϕ1(F, XF ), X 1(F, XF ). It was shown that these estimates are consistent
under rather general assumptions. The convergence rate and an asymptotic distribution
has been studied as well. These results have been, first, obtained for the case XF = X
and for “classical” thin tails distributions, see e.g.,Wets (1974), Kaňková (1977, 1978,
1994), Dai et al. (2000), Dupačová andWets (1984), Kaniovski et al. (1995), Kaňková
andHouda (2006), Römisch andWakolbinger (1987), Römisch (2003), Schulz (1996),
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312 V. Kaňková

Shapiro (1994) and Shapiro et al. (2009). Later, the results covering also “heavy” tails
have arisen, see e.g., Kaňková (2010, 2012, 2013b) and Houda and Kaňková (2012).

To analyze (for general l) the relationship between the characteristics obtainedunder
the assumption of complete knowledge of PF and them on the data base we employ
the results for one-objective stochastic problems and the results of deterministic mul-
tiobjective theory. Our results cover also the case of the “underlying” distributions
with heavy tails, that correspond just to many economic and financial situations [for
more details see e.g., Klebanov (2003) or Meerschaert and Scheffler (2003)].

According to the above mentioned facts, the paper is organized as follows. First,
we try to recall auxiliary assertions concerning deterministic multiobjective theory
(Sect. 2.1). Section2.2 will be devoted to the stability of one-stage stochastic program-
ming problems. The stability results can be considered as the base for the investigation
of empirical estimates (Sect. 2.3). Section3 is devoted to an analysis of the multiob-
jective stochastic programming problems. Essential results can be found in Sect. 4.
Applications (two special cases) and an analysis of a next possible and desirable
investigation can be found in Sects. 5 and 6.

2 Some definition and auxiliary assertion

2.1 Deterministic multiobjective problems

To recall some results of the multiobjective deterministic optimization theory we
consider a multiobjective deterministic optimization problem in the following form:

Find min fi (x), i = 1, . . . , l subject to x ∈ K, (3)

where fi (x), i = 1, . . . , l are real-valued functions defined on Rn,K ⊂ Rn is a
nonempty set.

Definition 1 The vector x∗ is an efficient solution of the problem (3) if and only if
there exists no x ∈ K such that fi (x) ≤ fi (x∗) for i = 1, . . . , l and such that for at
least one i0 one has fi0(x) < fi0(x

∗).

Definition 2 The vector x∗ is a properly efficient solution of the multiobjective opti-
mization problem (3) if and only if it is efficient and if there exists a scalar M > 0
such that for each i and each x ∈ K satisfying fi (x) < fi (x∗) there exists at least one
j such that f j (x∗) < f j (x) and

fi (x∗) − fi (x)

f j (x) − f j (x∗)
≤ M. (4)

Proposition 1 (Geoffrion (1968)) Let K ⊂ Rn be a nonempty convex set and let
fi (x), i = 1, . . . , l be convex functions on K. Then x0 ∈ K is a properly efficient
solution of the problem (3) if and only if x0 is optimal in
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min
x∈K

l∑

i=1

λi fi (x) for some λ1, . . . , λl > 0,
l∑

i=1

λi = 1.

A relationship between efficient and properly efficient points is introduced e.g., in
Ehrgott (2005) or in Geoffrion (1968). We summarize it in the following Remark.

Remark 1 Let f (x) = ( f1(x), . . . , fl(x)) , x ∈ K;Ke f f , Kpe f f be sets of efficient
and properly efficient points of the problem (3). IfK is a convex set, fi (x), i = 1, . . . , l
are convex functions on K, then

f
(
Kpe f f

)
⊂ f

(
Ke f f

)
⊂ f̄

(
Kpe f f

)
, (5)

where f̄ (Kpe f f ) denotes the closure set of f (Kpe f f ).

Definition 3 Let h(x) be a real-valued function defined on a nonempty convex se
K ⊂ Rn . h(x) is a strongly convex function with a parameter ρ > 0 if

h
(
λx1 + (1 − λ) x2

) ≤ λh
(
x1

) + (1 − λ) h
(
x2

) − λ (1 − λ) ρ‖x1 − x2‖22
for every x1, x2 ∈ K, λ ∈ 〈0, 1〉.

(‖ · ‖2 denotes the Euclidean norm in Rn .)

Proposition 2 (Kaňková (1993b)) Let K ⊂ Rn be a nonempty, compact, convex set.
Let, moreover, h(x) be a strongly convex with a parameter ρ > 0, continuous, real-
valued function defined on K. If x0 is defined by the relation x0 = argmin

x∈K
h(x),

then

‖x − x0‖2 ≤ 2

ρ
|h(x) − h(x0)| for every x ∈ K.

It has been proven in Schulz (1994) [see also Houda (2009)] that strong convexity
condition is sufficient for the quadratic growth condition [for the definition of general
growth conditions see e.g., Römisch (2003) or Houda (2009)].

Proposition 2 expresses the relationship between optimal value and optimal solution
in the case of strongly convex objectives. The situation is more complicated in the
general case, for more details see an analysis in Conclusion.

2.2 Stability in one-objective stochastic programming problems

To recall suitable (for us) assertions fromsingle criterion stochastic optimization theory
we start with the problem:

Find ϕ1 (F, XF ) = minEFg1 (x, ξ) subject to x ∈ XF , (6)

where g1(x, z) is a real-valued function defined on Rn × Rs .
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314 V. Kaňková

First, we recall some stability results corresponding to the problem (6). To this end
let F and G be two s-dimensional distribution functions for which the Problem (6) is
well defined. According to the triangular inequality we obtain

∣∣∣ϕ1 (F, XF ) − ϕ1 (G, XG)

∣∣∣ ≤
∣∣∣ϕ1 (F, XF ) − ϕ1 (G, XF )

∣∣∣

+
∣∣∣ϕ1 (G, XF ) − ϕ1 (G, XG)

∣∣∣ . (7)

Consequently, it is easy to see that we can study separately stability of the problem (6)
with respect to a perturbation in the objective function and in the constraints set. We
restrict mostly our consideration to the case XF = X . To this end let P(Rs) denote
the set of all (Borel) probability measure on Rs . We shall try to introduce functions m
(defined on R+), ds (may be metric, defined on P(Rs) × P(Rs)) such that

∣∣∣ϕ1 (F, X) − ϕ1 (G, X)

∣∣∣ ≤ m (ds (PF , PG)) .

We introduce (for i = 1, 2) a system of the assumptions A1.(i):

A1. (i)
either g1(x, z) is a uniformly continuous function on X × (ZF ∪ ZG) or X
is a convex set and there exists ε > 0 such that g1(x, z) is a convex bounded
function on X (ε) (X (ε) denotes the ε-neighborhood of X ),
g1(x, z) is a Lipschitz function of z ∈ Rs with the Lipschitz constant Li

(corresponding to the Li norm) not depending on x .

(i = 1 corresponds to L1 norm ‖ · ‖1 and i = 2 to the Euclidean norm ‖ · ‖2 in Rn .)
Furthermore, we defineMi

1(R
s) ⊂ P(Rs), and dWi

1
(F, G) = dWi

1
(PF , PG), i =

1, 2 by

Mi
1(R

s) =
⎧
⎨

⎩ν ∈ P(Rs),

∫

Rs

‖z‖iν(dz) < ∞
⎫
⎬

⎭

dWi
1
(F,G) =

⎡

⎣inf

⎧
⎨

⎩

∫

Rs×Rs

‖z − z̄‖iκ(dz × dz̄) : κ ∈ D(PF , PG)

⎫
⎬

⎭

⎤

⎦ ,

PF , PG ∈ Mi
1(R

s), (8)

where D(PF , PG) denotes the set of those measures on P(Rs × Rs) whose marginal
measures are PF , PG . dWi

1
(F,G) = dWi

1
(PF , PG), i = 1, 2 can be considered as

metrics (“distances”) in the space of the probability measures on Rs; dW 2
1
(PF , PG) is

based on the Euclidean norm, dW 1
1
(PF , PG) is based on theL1 norm. They are known

as theWasserstein metrics [for more details about theWasserstein metrics in the space
of the probability measures see e.g., Rachev (1991) and Valander (1973)].

The followingProposition is only a little generalized assertion presented inKaňková
and Houda (2002a).
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Proposition 3 Let X be a nonempty compact set, PF ∈ M2
1(R

s). If

1. the assumption A.1 (2) is fulfilled,
2. PG ∈ M2

1(R
s) is arbitrary,

then
∣∣∣ϕ1(F, X) − ϕ1(G, X)

∣∣∣ ≤ L2dW 2
1
(PF , PG) . (9)

The idea to employ the Wasserstein metric to the stability investigation belongs to
Römisch and Schulz [see e.g., Römisch and Schulz (1993b)]. However to estimate the
value dW 2

1
(F,G) for the dimensions greater 2 is (from the numerical point of view)

practically impossible.
Valander in Valander (1973) has proven for s = 1 that

dW 1
1
(F,G) =

∞∫

−∞
|F(z) − G(z)| dz.

Consequently, replacing in the case of general s dW 2
1
(F,G) by dW 1

1
(F,G), the fol-

lowing assertion could be proven.

Proposition 4 (Kaňková and Houda (2006)) Let PF , PG ∈ M1
1(R

s), X be a non-
empty set. If A.1 (1) is fulfilled, then

|EFg1 (x, ξ) − EGg1 (x, ξ)| ≤ L1

s∑

i=1

+∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi for every x ∈ X.

If, moreover, X is a compact set, then also

∣∣∣ϕ1(F, X) − ϕ1(G, X)

∣∣∣ ≤ L1

s∑

i=1

+∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi .

Proposition 4 reduces (from the mathematical point of view) s-dimensional case
to one-dimensional. The idea to reduce an s-dimensional case to one dimensional is
credited to Pflug (2001) [see also Šmíd (2009)]. In this paper we try to employ just
the stability results introduced by Proposition 4 because they are suitable in the case
of the distributions with “heavy” tails.

Remark 2 1. The right hand side of the both inequalities in Proposition 4 are equal
to the value

L1

s∑

i=1

+∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi ,
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316 V. Kaňková

independently on the stochastic dependence between the components of the vec-
tor ξ = (ξ1, . . . , ξs). Consequently, an information about the above mentioned
dependence is neglected and so including it the lower “upper bound” may be
obtained.

2. We have employed the Wasserstein metrics to obtain the stability results for one-
stage stochastic programming problems (1) with XF = X . Another metrics have
been employed in this purpose, we can recall the Kolmogorov metric [see e.g.,
Kaňková (1993a)], Bounded Lipschitz metric [see e.g., Römisch andWakolbinger
(1987)], Fortet Mourrier metric [see. e.g., Römisch (2003)] or more general semi-
metrics [see Römisch (2003)].

2.3 Empirical estimates in one-stage stochastic programming problems

ReplacingG by an empirical estimate FN of F we can employ Proposition 4 to investi-
gate empirical estimates of Problem (6) (with XF = X ). Evidently, according toPropo-

sition 4 it is reasonable to investigate the behaviour of
∞∫

−∞
|Fi (zi ) − FN

i (zi )|dzi , i =
1, . . . , s. To this end, we define the following assumptions:

A.2 {ξ i }∞i=1 is independent random sequence corresponding to F ; FN is an empirical
distribution function determined by {ξ i }Ni=1,

A.3 PFi , i = 1, . . . , s are absolutely continuous w.r.t. the Lebesgue measure on R1,

and recall the following assertions:

Proposition 5 (Shorack and Wellner (1986)) Let s = 1 and PF ∈ M1
1(R

1). Let,
moreover A.2 be fulfilled. Then

P

⎧
⎨

⎩ω :
∞∫

−∞
|F(z) − FN (z)|dz −→N−→∞ 0

⎫
⎬

⎭ = 1.

Proposition 6 (Kaňková (2010)) Let s = 1, t > 0 and Assumptions A.2, A.3 be
fulfilled. If there exists β > 0, R := R(N ) > 0 defined onN such that R(N ) →N→∞
∞ and, moreover,

Nβ

−R(N )∫

−∞
F(z)dz →N→∞ 0, Nβ

∞∫

R(N )

[1 − F(z)]dz →N→∞ 0,

2NF(−R(N )) →N→∞ 0, 2N [1 − F(R(N ))] →N→∞ 0,
(
12Nβ R(N )

t
+ 1

)
exp

{
−2N

(
t

12R(N )Nβ

)2
}

→N−→∞ 0, (10)
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then

P

⎧
⎨

⎩ω : Nβ

∞∫

−∞

∣∣∣F(z) − FN (z)
∣∣∣ dz > t

⎫
⎬

⎭ →N→∞ 0. (11)

(N denotes the set of natural numbers.)

Evidently, it follows from Propositions 4 and 6 that the convergence rate of
|ϕ1(FN , X) − ϕ1(F, X)| depends on the convergence rate of

∞∫

−∞

∣∣∣Fi (zi ) − FN
i (zi )

∣∣∣ dzi , i = 1, . . . , s. (12)

Since it has been proven in Dvoretski et al. (1956) (under the assumptions of
Proposition 6) that

P

{
ω : N 1/2 sup

z

∣∣∣FN (z) − F(z)
∣∣∣ > t

}
≤ c exp

(
−2t2

)
,

where c is universal constant,

it follows from Kaňková and Houda (2006) that

(
12Nβ R(N )

t
+ 1

)
exp

{
−2N

(
t

12R(N )Nβ

)2
}

→N−→∞ 0

and, consequently, it follows from the relations (10), (11) that the convergence rate of
(12) depends on the tails of the distribution function F .

The following auxiliary assertions have been successively proven.

Proposition 7 (Kaňková (2010)) Let s = 1, t > 0, β ∈ (0, 1
2 ) and the assumptions

A.2, A.3 be fulfilled. If there exist constants C1, C2 and T > 0 such that

f̄ (z) ≤ C1 exp {−C2|z|} for z ∈ (−∞,−T ) ∪ (T,∞),

then

P

⎧
⎨

⎩ω : Nβ

∞∫

−∞

∣∣∣F(z) − FN (z)
∣∣∣ > t

⎫
⎬

⎭ −→N−→∞ 0.

( f̄ denotes the probability density corresponding to F.)

Proposition 7 deals with the case of the distribution functions with “thin” tails. If
we admit heavy tails we can introduce a weaker assertions.
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Proposition 8 (Houda andKaňková (2012))Let s = 1, t > 0, r > 0, the assumptions
A.2, A.3 be fulfilled. Let, moreover, ξ be a random variable such that EF |ξ |r < ∞. If
constants β, γ > 0 fulfil the inequalities 0 < β + γ < 1/2, γ > 1/r, β + (1 −
r)γ < 0, then

P

⎧
⎨

⎩ω : Nβ

∞∫

−∞

∣∣∣F(z) − FN (z)
∣∣∣ dz > t

⎫
⎬

⎭ −→N−→∞ 0.

Analyzing Proposition 8 we can obtain for β := β(r) introduced by it that

β(r) −→r−→∞ 1/2, β(r) −→r−→2+ 0.

Proposition 8 covers some cases of heavy tails distributions. Unfortunately, we
cannot obtain by this Proposition any results for the case when there exist only EF |ξ |r
for r < 2. However, this case corresponds to the stable distributions with the tail
(shape) parameter ν < 2 [for more details see e.g., Kozubowski et al. (2003) or
Rachev and Mitting (2000)]. The shape parameter expresses how “heavy” tails of the
distribution are. The case ν = 2 corresponds to the normal distribution, when the
second moment exists. To deal with the case when the finite moment exists only for
r < 2, we recall the results of Barrio et al. (1999).

Proposition 9 (Barrio et al. (1999)) Let s = 1, {ξ i }Ni=1, N = 1, 2, . . . be a
sequence of independent random values corresponding to a heavy tailed distribution
F with the shape parameter ν ∈ (1, 2) and let

sup
t>0

tν P {ω : |ξ | > t} < ∞, (13)

then

lim
M̄−→∞

sup
N

P

⎧
⎨

⎩ω : N

N 1/ν

∞∫

−∞

∣∣∣F(z) − FN (z)
∣∣∣ > M̄

⎫
⎬

⎭ = 0. (14)

[For some more details see Omelchenko (2012).]

Remark 3 The convergence rate of the value |ϕ1(F, X)−ϕ1(FN , X)| has been inves-
tigated in the stochastic programming literature many times in the case of “thin” tails
[see e.g., Dai et al. (2000), Kaňková (1978),Shapiro (1994) and Shapiro et al. (2009)].
The large deviations technique has been employed in these papers mostly.

Till now we have dealt with the case XF = X . Another special case is considered
in Kaňková (2012). To recall it we assume:

A.4 There exist δ > 0, ϑ > 0 such that f̄i (zi ) > ϑ for zi ∈ ZFi , |zi − kFi (αi )| <

2δ, where
kFi (αi ) = sup{zi : PFi {ω : zi ≤ ξi (ω)} ≥ αi }, αi ∈ (0, 1), i =
1, . . . , s. ( f̄i (zi ), i = 1, . . . , s denotes the probability density corresponding
to Fi (zi )).
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A remark on multiobjective stochastic optimization via… 319

If ḡi := ḡi (x), i = 1, . . . , s are defined on Rs, αi ∈ 〈0, 1〉, i = 1, 2, . . . , s and if
we set

XF (:= XF (α)) =
s⋂

i=1

{x ∈ X : P [ω : ḡi (x) ≤ ξi ] ≥ αi } ,

αi ∈ (0, 1), i = 1, . . . , s, α = (α1, . . . , αs) , (15)

then under Assumption A.4 we can see that

XF =
s⋂

i=1

{
x ∈ X : ḡi (x) ≤ kFi (αi )

}
. (16)

Consequently, setting

X̄(v) =
s⋂

i=1

{x ∈ X : ḡi (x) ≤ vi } , v = (v1, . . . , vs) , v ∈ ZF (17)

we obtain

XF = X̄ (kF (α)) , α = (α1, . . . , αs) , kF (α) = (
kF1(α1), . . . , kFs (αs)

)
.

Proposition 10 (Kaňková (2012)) Let X be a convex, compact and nonempty set,
αi ∈ (0, 1), i = 1, . . . , s, α = (α1, . . . , αs). If

1. ĝ0(x), x ∈ Rn is a Lipschitz function on X with the Lipschitz constant L,
2. A.2, A.3, A.4 are fulfilled,
3. X̄(v) are nonempty sets for v ∈ ZF ,
4. there exists ε > 0 such that ḡi (x), i = 1, . . . , s are convex continuous functions

on X (ε),

then there exists a constant C > 0 such that

P

{
ω : | inf

X̄(kF (α))
ĝ0(x) − inf

X̄
(
kFN (α)

) ĝ0(x)| > t

}
≤ 2s exp

{
−2N (ϑ t/LCs)2

}

forN ∈ N and t > 0 such that 0 < t/LCs < δ.

Remark 4 Observe that the assertion of Proposition 10 does not depend on the tails
distributions. Especially, it is also valid for the stable distributions with the tails para-
meter ν ∈ (1, 2).

3 Multiobjective stochastic programming problems–problem analysis

To analyze the stability (and consequently empirical estimates) in the case of themulti-
objective stochastic problem (1)we define the setsG(F, XF ), X̄ (F, XF ), ḠF (F, XF ),

ḠF (F, XG),Λ and the function ḡ(x, z, λ) by the relations:
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G(F, XF ) =
{
y ∈ Rl : y j = EFg j (x, ξ), j = 1, . . . , l

for some x ∈ XF ; y = (y1, . . . , yl)} ,

X̄ (F, XF ) = {x ∈ XF : x is a properly efficient point of the problem(1)} ,

ḠF (F, XF ) =
{
y ∈ Rl : y j = EFg j (x, ξ), j = 1, . . . , l

for some x ∈ X̄ (F, XF )
}
,

ḠF (G, XG) =
{
y ∈ Rl : y j = EFg j (x, ξ), j = 1, . . . , l

for some x ∈ X̄ (G, XG)
}
,

Λ =
{

λ ∈ Rl : λ = (λ1, . . . , λl), λi > 0, i = 1, . . . , l,
l∑

i=1

λi = 1

}
,

(18)

ḡ (x, z, λ) =
l∑

i=1

λi gi (x, z), x ∈ Rn, z ∈ Rs, λ ∈ Λ. (19)

Evidently,

1. G(F, XF ) is the image of the set XF corresponding to the vector function
EFg1(x, ξ), . . . ,EFgl(x, ξ) and the underlying distribution F,

2. ḠF (F, XF ) is the image of the set X̄ (F, XF ) corresponding to the vector function
EFg1(x, ξ), . . . ,EFgl(x, ξ) and the underlying distribution F .,

If for ε > 0 the symbol X (ε) denotes the ε− surroundings of the set X and if the
assumption

B.1 – X is a nonempty, convex set and, moreover, there exists ε > 0 such that
gi (x, z), i = 1, . . . , s are convex bounded functions on X (ε),

– gi (x, z), i = 1, . . . , l are (for every x ∈ X ) Lipschitz functions of z ∈ Rs

with the Lipschitz constant L1 (corresponding toL1 norm) not depending on
x ∈ X,

is fulfilled, then ḡ(x, z, λ) is (for every z ∈ ZF , λ ∈ Λ) a convex function on X (ε)

and, moreover, (for every x ∈ X, λ ∈ Λ) a Lipschitz function of z ∈ ZF with the
Lipschitz constant L1 not depending on x ∈ X, λ ∈ Λ. Consequently, applying the
parametric optimization problem:

Find ϕλ(F, X) = inf EF ḡ(x, ξ, λ) subject to x ∈ X for λ ∈ Λ, (20)

we can apply Proposition 4 to obtain.

Proposition 11 Let PF , PG ∈ M1
1(R

s), B.1 be fulfilled, X be a nonempty set, then

|EFgi (x, ξ) − EGgi (x, ξ)| ≤ L1

s∑

i=1

+∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi

for every x ∈ X, i = 1, . . . , l,
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|EF ḡ(x, ξ, λ) − EG ḡ(x, ξ, λ)| ≤ L1

s∑

i=1

+∞∫

−∞
|Fi (zi ) − Gi (zi )|dzi

for every x ∈ X, λ ∈ Λ.

If, moreover, X is a compact set, then also

∣∣ϕλ(F, X) − ϕλ(G, X)
∣∣ ≤ L1

s∑

i=1

+∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi for every λ ∈ Λ.

To present the next assertion, first, we recall the definition of the Hausdorff distance
of two subsets of Rn, n ≥ 1. To this end letK′, K′′ ⊂ Rn be two nonempty sets. The
Hausdorff distance of these sets Δ[K′, K′′] := Δn[K′, K′′] is defined by

Δn
[K′, K′′] = max

[
δn

(K′, K′′) , δn
(K′′, K′)] ,

δn
(K′, K′′) = sup

x ′∈K′
inf

x ′′∈K.

∥∥x ′ − x ′′∥∥
2 ,

[for more details about the Hausdorff distance see e.g., Rockafellar and Wets (1983)].
Evidently, the following assertion follows from Proposition 11.

Proposition 12 Let PF , PG ∈ M1
1(R

s), X be a compact nonempty set. If B.1 is
fulfilled, then

Δl [G(F, X),G(G, X)] ≤ l L1

s∑

i=1

+∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi .

Furthermore, if gi (x, z), i = 1, . . . , l are for every z ∈ ZF ∪ ZG and some ε > 0
strongly convex functions on X (ε) with a parameter ρ > 0, then also ḡ(x, z, λ) is
for every z ∈ ZF , λ ∈ Λ a strongly convex function on X (ε) with the parameter ρ.
Employing the triangular inequality, Propositions 2 and Proposition 4 we can obtain
successively for PF , PG ∈ M1

1(R
s) and compact set X that

∥∥xλ
F (X) − xλ

G(X)
∥∥2 ≤ 2

ρ

∣∣EF ḡ
(
xλ
F (X), ξ, λ

) − EF ḡ
(
xλ
G(X), ξ, λ

)∣∣

≤ 2

ρ

[∣∣EF ḡ
(
xλ
F (X), ξ, λ

) − EG ḡ
(
xλ
G(X), ξ, λ

)∣∣

+ ∣∣EG ḡ
(
xλ
G(X)ξ, λ

) − EF ḡ
(
xλ
G(X), ξ, λ

)∣∣]

≤ 2

ρ
L1

⎡

⎣
s∑

i=1

∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi

+
s∑

i=1

∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi

⎤

⎦
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≤ 4

ρ

⎡

⎣L1

s∑

i=1

∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi

⎤

⎦ for every λ ∈ Λ,

(21)

where xλ
F (X), xλ

G(X) are solutions of problem (20)with the “underlying” distributions
F and G.

Consequently

∥∥xλ(F) − xλ(G)
∥∥ ≤

⎡

⎣ 4

ρ
L1

s∑

i=1

∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi

⎤

⎦

1
2

for every λ ∈ Λ.

(22)

Now already we can formulate the next assertion.

Proposition 13 Let PF , PG ∈ M1
1(R

s), X be a compact set. If B.1 is fulfilled and,
moreover, gi (x, z), i = 1, . . . , l are for every z ∈ ZF ∪ ZG strongly convex functions
on X with a parameter ρ > 0, then

Δn
[X̄ (F, X) , X̄ (G, X)

] ≤
⎡

⎣L1
4

ρ

s∑

i=1

+∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi

⎤

⎦
1/2

.

Proof The assertion of Proposition 13 follows immediately from the relation (22),
Proposition 1 and the properties of the Hausdorff distance. ��

Evidently, the next Corollary follows from Proposition 13, properties of the Lip-
schitz functions and the Hausdorff distance.

Corollary 1 If the assumptions of Proposition 13 are fulfilled and, moreover,
EFgi (x, z), i = 1, . . . , l are Lipschitz functions of x ∈ X, then there exists L2 > 0
such that

Δl

[
ḠF (F, X), ḠF (G, X)

]
≤

⎡

⎣L2
4

ρ

s∑

i=1

+∞∫

−∞
|Fi (zi ) − Gi (zi )| dzi

⎤

⎦
1/2

.

Remark 5 Let X be compact nonempty set, ε > 0. If EFgi (x, ξ), i = 1, . . . , l are for
every z ∈ ZF ∪ ZG convex continuous bounded functions on X (ε), then they are also
Lipschitz functions on X [for more details see Rockafellar (1970)].

4 Multiobjective stochastic programming problems: empirical estimates

Replacing (in the assertions of the previous section) G by FN and employing the
properties of the probability measure we can investigate the corresponding empirical
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estimates of the multiobjective problems (1) with XF = X to obtain the following
results.

Theorem 1 Let Assumptions B.1 and A.2 be fulfilled, PF ∈ M1
1(R

s), X be a compact
nonempty set. Then

1.

P
{
ω : Δl

[
G(F, X),G(FN , X)

]
−→N−→∞ 0

}
= 1.

If, moreover,

2. gi (x, z), i = 1, . . . , l are for every z ∈ ZF strongly convex functions with a
parameter ρ > 0 on X, then also

P
{
ω : Δn

[
X̄ (F, X), X̄

(
FN , X

)]
−→N−→∞ 0

}
= 1.

3. – gi (x, z), i = 1, . . . , l are for every z ∈ ZF strongly convex functions with a
parameter ρ > 0 on a convex set X,

– EFgi (x, ξ), i = 1, . . . , l are Lipschitz functions of x ∈ X,

then also

P
{
ω : Δl

[
GF (F, X),GF

(
FN , X

)]
−→N−→∞ 0

}
= 1.

Proof The assertion 1 of Theorem 1 follows from Propositions 5, and Proposition 12.
The assertion 2 follows from Proposition 5, Proposition 13 and the properties of the
Hausdorff distance.
The assertion 3 follows from Corollary 1, Proposition 5 and the properties of the
Lipschitz functions. ��
Remark 6 See that the stable probability measures with one dimensional marginals
having tails parameters νi > 1, i = 1, . . . , s belong to M1

1(R
s). Consequently, the

assertions of Theorem 1 are valid (under the corresponding assumptions) also for the
stable distributions with the tail parameter νi ∈ (1, 2), i = 1, . . . , s.

Replacing G by FN in Proposition 13 we can furthermore successively obtain for
γ > 0 that

P
{
ω : N γ Δn

[
X̄ (F, X), X̄ (FN , X)

]
≥ t

}

≤ P

⎧
⎪⎨

⎪⎩
ω : N γ

⎡

⎣L1

s∑

i=1

+∞∫

−∞

∣∣∣Fi (zi ) − FN
i (zi )

∣∣∣ dzi

⎤

⎦
1/2

≥ t

⎫
⎪⎬

⎪⎭
,

P
{
ω : N γ Δn

[
X̄ (F, X), X̄ (FN , X)

]
≥ t

}

≤ P

⎧
⎪⎨

⎪⎩
ω :

⎡

⎣N 2γ L1

s∑

i=1

+∞∫

−∞

∣∣∣Fi (zi ) − FN
i (zi )

∣∣∣ dzi

⎤

⎦
1/2

≥ t

⎫
⎪⎬

⎪⎭
,
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P
{
ω : N γ Δn

[
X̄ (F, X), X̄ (FN , X)

]
≥ t

}

≤ P

⎧
⎨

⎩ω :
⎡

⎣N 2γ

⎛

⎝L1

s∑

i=1

+∞∫

−∞

∣∣∣Fi (zi ) − FN
i (zi )

∣∣∣ dzi

⎞

⎠

⎤

⎦ ≥ t2

⎫
⎬

⎭ . (23)

Applying this system of inequalities, Proposition 7 and Proposition 11 we can
obtain.

Theorem 2 Let B.1, A.2, A.3 be fulfilled, X be a compact nonempty set, t > 0. If there
exists constants C1, C2 and T > 0 such that

f̄ j (z) ≤ C1 exp
{−C2|z j |

}
for z j ∈ (−∞,−T ) ∪ (T,∞), j = 1, . . . , s,

then

1. P
{
ω : NβΔl

[
G(F, X),G

(
FN , X

)]
> t

}
−→N−→∞ = 0 for β ∈

(
0,

1

2

)
.

If moreover

2. gi (x, zi ), i = 1, . . . , l are for every z ∈ ZF strongly convex functions on convex
set X with the parameter ρ > 0, then also

P
{
ω : NβΔn

[
X̄ (F, X), X̄ (FN , X)

]
> t

}
−→N−→∞ = 0 for β ∈

(
0,

1

4

)
.

3. – gi (x, z), i = 1, . . . , l are for every z ∈ ZF strongly convex functions on a
convex set X with a parameter ρ > 0,

– EFgi (x, ξ), i = 1, . . . , l Lipschitz functions of x ∈ X,

then also

P
{
ω : NβΔl

[
ḠF (F, X), ḠF (FN , X)

]
> t

}
−→N−→∞ = 0 for β ∈

(
0,

1

4

)
.

Proof The first assertion of Theorem 2 follows from Proposition 7 and Proposition 12.
The assertion 2 follows Proposition 7, Proposition 13 and the relation (23).
The last assertion follows from the second assertion and the properties of Lipschitz

functions. ��
Theorem 3 Let t > 0, r > 0, Assumptions B.1, A.2, A.3 be fulfilled. Let, moreover,
ξ be a random vector with the components ξi , i = 1, . . . , s such that EF |ξi |r < ∞.
If constants β, γ > 0 fulfil the inequalities 0 < β + γ < 1/2, γ > 1/r, β + (1 −
r)γ < 0, then

1. P
{
ω : NβΔl

[
G(F, X),G(FN , X)

]
> t

}
−→N−→∞ = 0.

If moreover
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2. gi (x, zi ), i = 1, . . . , l are for every z ∈ ZF strongly convex function on convex
set X with the parameter ρ, then also

P
{
ω : N β̄Δn

[
X̄ (F, X), X̄ (FN , X)

]
> t

}
−→N−→∞ = 0 for β̄ = β

2
.

3. – gi (x, z), i = 1, . . . , l are for every z ∈ ZF strongly convex functions on a
convex set X with a parameter ρ > 0,

– EFgi (x, ξ), i = 1, . . . , l are for every z ∈ ZF Lipschitz functions of x ∈ X,

then also

P
{
ω : N β̄Δl

[
ḠF (F, X), ḠF (FN , X)

]
> t

}
−→N−→∞ = 0 for β̄ = β

2
.

Proof The proof of Theorem 3 is the same as the proof of Theorem 2, only a Propo-
sition 7 is necessary to replace by Proposition 8. ��
Theorem 4 Let Assumptions B.1, A.2 and A.3 be fulfilled, PF ∈ M1

1(R
s), M̄ > 0, X

be a compact set. If one-dimensional components ξi , i = 1, . . . , s of the random vector
ξ have the distribution functions Fi with the tails parameters νi ∈ (1, 2) fulfilling the
relations

sup
t>0

tνi PF {ω : |ξi | > t} < ∞, i = 1, . . . , s,

then
1.

lim
M̄−→∞

sup
N

P

{
ω : N

N 1/ν Δl

[
G(F, X),G(FN , X)

]
> M̄

}
= 0

with ν = min(ν1, . . . , νs).

If moreover

2. gi (x, z), i = 1, . . . , l are strongly convex with a parameter ρ > 0 function on
X, then also for γ = ν−1

2ν

lim
M̄−→∞

sup
N

P
{
ω : N γ Δn

[
X̄ (F, X), X̄

(
FN , X

)]
> M̄

}
= 0

with ν = min (ν1, . . . , νs) .

3. – gi (x, z), i = 1, . . . , l are for every z ∈ ZF strongly convex functions on a
convex set X with a parameter ρ > 0,

– EFgi (x, ξ), i = 1, . . . , l are Lipschitz functions of x ∈ X
then also for γ = ν−1

2ν

lim
M̄−→∞

sup
N

P
{
ω : N γ Δn

[
ḠF (F, X)), ḠF

(
FN , X

)]
> M̄

}
= 0

with ν = min(ν1, . . . , νs}.
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Proof Evidently, the first assertion follows from Proposition 9 and Proposition 12.
To prove the assertion 2 we can see that it follows from the relation (23) that for

γ = 1 − 1/ν

P
{
ω : N γ Δn

[
X̄ (F, X), X̄

(
FN , X

)]
≥ t

}
≤

P

⎧
⎨

⎩ω :
⎡

⎣N 2γ

⎛

⎝L1

s∑

i=1

+∞∫

−∞

∣∣∣Fi (zi ) − FN
i (zi )

∣∣∣ dzi

⎞

⎠

⎤

⎦ ≥ t2

⎫
⎬

⎭ .

Evidently now the assertion 2 follows from the last inequality, the properties of the
probability measure and the first assertion.

The last assertion follows from the second assertion and the properties of the Lip-
schitz functions. ��
In the next section let us give a sketch of two possible applications.

5 Applications: analysis of two special examples

We consider and analyze two very simple typical problems from practise.

1. First, we shall rather modify an example from Stancu-Minasian (1984) p. 287
belonging to a group of classical “production planning problems”. A factory is
producing two main groups of goods: group A having n1 assortments and group
B including n2 assortments. A goal of a company is:
– to minimize the total cost of production,
– to minimize the next expense connected with ecological tax,
– to minimize the cost of material,
– to minimize expense connected with transport goods to the main stock.

Furthermore, we recall the following conditions and notions:

– A capacity of the factory is the value K (deterministic), values x1, x2 correspond
to a partition of the capacity to the groups A and B, C1x1 +C2x2 is a cost that the
company has to pay for partition,

– demands on assortments are random values Ai , i = 1, . . . n1 in the group A and
Bj , j = 1, . . . , n2 in the group B (of course with probability measures supports
bounded sets),

– the company wishes to invest into production of group A the value Ā
∑n1

i=1 Ai and
into group B the value B̄

∑n2
j=1 Bj ,

– it is necessary (maybe after the realization of Ai , Bj , i = 1, . . . , n1, j =
1, . . . , n2) to determine values yA,i , yB, j , i = 1, . . . , n1, j = 1, . . . , n2 cor-
responding to the production of Ai , Bj ,

– the cost of production yA,i , yB, j , i = 1, . . . , n1, j = 1, . . . , n2 is equal to
dA,i yA,i , dB, j yB, j ,

– the expense connected with ecological taxes are c̄A,i yA,i , c̄B, j yB,i , i =
1, . . . , n1, j = 1, . . . , n2,
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– the costs of thematerial corresponding to yA,i , yB, j , i = 1, . . . , n1, j = 1, . . . , n2
are cA,i yA,i , cB, j yB, j ,

– expense connected with transport tA,i yA,i , tB, j yB, j ,

C1,C2, dA,i , dB, j , cA,i , cB, j , c̄A,i , c̄B, j , tA,i , tB, j , Ā, B̄ ≥ 0,

Evidently, the company situation leads simultaneously to problems:

Find min
{
C1x1 + C2x2 + Q1 (x1, x2) : x1 + x2 ≤ K , x1, x2 ≥ 0

}
,

Q1 (x1, x2) = EF min

⎧
⎨

⎩

n1∑

i=1

dA,i yA,i +
n2∑

j=1

dB, j yB, j :

n1∑

i=1

dA, i yA, i + C1x1 = Ā
n1∑

1=1

Ai ,

n2∑

j=1

dB, j yB, j + C2x2 = B̄
n2∑

j=1

Bj ,

Ai ≤ yA,i , i = 1, . . . , n1, Bj ≤ yB, j , j = 1, . . . , n2

⎫
⎬

⎭ , (24)

Find min
{
Q2(x1, x2) : x1 + x2 ≤ K , x1, x2 ≥ 0

}
,

Q2(x1, x2) = EF min

⎧
⎨

⎩

n1∑

i=1

c̄A,i yA,i +
n2∑

j=1

c̄B, j yB, j :

n1∑

i=1

dA, i yA, i + C1x1 = Ā
n1∑

1=1

Ai ,

n2∑

j=1

dB, j yB, j + C2x2 = B̄
n2∑

j=1

Bj ,

Ai ≤ yA,i , , i = 1, . . . , n1, Bj ≤ yB, j , j = 1, . . . , n2

⎫
⎬

⎭ , (25)

Find min
{
Q3(x1, x2) : x1 + x2 ≤ K , x1, x2 ≥ 0

}
,

Q3(x1, x2) = EF min

⎧
⎨

⎩

n1∑

i=1

cA,i yA,i +
n2∑

j=1

cB, j yB, j :

n1∑

i=1

dA, i yA, i + C1x1 = Ā
n1∑

1=1

Ai ,
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n2∑

j=1

dB, j yB, j + C2x2 = B̄
n2∑

j=1

Bj ,

Ai ≤ yA,i , , i = 1, . . . , n1, Bj ≤ yB, j , j = 1, . . . , n2

⎫
⎬

⎭ , (26)

Find min
{
Q4(x1, x2) : x1 + x2 ≤ K , x1, x2 ≥ 0

}
,

Q4(x1, x2) = EF min

⎧
⎨

⎩

n1∑

i=1

tA,i yA,i +
n2∑

j=1

tB, j yB, j :

n1∑

i=1

dA, i yA, i + C1x1 = Ā
n1∑

1=1

Ai ,

n2∑

j=1

dB, j yB, j + C2x2 = B̄
n2∑

j=1

Bj ,

Ai ≤ yA,i , i = 1, . . . , n1, Bj ≤ yB, j , j = 1, . . . , n2

⎫
⎬

⎭ , (27)

ξ = (
A1, . . . , An1 , B1, . . . , Bn2

)
.

Evidently, we have obtained multiobjective stochastic optimization problem. This
type of the problems has been introduced in Cho (1995), where the stability has been
investigated. If at least one of the objective functions is strongly convex, then all results
of this paper are valid. If assumptions of strongly convexity is not fulfilled, then prob-
lem belongs only to multiobjective convex group of optimization and a little weaker
results are valid. However, it is possible “to believe” that the strong convexity can be
fulfilled for standard continuous (with respect to the Lebesgue measure) probability
distribution. Moreover, very often (in the above investigated model) is reasonable to
add the next problem:

Find min
{
C1x1 + C2x2 + Q5 (x1, x2) : x1 + x2 ≤ K , x1, x2 ≥ 0

}
,

Q5(x1, x2) = EF

⎧
⎨

⎩min{q+y+ + q−y− :

C1x1 + C2x2 + y+ − y− = Ā
n1∑

i=1

Ai + B̄
n2∑

j+1

Bj , y+, y− ≥ 0

⎫
⎬

⎭ , (28)

where q+, q− are constants (generally they can also be random values).
It follows from the paper (Römisch and Schulz 1993a) that under relatively general

conditions the last problem is strongly convex. Consequently, if we add this problem
to the list of objectives we can see that results of this paper are valid.
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The next example fulfils the conditions of strongly convexity.

2. Let us consider an “underlying” problem of classical portfolio selection:

Find max
n∑

k=1

ξk xk s.t.
n∑

k=1

xk ≤ 1, xk ≥ 0, k =, . . . , n, s = n, (29)

with xk a fraction of the unit wealth invested in the asset k, ξk (random values
with finite second moments) return of the asset. Evidently the above mentioned
problem is (under an assumption of knowledge ξk, k = 1, . . . , n) a very simple
problem of linear programming. However, mostly the decision xk, k = 1, . . . n
has to be determined before the realization of ξk, k = 1, . . . , n. Of course it is
possible to maximize the average of profit. It means to solve the problem:

Find max
n∑

k=1

EFξk xk s.t.
n∑

k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n. (30)

This approach is not usually reasonable because it does not include a risk (the
realization of the vector (ξ1, . . . , ξn) can be relatively “far” from the vector of
its mathematical expectation) consequently profit can be “great” negative value.
Evidently, it is reasonable to consider as second criterion risk.Markowitz [see, e.g.,
Dupačová et al. (2002)] first connected these two criteria in one and introduced
the following problem:

Find max

⎧
⎨

⎩

n∑

k=1

μk xk − K
n∑

k=1

n∑

j=1

xkck, j x j

⎫
⎬

⎭

s.t.
n∑

k=1

xk ≤ 1, xk ≥ 0, k = 1, . . . , n, K > 0 constant, (31)

where μk = EFξk, ck, j = EF (ξk − μk)
(
ξ j − μ j

)
, k, j = 1, . . . , n.

Evidently
∑n

k=1
∑n

j=1 xkck, j x j can be considered as a risk measure and according
to the properties of the mathematical statistics we can see that

−
⎧
⎨

⎩

n∑

k=1

μk xk − K
n∑

k=1

n∑

j=1

xkck, j x j

⎫
⎬

⎭

is (under general conditions) a strongly convex function.
∑n

k=1
∑n

j=1 xkck, j x j is
a symmetric function with respect to μ1, . . . , μn . This property can be sometimes
suitable but it has not to be ideal everywhere. Consequently, it can be reasonable to
replace

∑n
k=1

∑n
j=1 xkck j x j by another risk measures. In financial mathematics are

well known risk measures VaR and CVaR. We recall them (for our case) by
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Z(x) =
n∑

k=1

ξk xk, α ∈ (0, 1), x = (x1, . . . , xn),

VaRα(Z(x)) = inf {t : P [Z(x) ≤ t] ≥ α} ,

CVaRα(Z(x)) = min
v∈R

[
v + 1

1 − α
y

]
, y = EF

(
n∑

i=1

ξi xi − v

)+

It is known [see, e.g., Shapiro et al. (2009)] that VaR does not fulfill conditions of
“good” risk measure, however CVaR these conditions fulfils. Moreover, employ-
ing the results presented in Kall and Mayer (2005) we can see that CVaR, with
the“underlying” linear problem, can be reformulated in the form of simple recourse
problem. Consequently employing the results of Römisch and Schulz (1993a) we can
obtain for a continuous PF (with respect to the Lebesgue measure on Rs) that CVaR
is (under general additional assumptions) a strongly convex function.

Consequently, considering the problems (30), (31) we have two problems with
strongly convex objective functions; fromwhich one is useful for an investor preferring
symmetrical risk measure and the other that protects before a great loss. Evidently, it
can be often very useful to consider simultaneously both these objective functions and
to consider the problem as multiobjective problem.

6 Conclusion: discussion

The paper deals with the multiobjective stochastic programming problems. In par-
ticular the aim of the paper is to show that the multiobjective deterministic objec-
tive theory and the results of one objective stochastic programming problems can
be employed to investigate a relationship between characteristics (of multiobjective
problems) obtained under complete knowledge of the probability measure and them
determined on the data base. To this end, we have restricted our investigation to (prop-
erly) efficient points and their functions values [for the definition see (18)]. According
to (5) it is easy to see that a restriction of the investigation to properly efficient (instead
efficient) points is not essential.

To obtain the above mentioned results we have mostly supposed that the objective
functions gi (x, z), i = 1, . . . , l are strongly convex on convex set X with the same
parameter ρ > 0.

This assumption is rather strong, but it guarantees one point solution set in the
simple objective case and consequently also [for every λ ∈ Λ for the problem (20)].
Evidently, it is suitable for many quadratic cases.

A little weaker results can be considered when at least one functions from the set
{gi (x, z), i = 1, . . . , l} is strongly convex and the other are only convex, evidently,
linear functions do not fulfill the assumption of strongly convexity however if h is
a linear function h(x) = a1x1 + · · · + anxn, x = (x1, . . . , xn) ∈ Rn, ai ∈ R1, i =
1, . . . , n and if we denote

A(c) = {xc ∈ X : h(xc) = c} ,
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then (under some additional assumptions)

L|c − c′| ≤ ρ′[A(c), A(c′)] ≤ L̄ |c − c′|, c, c′ ∈ R1,

where L, L̄ > 0, and ρ′[A(c), A(c′] is the corresponding metric. Evidently, then
we can obtain by another technique some similar results (maybe also for some more
general types of objectives).

Furthermore, we have restricted ourselves also to the case when XF = X . Consid-
ering XF fulfilling the relation (15), and fulfilling Proposition 10, the relation (7) and
taking the proof idea of Theorem 23 in Kaňková (2012) we can obtain the results for
more general type of XF .

The investigation in all above mentioned directions is beyond the scope of this
paper.
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Kaňková V (2013a) Economic and financial problems via multiobjective stochastic optimization. In: Jana
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