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• The bivariate Hurst exponent Hxy is studied in both time and frequency domain.
• The cases of Hxy =

1
2 (Hx + Hy) and Hxy < 1

2 (Hx + Hy) are shown to be feasible.
• The case of Hxy > 1

2 (Hx + Hy) is shown to be infeasible.
• Further discussion of implications is provided together with the finite size effect.
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a b s t r a c t

In this note,we investigate possible relationships between the bivariateHurst exponentHxy

and an average of the separateHurst exponents 1
2 (Hx+Hy).We show that two cases arewell

theoretically founded. These are the cases when Hxy =
1
2 (Hx + Hy) and Hxy < 1

2 (Hx + Hy).
However, we show that the case of Hxy > 1

2 (Hx + Hy) is not possible regardless of station-

arity issues. Further discussion of the implications is provided as well together with a note
on the finite sample effect.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Generalization of power-law correlations (long-term memory, long-range dependence) into a bivariate setting has
brought a wide range of possibilities for studying connections between various series. These power-law cross-correlations
have becomepopular especially in econophysicswith applications to numerous financial series [1–6]. Formally, the bivariate
long-term memory translates into a power-law decay of the cross-correlation function ρxy(k) with lag k so that ρxy(k) ∝

k2Hxy−2 for k → +∞. The cross-correlation function is thus hyperbolically decaying (for negative lags, for positive lags, or
for both) in the same manner as the auto-correlation function in the univariate case. Alternatively, the bivariate long-range
dependence can be defined in the frequency domain via a divergence of spectrum close to the origin. Specifically, the cross-
spectrum fxy(ω) with frequency ω has a form of |fxy(ω)| ∝ ω1−2Hxy for ω → 0+. In the remainder of the text, we assume
that these properties hold both for the power-law cross-correlations as well as the univariate power-law correlations. The
bivariate Hurst exponent Hxy measures a strength of such power-law cross-correlations1 [7,8].
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The ideas of long-range cross-correlations have been reflected in an introduction of various estimators of the bivariate
Hurst exponent. These are usually bivariate generalizations of the univariate estimators—detrended cross-correlation
analysis (DCCA or DXA) [9–11], height cross-correlation analysis (HXA) [12] and detrending moving-average cross-
correlation analysis (DMCA) [13,14]. In addition, new correlation coefficients have been proposed based on the ideas of the
bivariate estimators. Most notably, Zebende [15,16] introduces the DCCA-based correlation coefficient and Kristoufek [17]
adds the DMCA-based correlation coefficient. These two play an important role in our further discussion. Several tests of the
power-law cross-correlations have been introduced as well [18,19].

In the applied literature, the main focus is usually put on the bivariate Hurst exponent Hxy and its comparison to the
Hurst exponents of the separate processes, Hx and Hy. Numerically, it has been shown that various theoretical processes
imply Hxy =

1
2 (Hx + Hy) [8,18,20,21]. Several processes having Hxy < 1

2 (Hx + Hy) have been proposed as well [8,20].
However, various studies report that the bivariate Hurst exponent is higher than the average of the separate processes,
i.e. Hxy > 1

2 (Hx + Hy) [3,6,22–24]. An unanswered question remains—are all these three possibilities feasible? More
specifically, it is only not obviouswhether the last option is feasible as the former two have been shown to exist analytically.
In this short paper, we answer the posed question. The next section provides the needed instruments. The last section brings
some novel insights into the topic with a discussion of implications.

2. Methodology

For studying the relationship between the bivariate Hurst exponent Hxy and the separate Hurst exponents Hx and Hy, we
recall several concepts from both time and frequency domains. We present the spectrum coherence (frequency domain)
and the DCCA and DMCA correlation coefficients (time domain). Both concepts are essential here.

The squared spectrum coherency is defined for two stationary series {xt} and {yt} with existing spectra fxy(ω), fx(ω) and
fy(ω) at frequency 0 ≤ ω ≤ π . Squared spectrum coherency K 2

xy(ω) is defined as

K 2
xy(ω) =

|fxy(ω)|2

fx(ω)fy(ω)
(1)

for a given frequency ω. The squared coherence can be understood as a squared correlation between processes {xt} and {yt}
at frequency ω. Note that it holds that 0 ≤ K 2

xy(ω) ≤ 1 for all ω [25].
The detrended cross-correlation coefficient ρDCCA(s) for scale s [15] combines the detrended fluctuation analysis

(DFA) [26–28] and the detrended cross-correlation analysis (DCCA) [9–11]. The DCCA-based coefficient for scale s is defined
as

ρDCCA(s) =
F 2
DCCA(s)

FDFA,x(s)FDFA,y(s)
, (2)

where F 2
DCCA(s) is a detrended covariance between profiles of series {xt} and {yt} based on a window of size s, and F 2

DFA,x and
F 2
DFA,y are detrended variances of profiles of the separate series, respectively, for a window size s. The detrending moving-
average cross-correlation coefficient ρDMCA(λ) for window size λ [17] connects the detrending moving average (DMA) pro-
cedure [29,30] and the detrending moving-average cross-correlation analysis (DMCA) [13,14]. The coefficient is defined as

ρDMCA(λ) =
F 2
DMCA(λ)

Fx,DMA(λ)Fy,DMA(λ)
, (3)

where F 2
DMCA(λ), F 2

DMA,x(λ) and F 2
DMA,y(λ) are a detrended covariance between profiles of the examined series and detrended

variances of the separate series, respectively, with a moving average parameter λ. Both coefficients have been shown to
range between −1 ≤ ρDCCA(s), ρDMCA(λ) ≤ 1 analytically for all scales s or window sizes λ [17,18].

3. Discussion

The squared spectrum coherency gives straightforward implications for the bivariate Hurst exponents. Rewriting the
coherency using the definition of the power-law cross-correlations in the frequency domain, we obtain

K 2
xy(ω) =

|fxy(ω)|2

fx(ω)fy(ω)
∝

ω2(1−2Hxy)

ω1−2Hxω1−2Hy
= ω2(Hx+Hy−2Hxy). (4)

As the squared coherency lies between 0 and 1 for all frequencies, it does so for the long-range cross-correlations case of
ω → 0+ as well. Therefore, this gives us two feasible and one infeasible possibilities:

• Hxy =
1
2 (Hx + Hy) ⇒ 2(Hx + Hy − 2Hxy) = 0 ⇒ limω→0+ K 2

xy(ω) ∝ const.

• Hxy < 1
2 (Hx + Hy) ⇒ 2(Hx + Hy − 2Hxy) > 0 ⇒ limω→0+ K 2

xy(ω) = 0.
• Hxy > 1

2 (Hx + Hy) ⇒ 2(Hx + Hy − 2Hxy) < 0 ⇒ limω→0+ K 2
xy(ω) = +∞ ⇒ .
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This implies that for stationary processes, we cannot have Hxy > 1
2 (Hx + Hy) as it is in contradiction with the bounded

squared spectrum coherency. This also translates into the non-stationary case with pseudo-spectra. To make the claim for
the non-stationary case stronger, we show the contradiction in the time domain as well.

Both the DCCA and DMCA coefficients are fixed between −1 and 1 for all feasible scales but also for both stationary
and non-stationary specifications of the underlying processes [17,18]. Similarly to the coherency case, we can rewrite the
coefficients using the power-law correlations definition in the time domain. For this, we need to recall that for the long-
range cross-correlated processes, we have F 2

DCCA(s) ∝ s2Hxy for s → +∞ [9] and F 2
DMCA(λ) ∝ λ2Hxy for λ → +∞ [13] so that

the correlation coefficients can be rewritten as

ρDCCA(s) =
F 2
DCCA(s)

FDFA,x(s)FDFA,y(s)
∝

s2Hxy

sHx+Hy
= s2Hxy−(Hx+Hy)

ρDMCA(s) =
F 2
DMCA(λ)

FDMA,x(λ)FDMA,y(λ)
∝

λ2Hxy

λHx+Hy
= λ2Hxy−(Hx+Hy). (5)

We then have the same implications as for the frequency domain argument—two feasible and one infeasible2:

• Hxy =
1
2 (Hx + Hy) ⇒ 2Hxy − (Hx + Hy) = 0 ⇒ lims→+∞ ρDCCA(s) ∝ const.

• Hxy < 1
2 (Hx + Hy) ⇒ 2Hxy − (Hx + Hy) < 0 ⇒ lims→+∞ ρDCCA(s) = 0.

• Hxy > 1
2 (Hx + Hy) ⇒ 2Hxy − (Hx + Hy) > 0 ⇒ lims→+∞ ρDCCA(s) = ±∞ ⇒ .

The implications are thus the same as in the frequency domain but here, they hold also for non-stationary series. Having
Hxy > 1

2 (Hx+Hy) is thus not feasible in the power-law cross-correlations setting. The consequences of the presented results
and the logic of arguments are far reaching.

First, the bivariate Hurst exponent is not necessarily equal to the average of the separate Hurst exponents. Second, unless
at least one of the series is long-range correlated with H > 0.5, the processes cannot be power-law cross-correlated with
Hxy > 0.5. Long-term memory of one of the underlying processes is thus needed and necessary. The power-law cross-
correlations thus do not emerge out of nowhere but these are rather a by-product of the persistent separate process(es).
This is well in hand with analytical results about long-range cross-correlated processes [18,20,21]. Third, the case of
Hxy =

1
2 (Hx+Hy) is a natural limiting case for various processes with the non-zero squared coherency. These are not limited

to the quite well studied and documented correlated ARFIMA processes or the mixtures of autoregressive and long-range
dependent processes [8,18,20,21] but they encompass rich possibilities. Fourth, the case ofHxy > 1

2 (Hx+Hy) cannot happen
which means that results suggesting it does fall victims to inefficient estimators of the bivariate Hurst exponent or are due
to the finite sample effect.3 Interpretations based on such results are then misleading. Fifth, the case of Hxy < 1

2 (Hx + Hy)
is feasible and potentially interesting. Sela and Hurvich [8] refer to such processes as the anti-cointegration as the separate
processes are long-range correlated but pairwise uncorrelated in a long-term horizon (at low frequencies). This is in evident
opposition to the (fractional) cointegration for which it holds that K 2

xy(λ) = 1 as λ → 0+. The authors propose to use
dρ = d12−

d1+d2
2 where d12, d1 and d2 are fractional integration parameters for the joint long-termmemory and the separate

long-term memories, respectively, as a measure of power-law coherency. As we mainly function with the Hurst exponent
definitions, we can rewrite the measure as Hρ = Hxy −

Hx+Hy
2 = d12 +

d1+d2
2 = dρ so that these are equivalent. If it holds

that Hxy =
1
2 (Hx +Hy), we have Hρ = 0, and for the anti-cointegration case, we have Hρ < 0. The latter case is only sparsely

2 Only the implications for DCCA are shown as the ones for DMCA are the same.
3 As the reviewers have suggested, the finite sample effect can play an important role. We focus on the time domain implications here but similar

outcomes can be shown for the frequency domain as well. Recall that |ρDCCA(s)| ≤ 1 for all scales s (again the same logics can be applied to the DMCA
coefficient). The proportionality in Eq. (5) can be written as

ρDCCA(s) = Ks2Hxy−(Hx+Hy) (6)

where K is a proportionality term. Without a loss of generality, we assume K > 0 and we thus focus on 0 < ρDCCA(s) ≤ 1 (for K < 0, we can perform a
symmetric examination of the problem, and the problem is not interesting for K = 0). Taking logarithm of Eq. (6), we have

log K + (2Hxy − Hx − Hy) log s = log ρDCCA(s) ≤ 0 (7)

which implies

(2Hxy − Hx − Hy) ≤ −
log K
log s

. (8)

In the limiting case of s → +∞, we simply have lims→+∞ −
log K
log s = 0. However, for a finite sample case, we observe that even though the term log s goes

to infinity, the divergence is quite slow. Therefore, the log K term can play a role in the finite sample analysis as K can be either 0 < K < 1, or K = 1
or K > 1 (note that we still assume K > 0 here). Labelling the finite sample bias as ζ , we have Hxy ≤

Hx+Hy
2 + ζ , where ζ > 0, ζ = 0 and ζ < 0 for

0 < K < 1, K = 1 and K > 1, respectively. We can thus have a case when Hxy >
Hx+Hy

2 caused by a finite sample bias for 0 < K < 1. Nevertheless, such
possibility still remains unfeasible in the asymptotic case.
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investigated in the literature [8,20] and it thus provides a relatively open field for further research, both theoretical and
applied.
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