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Abstract. Optimization problems depending on a probability measure cor-
respond to many economic and financial situations. It can be very complicated
to solve these problems, especially when the “underlying” probability mea-
sure belongs to a continuous type. Consequently, the “underlying” continuous
probability measure is often replaced by discrete one with finite number of
atoms (scenario). The aim of the contribution is to deal with the above men-
tioned approximation in a special form of stochastic optimization problems
with an operator of the mathematical expectation in the objective function.

The stability results determined by the help of the Wasserstein metric (based
on the L1 norm) are employed to generate approximate distributions.

Keywords: One–stage stochastic programming problems, multistage stochas-
tic problems, stability, Lipschitz property, L1 norm, Wasserstein metric, sce-
nario generation, approximation error

JEL classification: C44
AMS classification: 90C15

1 Introduction

Let (Ω,S, P ) be a probability space, ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω)) an s–dimensional random vector
defined on (Ω,S, P ), F := Fξ(z) the distribution function of ξ, PF and ZF the probability measure and
the support corresponding to F , respectively. Let, moreover, g0 := g0(x, z) be a real–valued function
defined on Rn ×Rs, XF ⊂ X ⊂ Rn a nonempty set generally depending on F and X ⊂ Rn a nonempty
“deterministic” set. If EF denotes the operator of mathematical expectation corresponding to F and if
for an x ∈ X there exists finite EF g0(x, ξ), then rather general one-stage (static) “classical” stochastic
optimization problem can be introduced in the form:

to find ϕ(F,XF ) = inf
{
EF g0(x, ξ) : x ∈ XF

}
. (1)

The objective function in Problem (1) depends linearly on the probability measure PF . We shall try to
include in our consideration also a little relax problems. In particular, we consider problems that can be
covered by the following type:

to find ϕ̄(F,XF ) = inf
{
EF ḡ0(x, ξ,EFh(x, ξ)) : x ∈ XF

}
, (2)

where h := h(x, z) is an m1–dimensional vector function defined on Rn × Rs, h = (h1, . . . , hm1); ḡ0 :=
ḡ0(x, z, y) is a real–valued function defined Rn × Rs × Rm1 .

Remark 1. • The type of Problems (2) has begun recently to appear rather often in the literature
(see, e. g., Ermoliev and Norkin [?]). Problem (2) covers Problem (1) with ḡ0(x, z, y) := g0(x, z).

• Some problems from the class “Mean-Risk” can be covered by the type (2) (see, e. g., [?], [?], [?],
[?]).

If g1 := g1(x, z) is a real–valued function defined on Rn×Rs, g2 := g2(y, x, z) a real–valued function
defined on Rn1 ×Rn×Rs; K(x, z), for every x ∈ X, a measurable multifunction defined on Rn×Rs, and

g0(x, z) = g1(x, z) + inf{g2(y, x, z) : y ∈ K(x, z)}, (3)
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then (1) is a two–stage stochastic programming problem (for more details see, e.g., [?] or [?]). However
see also [?] to recognize that the well–known and often employed risk measure CVaR can be reformulated
in the form of simple recourse problem and consequently in two–stage stochastic programming problem.

Two–stage stochastic programming problems correspond to applications in which it is necessary first
to determine x on a base of the knowledge PF only and, after the realization of the random element ξ, it
is possible to correct the decision and to determine y.

The two–stage stochastic programming problems can be generalized to the multistage case. There are
known a few types of different definitions of the multistage stochastic programming problems. We recall
(M + 1)–stage stochastic programming problem as the problem:

Find
ϕF (M) = inf {EF ξ0 g

0
F (x0, ξ0)| x0 ∈ K0}, (4)

where the function g0
F (x0, z0) is defined recursively

gkF (x̄k, z̄k) = inf{E
F ξk+1|ξ̄k=z̄k g

k+1
F (x̄k+1, ξ̄k+1) |xk+1 ∈ Kk+1

F (x̄k, z̄k)},

k = 0, 1, . . . , M − 1,

gMF (x̄M , z̄M ) := gM0 (x̄M , z̄M ), K0 := X0.

(5)

ξj := ξj(ω), j = 0, 1, . . . , M denotes an s–dimensional random vector defined on a probability space

(Ω, S, P ); F ξ
j

(zj), zj ∈ Rs, j = 0, 1 . . . , M the distribution function of the ξj and F ξ
k|ξ̄k−1

(zk|z̄k−1),
zk ∈ Rs, z̄k−1 ∈ R(k−1)s, k = 1, . . . , M the conditional distribution function (ξk conditioned by ξ̄k−1);
PF ξj , PF ξk+1|ξ̄k , j = 0, 1, . . . , M, k = 0, 1, . . . , M − 1 the corresponding probability measures; Zj :=
ZF ξj ⊂ R

s, j = 0, 1, . . . , M the support of the probability measure PF ξj . Furthermore, the symbol gM0 :=

gM0 (x̄M , z̄M ) denotes a continuous function defined on Rn(M+1)×Rs(M+1); Xk ⊂ Rn, k = 0, 1, . . . , M
is a nonempty compact set; the symbol Kk+1

F (x̄k, z̄k) := Kk+1

F ξk+1|ξ̄k (x̄k, z̄k), k = 0, 1, . . . , M − 1 denotes

a measurable multifunction defined on Rn(k+1) × Rs(k+1) with “values” subsets of Rn. ξ̄k(:= ξ̄k(ω)) =
[ξ0, . . . , ξk]; z̄k = [z0, . . . , zk], zj ∈ Rs; x̄k = [x0, . . . , xk], xj ∈ Rn; X̄k = X0 ×X1 . . . ×Xk; Z̄k :=
Z̄kF = ZF ξ0 × ZF ξ1 . . . × Z

F ξk
, j = 0, 1, . . . , k, k = 0, 1, . . . , M. Symbols EF ξ0 , EF ξk+1|ξ̄k=z̄k , k =

0, 1, . . . , M−1 denote the operators of mathematical expectation corresponding to F ξ
0

, F ξ
k+1|ξ̄k=z̄k , k =

0, . . . , M − 1.

We have introduced three types of the stochastic optimization problems. The aim of the contribution
is to suggest an approximate solution based on approximation of the continuous distributions by discrete
one with finite number of atoms. To this end we employ the approach suggested in [?]. Furthermore,
we generalize the former results in the case of “empirical” estimation approximation to the case of
distributions with heavy tails. To this end we employ the stability results based on the Wasserstein
metric with the “underlying” L1 norm.

2 Some Definitions and Some Assertions

First, we recall a few definitions and auxiliary assertions. To recall the first auxiliary assertion let P(Rs)
denote the set of all (Borel) probability measures on Rs and let the system M1

1(Rs) be defined by the
relation:

M1
1 (Rs) :=

{
ν ∈ P(Rs) :

∫
Rs
‖z‖1dν(z) <∞

}
, ‖ · ‖1 denotes L1 norm in Rs. (6)

We introduce the system of the assumptions:

A.1 • g0(x, z) is either a uniformly continuous function on X×Rs, or X is a bounded convex set and
there exists ε > 0 such that g0(x, z) is a convex on X(ε) and bounded on X(ε) × ZF (X(ε)
denotes the ε–neighborhood of the setX);

• g0(x, z) is for x ∈ X a Lipschitz function of z ∈ Rs with the Lipschitz constant L (corresponding
to the L1 norm) not depending on x;



B.1 PF , PG ∈M1
1(Rs) and there exists ε > 0 such that

• ḡ0(x, z, y) is for x ∈ X(ε), z ∈ Rs a Lipschitz function of y ∈ Y (ε) with a Lipschitz constant
Ly where Y (ε) = {y ∈ Rm1 : y = h(x, z) for some x ∈ X(ε), z ∈ Rs} and EFh(x, ξ),
EGh(x, ξ) ∈ Y (ε);

• for every x ∈ X(ε), y ∈ Y (ε) there exist finite mathematical expectations EF ḡ0(x, ξ,EFh(x, ξ)),
EF g

1
0(x, ξ,EGh(x, ξ)), EGg

1
0(x, ξ,EFh(x, ξ)), and EGg

1
0(x, ξ,EGh(x, ξ));

• hi(x, z), i = 1, . . . ,m1 are for every x ∈ X(ε) Lipschitz functions of z with the Lipschitz
constants Lih (corresponding to L1 norm),

• ḡ0(x, z, y) is for every x ∈ X(ε), y ∈ Y (ε) a Lipschitz function of z ∈ Rs with the Lipschitz
constant Lz(x, y) (corresponding to L1 norm),

• ḡ0(x, z, y) is for every x ∈ X, z ∈ Rs a Lipschitz function of y ∈ Y with the Lipschitz constant
Ly(x, z) corresponding to L1 norm;

B.2 EF ḡ0(x, ξ,EFh(x, ξ)), EGḡ0(x, ξ,EGh(x, ξ)) are continuous functions on X.

Proposition 1 ([?], [?]). Let PF , PG ∈M1
1(Rs) and let X be a compact set. If

1. Assumption A.1 is fulfilled, then

|ϕ(F, X)− ϕ(G, X)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi, (7)

2. Assumptions B.1, B.2 are fulfilled, then there exist Ĉ > 0 such that

|ϕ̄(F, X)− ϕ̄(G, X)| ≤ Ĉ
s∑
i=1

∞∫
−∞

|Fi(zi)−Gi(zi)|dzi. (8)

The constant Ĉ can be estimated by the following relation

Ĉ ≤ EF [Ly(x, ξ)]

s∑
i=1

Lih + Lz(x, EG(h, ξ)).

Proposition 1 reduces (from the mathematical point of view) an s–dimensional case to one–dimensional.
We employ this fact to define atoms of the discrete approximate distribution functions. Of course a
stochastic dependence between components of ξ is neglected by this approach. (The idea to reduce an
s–dimensional case, s > 1 to one dimensional case is credited to G. Pflug [?] (see also Šmı́d [?]).)

Evidently, if we approximate the continuous (w.r.t. Lebesque measure) probability measure PF by a
discrete one with the finite number of atoms, we obtain mostly (from the numerical point of view) more
“pleasant” problem.

3 Approximation

3.1 Deterministic Case

To construct first discrete approach we introduce the following assumption:

A.2 PFi , i = 1, . . . , s are absolutely continuous w. r. t. the Lebesgue measure on R1,
(Fi, i = 1, . . . , s are one–dimensional marginal distribution functions corresponding to F.)

Evidently, if A.2 is fulfilled, then for given Mi, M̄i > 0, i = 1, . . . , s there exist natural numbers
mi, m̄i, i = 1, . . . , s and points zi, j , z̄i, k, ∈ R̄1, j = 0, 1, . . . , mi, k = 1, . . . , m̄i such that



−∞ = zi, 0 < zi, 1 < zi, 2 < . . . < zi,mi−1 < zi,mi =∞,

−∞ = z̄i, 0 < z̄i, 1 < z̄i, 2 < . . . < z̄i, m̄i−1
< z̄i, m̄i =∞

and, simultaneously,

(L/s)
∞∫
−∞
|Fi(zi)−Gi(zi)|dzi ≤ Mi, i = 1, . . . , s,

(Ĉ/s)
∞∫
−∞
|Fi(zi)− Ḡi(zi)|dzi ≤ M̄i, i = 1, . . . , s,

where Gi, Ḡi, i = 1, . . . , s are one dimensional discrete distribution functions with atoms in points
zi, j , z̄i, j , j = 1, . . . , mi, j = 1, . . . , m̄i, respectively.

Furthermore, it follows from the last relations that for every M > 0, M̄ > 0 there exist s–dimensional
distribution functions G, Ḡ with marginals Gi, Ḡi, i = 1, . . . , s such that

L

s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi ≤M, (9)

Ĉ
s∑
i=1

∞∫
−∞

|Fi(zi)− Ḡi(zi)|dzi ≤ M̄. (10)

We have proven the assertion

Proposition 2. Let Assumption A.2 be fulfilled. Let moreover M,M̄ > 0. If

1. Assumption A.1 is fulfilled, then there exists a discrete distribution function G with discrete marginals
Gi, i = 1, . . . , s such that

|ϕ(F, X)− ϕ(G, X)| ≤M, (11)

2. Assumptions B.1, B.2 are fulfilled, then there exists a discrete distribution function Ḡ with discrete
marginals Ḡi, i = 1, . . . , s such that

|ϕ̄(F, X)− ϕ̄(Ḡ, X)| ≤ M̄. (12)

A possibility to employ the above mentioned approach (in the case of Problem (1)) it is necessary to
assume that g0(x, z) is a Lipschits function of z with the Lipschitz constant not depending on x ∈ X. It
means, in the case of problem (3): if the function g1(x, z) fulfills this assumption, then a question arises
if also

inf{g2(y, x, z) : y ∈ K(x, z)} (13)

fulfills this condition. To this end we consider two cases, separately. If (13) is a problem of linear
programming, then the corresponding assertion can be found, e.g, in [?]. In the general nonlinear case
we can find the corresponding assertion, e.g., in [?].

In the multistage case, we restrict to the case when the following assumption is fulfilled:

C.1 Random sequence {ξk}∞k=−∞ follows (generally) nonlinear autoregressive sequence

ξk = H(ξk−1 εk),

where ξ0, εk, k = 1, 2, . . . are stochastically independent s–dimensional random vectors defined
on (Ω, S, P ) and, moreover, εk, k = 1, . . . identically distributed. H = (H1, . . . , Hs) is a Lip-
schitz vector function defined on Rs. We denote the distribution function corresponding to ε1 =
(ε1

1, . . . , ε
1
s) by the symbol F ε and suppose the realization ξ0 to be known.



Evidently, the multistage stochastic programming problem (4), (5) depends essentially on a system of
(generally) conditional distribution functions

F = {F ξ
0

(z0), F ξ
k|ξ̄k−1

(zk|z̄k−1), k = 1, . . . , M}. (14)

Consequently, if we replace F by another system G

G = {Gξ
0

(z0), Gξ
k|ξ̄k−1

(zk|z̄k−1), k = 1, . . . , M}, (15)

we obtain another multistage stochastic programming problem with the optimal value denoted ϕG(M).

Under Assumption C.1 the system F is determined by F ξ
0

and F ε. Consequently, if we replace these
two probability distribution functions by another Gξ

0

and Gε, we obtain another system G.

Considering, furthermore, the constraint sets Kk+1
F (x̄k, z̄k), k = 0, . . . , M − 1 not depending on the

probability measure, then the assumptions under which

|ϕF (M)− ϕG(M)| ≤
s∑
i=1

CiW

∫
R1

|F εi (zi)−Gεi (zi)|dzi

can be found in [?]. Consequently, if we define discrete distributions Gξ0 , Gεi i = 1, . . . , s determined
by the approach of Proposition 2, then we have an approximating system G given by discrete mostly
conditional distributional functions.

Furthermore, it follows from results of the above mentioned work that this approach can be generalized
to the case when constraints sets are given by the individual probability constraints.

3.2 Empirical Estimates Case

We introduce the next assumptions:

A.3 • {ξi}∞i=1 is an independent random sequence corresponding to F ,

• FN is an empirical distribution function determined by {ξi}Ni=1, N = 1, 2, . . . .

Proposition 3. [?], [?] Let PF ∈ M1
1(Rs), X be a compact set. Let, moreover, Assumption A.3 be

fulfilled. If

1. Assumption A.1 is fulfilled, then

P{ω||ϕ(FN , X)− ϕ(F,X)| −−−−→
N→∞

0} = 1, (16)

1. Assumptions B.1, B.2 are fulfilled, then

P{ω||ϕ̄(FN , X)− ϕ̄(F,X)| −−−−→
N→∞

0} = 1. (17)

According to Proposition 3 we can see that ϕ(FN , X), ϕ̄(FN , X) are, in the case of the “underlying”
distributions F with finite first moments (under some additional assumptions) consistent estimates of
ϕ(F,X), ϕ̄(F,X). It means that these estimates are consistent also in the case of the heavy tailed distri-
butions (including the stable distributions, for the definition of stable distribution see, e.g. [?]) if there
exists first absolute moments.

Proposition 4. [?] Let PF ∈ M1
1(Rs), t > 0, X be a compact set and for some r > 2 it holds that

EFi |ξi|r < +∞, i = 1, . . . s. Let, moreover, the constant γ fulfil the inequalities 0 < γ < 1/2− 1/r. If

1. Assumptions A.1, A.2, A.3 are fulfilled, then

P{ω|Nγ |ϕ(F, X)− ϕ(FN , X)| > t} −−−−→
N→∞

0. (18)

1. Assumptions B.1, B.2, A.2, A.3 are fulfilled, then

P{ω|Nγ |ϕ̄(F, X)− ϕ̄(FN , X)| > t} −−−−→
N→∞

0. (19)



4 Conclusion

The paper deals with optimization problems depending on a probability measure. Especially, it is con-
sidered the case when the “underlying” probability measure is absolutely continuous with respect to
the Lebesque measure and the aim of the paper is to suggest approximate problems with a discrete
probability measure. Moreover, this approximation can be defined with respect to required error. The
case of one–stage, two–stage and multistage cases are considered separately. However, problems with an
“underlying” autoregressive random sequence are considered in the multistage case only.

A results for empirical estimates are recalled in the second part of the contribution.
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