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The Bandwidth Selection in Connection to Option 
Implied Volatility Extraction 

Abstract 
Among various kinds of options we can found at the market, some are traded at 
organized exchanges and therefore are quite liquid, while others are traded only 
between particular parties. Whereas there is no need to look for a model to price liquid 
exchange traded options, since their price is generally accepted by the demand and 
supply, for illiquid or even exotic options new efficient models are still developed. The 
current market practice is to obtain the implied volatility of liquid options as based on 
Black-Scholes type (BS hereafter) models. Since the BS model at one time moment can 
be related to a large set of IVs as given by different parameters (maturity/moneyness 
relation) of tradable options leading to IV curve or surface. Since there is no continuum 
of options with various parameters, the curve / surface must be obtained by suitable 
smoothing and interpolation. However, it can bring an arbitrage opportunity, if no-
arbitrage conditions on state price density (SPD) are ignored. The focus of this paper is 
to study the behavior of IV and SPD for several kernel functions and with respect to 
different choices of bandwidth parameter h. Specifically, we show several interesting 
implications of the change of h on the violation of no arbitrage condition and the total 
area of SPD under zero. 
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Introduction 

At the market, we can identify various kinds of options. Some of them are traded at 
organized exchanges and are quite liquid. Others are traded only between particular 
parties. The volume of traded options increased sharply in 70’s just after introducing the 
famous Black and Scholes model (1973). Thus, at that time the practice was to assume 
Gaussian distribution as a reliable proxy to the empirical observations of stock price or 
FX rate returns. Soon however, it was documented that the returns can be very far from 
the assumption of Gaussianity and thus the Black and Scholes model can be used only 
indirectly – take the market price of liquid option, invert the Black and Scholes formula, 
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obtain a volatility (ie. implied volatility), put it into the formula by setting the parameters 
of illiquid option and get the price.  

For example, Rubinstein (1994) or Bakshi et al. (1997) show for S&P 500 options (ie one 
of the most liquid underlying assets) that implied volatility is not flat but can be strongly 
curved with changing maturity or/and moneyness. We call the behavior of the implied 
volatility its curve (assuming just one variable, ie. moneyness) or surface (assuming both 
the maturity and moneyness). Clearly, the behavior can be very different for various 
markets and underlying assets, which is probably related to particular market 
imperfections, such as restricted borrowing or lending. Such differences are evident 
especially when FX rate options are compared with equity options. Obviously, the set of 
parameters is not continuous and therefore, some non-parametric smoothing (and 
extrapolation) is needed to estimate the implied volatility function. 

When we extract the implied volatility curve or surface from market prices of liquid 
options, we can use them to price the illiquid options or even options exotic, which we can 
trade only OTC. These, however, mostly have different parameters (moneyness, maturity) 
than those of traded options.  

Notwithstanding, the implied volatility function must be calculated carefully – there exist 
several conditions on the price of call and put options, that must be fulfilled. Otherwise an 
arbitrage opportunity can arise, ie. riskless profit higher than common riskless return. 
Clearly, there exist many technics that can be used to adjust the observations and 
transform them into smooth function.  

In this paper, and in line with Benko et al. (2007), we apply relatively classic approach of 
local polynomial smoothing techniques and study the bandwidth selection process in 
more details of recent data of DAX option prices (December 2011). In particular, we 
change h and examine the impact on the interval of moneyness that brings arbitrage 
opportunity and on the total degree of no-arbitrage violation.  

We proceed as follows. In the following section we briefly review the problem of option 
pricing (Tichý, 2011). Next, we provide some basic facts about the implied volatility 
modeling and analyze the behavior of the implied volatility surface and potential 
arbitrage error for a given day using DAX options data. 

1. Option valuation and the concept of implied volatility 

Options are nonlinear types of financial derivatives, which gives the holder the right (but 
not the obligation) to buy the underlying asset in the future (at maturity time) at 
prespecified exercise price. Simultaneously, the writer of the option has to deliver the 
underlying asset if the holder asks. 

Options can be classified due to a whole range of criterions, such as counterparty position 
(short and long), maturity time, complexity of the payoff function, etc. The basic features 
are the underlying asset (S), which should be specified as precisely as possible (it is 
important mainly for commodities), the exercise price (K), and the maturity time (T). 
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If the option can be exercised only at maturity time T, we call it the European option. By 
contrast, if it can be exercised also at any time prior the maturity day, ie. t ∈ [0,T], we refer 
to it as the American option. A special type of options, possible to be classified somewhere 
between European and American options is the Bermudan option, which can be exercised 
at final number of times during the option life. 

In dependency on the complexity of the payoff function, we usually distinguish simple 
plain vanilla options (PV) and exotic options. However, by a plain vanilla option we 
generally mean call and put options with the most simple payoff function. Sometimes, by 
plain vanilla options we mean any option which is regularly traded at the market, ie. it is 
liquid and no special formula is needed to obtain its price. 

Thus, 
 Ψ𝑐𝑎𝑙𝑙

𝑣𝑎𝑛𝑖𝑙𝑙𝑎 = (𝑆𝑇 − 𝐾)+ for vanilla call, and 

 Ψ𝑝𝑢𝑡
𝑣𝑎𝑛𝑖𝑙𝑙𝑎 = (𝐾 − 𝑆𝑇)+ for vanilla put, where (𝑥)+ ≡ max(𝑥, 0). 

(1) 

Due to the definition of an option – it gives a right, but not an obligation to make a 
particular trade – we can deduce basic differences between the short and the long 
position. While the payoff resulting from the long position is non-negative, either 0 or 
𝑆𝑇 − 𝐾, the payoff of the short position will never be positive, ie. it is either 𝐾 − 𝑆𝑇 or 0. 
Moreover, it is obvious, that the long call payoff is not limited from above, but the short 
position payoff function goes only up to the exercise price (underlying asset price is zero).  

Options are quite important type of financial derivatives since they allow to fit even very 
specific fears (hedging) and outlooks (speculation) about the future evolution. Due to the 
nonlinear payoff function and potential high sensitivity to changes in the input factors, 
such as volatility or even maturity, options are very challenging also for modeling 
purposes. 

Obviously, since the standard option valuation model of Black and Scholes (and Merton) 
was based on the assumption of normally distributed returns, the presence of skewness 
and kurtosis at the market complicates the situation significantly. A common market 
practice is to use the market price as an exogenous variable to be put into the BS formula 
(Black and Scholes, 1973). Thus, a so called implied volatility is obtained, ie. a number that 
assures that BS model provides the right price. Such implied volatility can subsequently 
be used to value even exotic options, which are not traded at the market. 

Generally, the price of European option f at time t with maturity T and payoff function Ψ 
is given by the payoff expected under risk neutral probabilities Q discounted by the risk 
less rate to the beginning (t), ie. by setting  = T − t: 

 𝑓𝑡 = 𝑒−𝑟𝜏𝐸𝑡,𝑇
𝑄 [Ψ𝑇] (2) 

since the payoff at maturity is obviously identical to the European option value at the 
same time. 
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For example, assuming the payoff function of plain vanilla call and the normal distribution 
we get the valuation formula as follows (BS model for vanilla call): 

  𝑓𝑐𝑎𝑙𝑙
𝑣𝑎𝑛𝑖𝑙𝑙𝑎(𝜏, 𝑆, 𝐾, 𝑟, 𝜎) = 𝑆 𝐹𝑁 (𝑑+) − 𝑒−𝑟𝜏 𝐾 𝐹𝑁 (𝑑−) (3) 

Here, S is the underlying asset price at the valuation time (t) and it is supposed to follow 
log-
volatility expected over the same period, both per annum, FN(x) is distribution function 
for standard normal distribution and 

  𝑑± =
ln(

𝑆

𝐾
)+(𝑟±𝜎2/2)𝜏

𝜎√𝜏
. (3) 

If the price of some options is available from the market, we can invert the formula to 
obtain the implied volatility, ie. the number that makes the formula equal to market price. 
Besides the important works, whose authors analyzed the impact of implied volatility on 
option price, belongs, besides others Dupire (1994), who formulated a process followed 
by the underlying asset price in dependency on the moneyness and maturity, and 
Rubinstein (1994), who formulated a discrete time model, the implied binomial tree. 

Obviously, the implied volatility will differ for various input data, especially due to the 
moneyness (relation of the spot price and exercise price) and the time to maturity – 
otherwise the model could not provide correct price. The dependency of the implied 
volatility on these two factors can be explained by the risk of jumps in the underlying asset 
price or other deviations from the assumption of Gaussianity. For example, Yan (2011) 
carefully analyzed the impact of jump risk on the slope of the implied volatility function, 
which is informally referred to as the smile, and showed some interesting relations 
between the returns and the slope.  

Although there exist many various approaches for the construction of the volatility curve 
or surface, including some recent alternatives, such as the application of radial basis 
function (see eg. Glover and Ali (2011) and references therein), we follow here relatively 
conservative approach adopted by Benko et al. (2007). 

2. Implementation 

In this section we present the analysis concerning the three dimensions case. We use as 
dataset all the options on DAX listed on 30 December 2011 with all the maturities. 
Following Benko et al. (2007) we compute the unconstrained estimation of the IV surface. 
The estimation with Epanechnikov kernel function, for moneyness bandwidth hk = 0.04 

small maturities and becomes less noticeable as the maturity increases. 
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In order to analyze the arbitrage presence, we produce the corresponding estimations for 
 

Fig. 1: 3D estimation of SPD for DAX options (Authors’ calculation in Matlab) 

h  
total surface 168 days section 266 days section 

0.0
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0.0
4 

   

0.0
6 

   
Source: authors‘ own calculations 

The computation is done again with Epanechnikov kernel function and with three 
bandwidth h= 1for 

maturity (). Besides each surface we propose also cuts for maturities () equal to 168 
days and 266 days. The negative parts of SPD violates the moneyness arbitrage free 
condition, see Benko et al. (2007) for more details. Hence, the results show some arbitrage 
behavior for moneyness around 0.8. We study more in deep the case with hx = 0.04 (see 
Figure 2). 

In Figure 2a we show the arbitrage moneyness intervals (intervals with negative SPD) for 
each maturity. It is clear that the arbitrage chance is real and does not depend on the 
maturity. Indeed, the critical situations seem to be persistent among the increasing 
maturities. To evaluate the size of the arbitrage we compute Arbitrage measure as the 
volume of negative SPD for all considered moneyness bandwidths (0.03 – 0.08). The 
larger the measure is, the stronger arbitrage free violation is presented.  
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Fig. 2a: Arbitrage intervals for various 
maturities 

Fig. 2b: Arbitrage measure for DAX 
options IV surface 

 
Source: authors’ calculation in Matlab 

From Figure 2b we can notice that the curve is not strictly decreasing and this reinforce 
the idea that the magnitude of the arbitrage is not depending by the choice of the 
bandwidth but it is a genuine feature of the market. Moreover, to investigate the Arbitrage 
measure for various types of the kernel functions, we compare the Arbitrage measure for 
the different kernel functions and for three bandwidths used previously in Table 1. 

Tab. 1: Arbitrage measure volume for DAX options IV surface 
h 0.03 0.04 0.06 

Uniform 0.0865 0.1689 0.0441 
Triangular 0.2482 0.2401 0.0196 

Epanechnikov 0.2719 0.3219 0.0156 
Quartic 0.2554 0.0765 0.0334 

Triweight 0.3306 0.1887 0.0558 
Tricube 0.2952 0.0485 0.0412 

Gaussian 0.1282 0.2026 0.0253 
Cosine 0.2610 0.2955 0.0180 

Logistic 0.1585 0.1933 0.0336 
Source: authors’ calculation in Matlab 

We compute again the IV and SPD surface using unconstraint semiparametric estimation 
proposed in Benko et al. (2007), but now with a non-fixed calendar bandwidth. The 
computations are done again with Epanechnikov kernel function and with three 

representative moneyness bandwidths 0.03, 0.04, 0.06.h   

If we compare these results with those we obtained for fixed calendar bandwidth, we can 
notice that the arbitrage measure seems to smaller for all choices of moneyness 
bandwidth, see Fig. 3a. This behavior is due to the fact that the main arbitrage occurs for 
long maturities so a smaller bandwidth doesn’t include those maturities in the 
estimations. On the other hand, with a large fix calendar bandwidth the estimation for the 
shorter maturities are in some way disturbed by the turbulence that persist for the long 
maturities. 

Finally we compute also the Calendar arbitrage measure as the volume of negative first 
derivative of total variance, see Benko et al. (2007). In this case we do not observe any 
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violation of Calendar arbitrage free condition. We demonstrate it in Figure 3b where we 
show that indeed the total variance is strictly increasing in the calendar (maturity) 
direction for all moneyness values. 

Fig. 3a: Arbitrage Measure for fixed 
calendar bandwidth (upper blue line) 

versus Arbitrage Measure for 
increasing calendar bandwidth (lower 

red line) 

Fig. 3b: Total variance 

 
Source: Authors’ calculation in Matlab 

Conclusion 

Option pricing crucially relies on the model selection. Despite many deficiencies, most of 
the practitioners still uses the Black-Scholes type models. However, in such case a so 
called implied volatility must extracted from market prices of liquid options. Since the 
moneyness and maturity of implied volatilities often do not match the data of valuated 
options (non-liquid, exotic, etc.), some sort of smoothing and interpolation is necessary. 
If no-arbitrage conditions (especially non-negativity of SPD) are ignored, the results can 
be theoretically incorrect and can actually lead to riskless earnings.  

In this paper, we have analyzed the behavior of SPD (state price density) with respect to 
changes in bandwidth parameter of various kernels, which provided us a whole set of 
various results. Using option data on DAX index it was documented that the no-arbitrage 
violating intervals of moneyness as well as the total area of SPD under zero heavily 
depends on the choice of this parameter. 
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