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a b s t r a c t

We study power-law correlations properties of the Google search queries for Dow Jones
Industrial Average (DJIA) component stocks. Examining the daily data of the searched terms
with a combination of the rescaled range and rescaled variance tests together with the
detrended fluctuation analysis, we show that the searches are in fact power-law correlated
with Hurst exponents between 0.8 and 1.1. The general interest in the DJIA stocks is
thus strongly persistent. We further reinvestigate the cross-correlation structure between
the searches, traded volume and volatility of the component stocks using the detrended
cross-correlation and detrending moving-average cross-correlation coefficients. Contrary
to the universal power-law correlations structure of the relatedGoogle searches, the results
suggest that there is no universal relationship between the online search queries and the
analyzed financial measures. Even thoughwe confirm positive correlation for a majority of
pairs, there are several pairs with insignificant or even negative correlations. In addition,
the correlations vary quite strongly across scales.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Analysis of online activity of the internet users has proved its worth in various disciplines, most notably in psychology
[1–5], ecology [6–9], epidemiology [10–14], medicine [15,16], linguistics [17], politology [18], sociology [19,20] and in a
wide range of economics, marketing and finance [21–35]. In the economic and financial applications, the focus has been
primarily put on the search queries on various search engines such as Google, Yahoo! and Baidu. Bank et al. [26] find
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connection betweenGoogle searches and liquidity at theGerman stockmarket. Bordino et al. [27] study traded volumeof the
NASDAQ-100 index component stocks and they report that it is correlated with the related searches of the Yahoo! engine.
Vlastakis andMarkellos [28] find positive correlation between internet search queries for NASDAQandNYSE stocks and their
traded volume and volatility. Dzielinski [29] introduces an uncertaintymeasure based on the financial online search queries.
Preis et al. [31] show that Google searches for financial terms can be used for profitable trading strategies. Kristoufek [32]
utilizes popularity of the Dow Jones stocks measured by Google search queries for portfolio diversification. Kristoufek [33]
further studies dynamics between Google searches, Wikipedia page views and dynamics of the Bitcoin crypto-currency
uncovering a strong relationship between these. Moat et al. [34] report that even Wikipedia page views can be utilized for
the trading strategy construction. Curme et al. [35] cluster the online searches into groups and show that mainly politics
and business oriented searches are connected to the stock market movements.

The most frequently reported relationship between the online searches, traded volume and volatility directs further to
the dynamic characteristics of the online searches time series. As traded volume and volatility have been repeatedly studied
for their power-law correlation structures [36–38], the same research line is at hand for the online searches aswell. Potential
long-termmemory of the online activity has further implications for modeling and correct inspection of dynamics between
the searches and other series. Here, we examine the correlation structure of the Google searches related to the Dow Jones
Industrial Average (DJIA) index components. Daily Google searches data are utilized for the components of DJIA and as such,
we present the first such study of the correlation structure of the online searches. To do so, we apply the rescaled range
and rescaled variance tests to uncover the power-law correlations structure and we further proceed with the detrended
fluctuation analysis of the search queries series. As it turns out that the DJIA-related Google queries are in fact power-law
correlated, we reinvestigate a popular topic of cross-correlations between the searches, traded volume and volatility of the
examined stocks. As we find the online searches to be power-law correlated and on the edge of (non)stationarity, we utilize
the newly proposed correlation coefficients based on the detrended cross-correlation and detrendingmoving-average cross-
correlation analyses.

The paper is organized as follows. In Section 2, we describe the used methodology, specifically the rescaled range and
rescaled variance tests together with the moving block bootstrap significance criterion, and the detrended fluctuation
analysis as well as the correlation coefficients. Section 3 introduces the dataset and presents the results. Section 4 concludes.
We show that the Google searches related to the DJIA component stocks show scaling characteristic for the power-law
correlated processes. This is supported by all utilizedmethods. General interest in the publicly traded companies thus shares
similar properties to the variance and traded volume series — there are profound periods of high interest followed by long-
livedperiods of low interest. However, the search series always revert back to a long-term trend so that no explosive behavior
is observed. After taking the long-termmemory aspect of the online query series into consideration, the correlations between
the searches, traded volume and volatility become quite unstable and no universal relationship is found. The initial long-
term memory analysis thus proves to be crucial for a correct treatment of cross-correlations between the online searches
and various possibly connected series.

2. Methodology

2.1. Long-term memory and its tests

Long-term memory (or alternatively long-range dependence and long-range correlations) is defined through a power-
law decay of the auto-correlation function ρ(k) which scales as ρ(k) ∝ k2H−2 for lag k → +∞ [39–41]. The series are
then referred to as the power-law (auto-)correlated processes as well. The characteristic parameter of such processes is
Hurst exponent H , or alternatively parameter α, which takes values between 0 and 1 for stationary processes. The break-
ing value of H = 0.5 characterizes a process with no long-term memory. Processes with H > 0.5 are usually referred
to as persistent processes whereas the ones with H < 0.5 as anti-persistent processes. The former ones are reminiscent
of locally trending processes which, however, keep their stationarity (for H < 1) and return to their mean value quickly
enough. The latter ones are very erratic in behavior as they switch their direction more frequently than uncorrelated pro-
cesses. Integrating the stationary long-range dependent processes once creates an additional category of processes which
have interesting properties. For 1 ≤ H < 1.5, we have non-stationary yet still mean reverting processes. The frontier of
H = 1.5 marks a unit root process and H > 1.5 characterizes processes which are non-stationary and not mean revert-
ing, i.e. explosive processes. The long-term memory property of time series has far-reaching consequences for the time
series modeling and forecasting mainly due to its implication of a non-summable auto-correlation function [41]. Therefore,
it is essential to distinguish between long-range dependence with its power-law correlations and short-range dependence
with its exponential correlation structure. For this purpose, we utilize the modified rescaled range test and the rescaled
variance test.

Themodified rescaled range test [42] is an adjusted version of the original rescaled range analysis [39]. Bothmethods are
based on scaling of the rescaled ranges with an increasing time series length. For the time series {xt} with t = 1, 2, . . . , T ,
the testing statistic VT is defined as

VT =
R

S
√
T
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where R is a range of the profile of the analyzed series,

R = max
t=1,...,T


t

i=1

(xi − x̄)


− min

t=1,...,T


t

i=1

(xi − x̄)


,

with x̄ being the time series average, S is a heteroskedasticity and autocorrelation consistent (HAC) estimator of the standard
deviation of the original series, defined as

S2 = γ (0) + 2
q

k=1


1 −

k
q + 1

γ (k), (1)

withγ (k) being an estimated auto-correlation with lag k using the Bartlett-kernel weights. Note thatγ (0) is an estimated
variance. The crucial difference between the original and themodified version of the test stems in Eq. (1)which is constructed
to control for a possible short-termmemory bias. Selection of the parameter q then becomes crucial as an overshot parameter
q can suppress even long-term memory whereas an undershot q parameter can direct to a misleadingly found long-term
memory which in fact is only a strong short-termmemory. We stick to an automatic selection criterion of the parameter as
proposed by Lo [42]

q∗
=


3T
2

 1
3


2|ρ(1)|
1 −ρ(1)2

 2
3


(2)

whereρ(1) is the sample first order autocorrelation and ⌊⌋ is the lower integer operator.
The rescaled variance test [43] is based on a very similar idea as the previous one but, as the name suggests, it is based

on the profile variance rather than the profile range so that it is less sensitive to extreme values. The testing statistic MT is
then defined as

MT =
var(X)

TS2

where var(X) is the variance of the profile of the original series. To control for the short-termmemory bias, the HAC standard
deviation from Eq. (1) and the optimal q∗ from Eq. (2) are used here as well.

Even though both VT and MT have well defined asymptotic critical values [42,43], we opt for an alternative approach
utilizing the moving block bootstrap methodology [44,45] due to a finite sample, a very heterogeneous dynamics of the
analyzed series as well as their distributional properties. In the procedure, surrogate series are formed by shuffling the
blocks of a fixed size from the original series. This way, the short-term correlations and distributional properties are kept
but the long-term correlations are shuffled away creating a distribution of the testing statistic under a more realistic null
hypothesis. In our application, we fix the block size to 25 observations and we bootstrap 1000 surrogate series to obtain the
testing statistic distribution under the null hypothesis.

2.2. Detrended fluctuation analysis

Detrended fluctuation analysis (DFA) [46–48] is themost popular and themost frequently applied time domain estimator
of Hurst exponent. This is mainly due to the fact that DFA works under various settings such as non-stationarity and
trends [48], periodic cycles and seasonalities [49], and heavy tails [50].

The procedure is based on the following steps. Wework with the profile X(t) of the series {xt}with t = 1, . . . , T defined
as

X(t) =

t
i=1

(xi − x̄).

The profile is divided into Ts ≡ ⌊T/s⌋ non-overlapping windows of length s which is referred to as a scale. The time series
length T may be non-divisible by s which creates an issue with the end of the series which would not be used in the
procedure. For this purpose, the series is in addition divided into boxes from the end of the series so that we obtain 2Ts
boxes of size s. In each of these boxes, we calculate a mean squared deviation from the linear time trend inside the box. This
means that for the jth box of size s, we obtain

F 2(j, s) =
1
s

s
i=1

(X(s[j − 1] + i) − Xj(i))2

where Xj(i) is a linear fit of a time trend at position i in window j. In a similar manner, we obtain the fluctuation for the boxes
formed from the end of the series as

F 2(j, s) =
1
s

s
i=1

(X(T − s[j − Ts] + i) − Xj(i))2.
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We then construct a fluctuation for specific scale s as

F(s) =


1
2Ts

2Ts
j=1

[F 2(j, s)]

 1
2

and finally, we obtain Hurst exponent via the scaling law

F(s) ∝ sH . (3)

In the application, we estimate the exponent for scales between smin = 10 and smax = 500 ≈ T/5. Moreover for better
illustrational purposes, we base the estimation and the results on scales swhich are powers of 10 to a single decimal point.
Note, however, that the results do not change qualitatively for other specifications of scales and box splitting procedures
and such approach is thus kept primarily for a straightforward presentation of the results.

2.3. DCCA and DMCA coefficients

The detrended cross-correlation coefficient ρDCCA(s) for scale s as proposed by Zebende [51] is a combination of the
detrended fluctuation analysis (DFA) [46–48] and the detrended cross-correlation analysis (DCCA) [52–54]. The coefficient
is defined as

ρDCCA(s) =
F 2
DCCA(s)

FDFA,x(s)FDFA,y(s)
,

where F 2
DCCA(s) is a detrended covariance between profiles of series {xt} and {yt} based on a window of size s, and F 2

DFA,x and
F 2
DFA,y are detrended variances of profiles of the separate series, respectively, for a window size s.1 For time series of length
T , the series is divided into non-overlapping boxes of length s. In each box, fluctuation functions are computed for linearly
detrended series which are in turn averaged over all boxes of the same length. In the case when T is not divisible by s, the
series is divided from the beginning as well as from the end and the averages are based on these sub-periods as in the case
of DFA. More details about the methods and some alternative specifications can be found in Refs. [48,52,55–59].

The detrendingmoving-average cross-correlation coefficient ρDMCA(λ) for scale λ has been introduced by Kristoufek [60]
as an alternative to the DCCA coefficient. Themethod builds on a connection between the detrendingmoving average (DMA)
procedure [61,62] and detrending moving-average cross-correlation analysis (DMCA) [63,64]. The coefficient is defined as

ρDMCA(λ) =
F 2
DMCA(λ)

Fx,DMA(λ)Fy,DMA(λ)
,

where F 2
DMCA(λ), F 2

DMA,x(λ) and F 2
DMA,y(λ) are a detrended covariance between profiles of the examined series and detrended

variances of the separate series, respectively, with a moving average parameter λ. Fluctuation functions are based on
series detrended by a centered moving average of length λ. Various specifications can be utilized for the detrending but
the centered averaging has been shown to outperform the contenders [65]. Contrary to the DCCA coefficient, the DMCA
coefficient is not based on a box-splitting and it is thus computationally more efficient. More details can be found in
Refs. [60,62,63].

In a series of papers, Kristoufek [55,60] shows that the statistical properties of both methods depend strongly on long-
term memory properties of the separate series. Moreover, reliability of the methods is not constant for different levels of
correlation between the studied processes either. To control for such effects, we apply Theiler’s Amplitude Adjusted Fourier
Transform (TAAF) [66]. This method reconstructs the series with the same spectral as well as distributional properties as
the original one. This way, we obtain two series with an unchanged auto-correlation and distributional structure which are,
however, pairwise uncorrelated. Statistical significance of estimated correlations based on DCCA and DMCA can be then
obtained and tested.

Specifically for each studied pair of processes, we obtain TAAF transformed series which are not cross-correlated but
retain the auto-correlation and distribution properties of the original series. The DCCA and DMCA coefficients are then
estimated for such series. As the series are not cross-correlated, the expected value of the coefficients is zero. However,
variance of the estimates can be possibly high. Therefore, we estimate the coefficients on 1000 surrogate series to obtain a
finite sample distribution under the null hypothesis of no cross-correlations between series which controls for both long-
term auto-correlations and distributional properties.

3. Data and results

Google provides search query time series for specified terms from the year of 2004 onwards. However, the series are not
reported as a pure number of searches for a given term but these are renormalized according to the Google algorithmwhich

1 DCCA is a bivariate generalization of DFA presented in the previous section.
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Table 1
Searched terms and DJIA component stocks.

No. Company full name Company short name Ticker Search query

#1 3M Company 3M MMM 3M
#2 Caterpillar Incorporated Caterpillar CAT Caterpillar
#3 Coca-Cola Company Coca Cola KO Coca Cola
#4 E. I. du Pont de Nemours and Company Du Pont DD DuPont
#5 Exxon Mobil Company Exxon Mobil XOM Exxon
#6 General Electric Company General Electric GE GE
#7 Home Depot Incorporated Home Depot HD Home Depot
#8 Intel Corporation Intel INTC Intel
#9 International Business Machines IBM IBM IBM
#10 J. P. Morgan Chase J. P. Morgan JPM JP Morgan
#11 Johnson & Johnson Johnson & Johnson JNJ Johnson Johnson
#12 McDonald’s Corporation McDonald’s MCD McDonalds
#13 Merck & Co., Inc. Merck MRK Merck
#14 Microsoft Corporation Microsoft MSFT Microsoft
#15 Procter & Gamble Company Procter & Gamble PG P&G
#16 The Boeing Company Boeing BA Boeing
#17 United Technologies Corporation United Technologies UTX UTC
#18 Walt Disney Company Walt Disney DIS Disney

can be in essence seen as rescaling the searches into the 0–100 interval so that the number represents the proportion of the
specified searched term among all searched terms in time being kept between 0 and 100. Moreover, the obtained numbers
are based on sampling from all searched terms so that these represent an estimated rescaled proportion. Even though such
rescaling procedure can somewhat dilute the information content of the series, the empirical results summarized in the
introductory section show otherwise.

The Google data can be downloaded freely from the Google Trendswebsite (trends.google.com) at aweekly frequency. To
obtain the data at a higher frequency, specifically the daily one, one needs to download the series in three-months sections
and the series further need to be rescaled and chained together. We apply such procedure for the component stocks of the
Dow Jones Industrial Average (DJIA) index between years 2004 and 2013 (apart from Exxon Mobil, J. P. Morgan and Procter
& Gamble for which the series are several months shorter which will be evident later in the text) and thus obtaining 2516
observations for most series. The most severe issue with the Google queries data is its relative arbitrariness in defining the
searched terms. Further, the sampling and thresholding procedure applied by Google for its search series quite frequently
ends upwith reporting incomplete series. If the specified term is not searched for frequently enough, the series is practically
useless. We thus analyze only the component stocks which provide reliable search query series. Out of 30 DJIA stocks, we
end up with 18 stocks for which the Google series are reliable without discontinuities. The analyzed stocks are summarized
in Table 1. We have tried various combinations and specifications of the searched terms and we report the ones which
provided the most complete series.

The Google searches for the analyzed stocks are illustrated in Figs. 1 and 2. These uncover that the searching frequencies
for the component stocks are very heterogeneous. The trends are sharply decreasing (IBM, Merck, Microsoft), slowly
decreasing (3M, Boeing, Du Pont, GE, Intel), or reversely increasing rapidly (McDonald’s) or slowly (Caterpillar, Coca Cola,
Exxon Mobil, Home Depot), or remain quite stable in time (Johnson & Johnson, J. P. Morgan, United Technologies, Walt
Disney). Most of the series show strong seasonal patterns (hence the choice of the DCCA and DMCA techniques which are
constructed for such series) mainly connected to the end of the year but also some stronger patterns as for Home Depot. The
examined dataset thus provides a complex selection of various dynamic behaviors.

Beforewe get to the estimated values of Hurst exponent and thus to the type ofmemory in question, we first testwhether
the analyzed series are in fact power-law correlated. In Table 2, we present the testing statistics as well as the corresponding
p-values for the rescaled range and rescaled variance tests as described in the previous section. Apart from two cases (Coca
Cola and IBM), the power-law correlations are reported for all series (the null hypothesis is rejected by at least one of the
tests at at least 10% level). It needs to be stressed that levels of the optimal q parameter climb high for all and very high for
some cases, sometimes taking into consideration as much as 372 lags of the covariance function (here specifically for IBM).
This only strengthens the claim that the analyzed Google series are long-term correlated. This is due to the fact that taking
into account already tens of lags practically means considering long-term memory, even more so for hundreds of lags.

Table 2 also reports the estimated Hurst exponents which are further supported by Figs. 3 and 4. In the figures, we report
an evident power-law scaling of the fluctuation functions according to Eq. (3). For all series, the scaling is very stable and
the estimated Hurst exponents are thus reliable. Table 2 shows that Hurst exponents vary between 0.8 and 1.1. The Google
searches are thus strongly persistent for all the analyzed series. Even though thememory is very strong for these series, Hurst
exponents still remain below 1.5 which implies that the series staymean reverting. In the DFA context, this means that even
though the online queries series tend to wander away from the long-term trend, they always return to it and they never
explode. The fact that the series remain on the edge of stationarity and non-stationarity (around H = 1) only highlights the
need for a careful treatment of such series in multivariate settings which are standardly applied in the empirical literature.

http://trends.google.com
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Fig. 1. Normalized Google searches (Part 1). Covered period ranges between 1.1.2004 and 31.12.2013 with a daily frequency.

To further illustrate the usefulness of the presented results, we reinvestigate the relationship between Google searches,
traded volume and volatility. The traded volume for each component stock of the DJIA index is directly available at
finance.yahoo.com as well as are the open, close, high and low prices. We utilize the provided information and construct
volatility series using the Garman–Klass variance estimator [67] defined as

σ 2
GK ,t =

(log(Ht/Lt))2

2
− (2 log 2 − 1)(log(Ct/Ot))

2 (4)

where Ht and Lt are daily highs and lows, respectively, and Ct and Ot are daily closing and opening prices, respectively. The
estimator possesses very good statistical properties and serves as an excellent choicewithout a need of using high-frequency
data [68]. We study a logarithmic transformation of bothσ 2

GK and the traded volume series which is a standard procedure
in the applied literature. The transformation of the original variance series allows us to comment on both variance and
volatility as the logarithmic variance becomes just twice the logarithmic volatility.

We examine the correlations between Google searches, traded volume and volatility at various scales using the DCCA
and DMCA coefficients. For the DCCA coefficient, we study the correlation between the searches and traded volume, and
between the searches and volatility for scales between 10 and 250 with a step of 10. For the DMCA coefficient, we use
moving window lengths between 11 and 251 with a step of 10 as well. This way, we obtain comparable results using these
methodologies.
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Fig. 2. Normalized Google searches (Part 2).

Figs. 5 and 6 depict the results for variance and traded volume, respectively, for both methods. Only significant
correlations with the p-value below 0.10 are reported, the insignificant ones are set to zero. We find several interesting
results. First, the DMCA method reports more stable results with more significant coefficients. This is well in hand with the
numerical results presented by Kristoufek [55,60]. Second, the correlations for traded volume are in general higher than
the ones for volatility. Third, a majority of significant correlations occur at the lower scales. There thus seems to be rather
short-term or medium-term relationship between the online searches and the examined financial indicators. In the long-
term, only few correlations are identified as significant. Fourth, the level of correlations varies considerably across stock
titles. There thus seems to be no universality in the relationship between the searches, and volatility and volume. Tables 3
and 4 further illustrate the heterogeneity of the results. There, we present the average DCCA and DMCA coefficients across
scales together with their significance level. The above mentioned results are supported. First, the significance, level and
sign of the correlations vary widely. Second, the DMCA procedure delivers more significant results. Third, the correlations
are higher for volume than for volatility. Nevertheless, many of the significant correlations are still below a level of 0.05
and practically all the correlation coefficients fall between −0.2 and 0.2. The correlations are thus very weak even if found
statistically significant.

There are still some interesting results mainly connected to various signs of the correlations. For example Microsoft
shows some unorthodox behavior for volatility. A positive relationship is usually reported, whereas the search queries for
Microsoft are negatively correlated with volatility. Conversely, traded volume shows a positive correlation. It thus seems
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Table 2
Long-term memory tests and estimated Hurst exponent.

Company # of obs. VT p-value MT p-value q∗ HDFA

3M 2516 2.9267 0.0000 0.0003 0.0000 46 0.9452
Boeing 2516 2.7083 0.0000 0.0003 0.0000 65 0.9086
Caterpillar 2516 2.0131 0.0120 0.0001 0.0030 33 1.0467
Coca Cola 2516 1.6006 0.1848 0.0001 0.2647 23 0.9016
Du Pont 2516 2.6857 0.0000 0.0002 0.0000 63 0.9276
Exxon Mobil 2265 2.8268 0.0000 0.0003 0.0000 37 0.9313
General Electric 2516 2.8344 0.0000 0.0003 0.0000 63 0.9652
Home Depot 2516 1.6500 0.0599 0.0001 0.1359 67 1.1557
IBM 2516 1.2279 0.6424 0.0001 0.1099 372 1.1478
Intel 2516 1.7875 0.0070 0.0001 0.0000 164 1.1486
Johnson & Johnson 2516 2.5457 0.0000 0.0002 0.0000 34 0.9964
J. P. Morgan 2393 2.4226 0.0000 0.0002 0.0000 26 0.8261
McDonald’s 2516 2.0612 0.0000 0.0002 0.0000 127 1.0373
Merck 2516 2.3400 0.0000 0.0002 0.0000 88 0.9314
Microsoft 2516 1.5279 0.0729 0.0001 0.0060 206 1.0896
Procter & Gamble 2393 3.2807 0.0000 0.0005 0.0000 25 0.9468
United Technologies 2516 2.7528 0.0000 0.0002 0.0070 22 0.8747
Walt Disney 2516 3.0381 0.0000 0.0004 0.0000 38 1.0003

Table 3
Average DCCA and DMCA correlations between volatility and Google searches.

ρDCCA σρDCCA p-value ρDMCA σρDMCA p-value significant sign

3M 0.0657 0.0270 0.0149 0.0648 0.0112 0.0000 ✓✓ +

Boeing −0.0372 0.0275 0.1771 −0.0281 0.0162 0.0831 ×✓ −

Caterpillar 0.1087 0.0231 0.0000 0.1136 0.0086 0.0000 ✓✓ +

Coca Cola 0.0315 0.0214 0.1422 0.0369 0.0093 0.0001 ×✓ +

Du Pont 0.1658 0.0194 0.0000 0.1590 0.0096 0.0000 ✓✓ +

Exxon Mobil 0.0432 0.0170 0.0111 0.0411 0.0101 0.0000 ✓✓ +

General Electric 0.1827 0.0173 0.0000 0.2181 0.0067 0.0000 ✓✓ +

Home Depot −0.0095 0.0273 0.7283 −0.0193 0.0080 0.0156 ×✓ −

IBM 0.1093 0.0247 0.0000 0.1154 0.0047 0.0000 ✓✓ +

Intel 0.0287 0.0252 0.2536 0.0302 0.0125 0.0160 ×✓ +

Johnson & Johnson −0.0953 0.0308 0.0020 −0.1431 0.0227 0.0000 ✓✓ −

J. P. Morgran 0.0282 0.0176 0.1093 0.0501 0.0094 0.0000 ×✓ +

McDonald’s 0.1509 0.0176 0.0000 0.1595 0.0073 0.0000 ✓✓ +

Merck 0.0216 0.0328 0.5090 0.0296 0.0228 0.1955 ×× 0
Microsoft −0.1635 0.0323 0.0000 −0.1608 0.0250 0.0000 ✓✓ −

Procter & Gamble −0.0118 0.0172 0.4944 −0.0141 0.0085 0.0960 ×✓ −

United Technologies −0.0813 0.0259 0.0017 −0.1076 0.0191 0.0000 ✓✓ −

Walt Disney 0.0841 0.0195 0.0000 0.0509 0.0052 0.0000 ✓✓ +

Table 4
Average DCCA and DMCA correlations between traded volume and Google searches.

ρDCCA σρDCCA p-value ρDMCA σρDMCA p-value significant sign

3M 0.1599 0.0302 0.0000 0.1667 0.0179 0.0000 ✓✓ +

Boeing −0.0280 0.0251 0.2647 −0.0468 0.0186 0.0117 ×✓ −

Caterpillar 0.0785 0.0266 0.0032 0.0848 0.0144 0.0000 ✓✓ +

Coca Cola 0.0331 0.0230 0.1508 0.0436 0.0135 0.0013 ×✓ +

Du Pont 0.1181 0.0184 0.0000 0.1051 0.0148 0.0000 ✓✓ +

Exxon Mobil 0.0936 0.0183 0.0000 0.0889 0.0073 0.0000 ✓✓ +

General Electric 0.1093 0.0218 0.0000 0.1994 0.0056 0.0000 ✓✓ +

Home Depot 0.0262 0.0341 0.4423 0.0382 0.0274 0.1638 ×× 0
IBM 0.1547 0.0151 0.0000 0.1407 0.0093 0.0000 ✓✓ +

Intel 0.0357 0.0254 0.1609 0.0345 0.0096 0.0003 ×✓ +

Johnson & Johnson 0.0211 0.0254 0.4066 −0.0172 0.0173 0.3192 ×× 0
J. P. Morgran 0.1258 0.0195 0.0000 0.1008 0.0077 0.0000 ✓✓ +

McDonald’s 0.2032 0.0185 0.0000 0.2168 0.0133 0.0000 ✓✓ +

Merck 0.0463 0.0447 0.3009 0.0328 0.0318 0.3022 ×× 0
Microsoft 0.0993 0.0248 0.0001 0.0937 0.0087 0.0000 ✓✓ +

Procter & Gamble 0.0724 0.0212 0.0007 0.0865 0.0199 0.0000 ✓✓ +

United Technologies −0.0856 0.0238 0.0003 −0.0809 0.0156 0.0000 ✓✓ −

Walt Disney 0.2297 0.0437 0.0000 0.1317 0.0209 0.0000 ✓✓ +

that general interest in Microsoft is mainly tied with positive news which stabilize the stock price rather than with negative
news that would make the price more volatile. Similar dynamics is found for Johnson & Johnson. The only stock which gives
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Fig. 3. DFA scaling of Google searches related to the DJIA component stocks (Part 1). Log–log representation shows a profound linear scaling characteristic
for long-range correlated processes. Estimated Hurst exponents are summarized in Table 2.

insignificant results for both financial quantities is Merck. Other stocks show either positive and thus expected correlations
or only weak negatives ones.

4. Discussion and conclusions

We have analyzed the power-law correlations in the online search queries for the DJIA stock components. By recon-
structing the daily Google search series, we have been able to obtain enough observations for a valid analysis of long-range
dependence. Using the combination of the rescaled range and rescaled variance tests and the detrended fluctuation analysis,
we have shown that the online searches are indeed power-law correlated. Importantly, the level of long-term memory is
very high with Hurst exponents around unity (between 0.8 and 1.1) for all the analyzed stocks. Such results suggest that the
finance-related online searches have similar dynamic properties to stock variance and traded volumewhich are themselves
power-law correlated. The information flow coming into the stock markets evidently enters the general public interest and
keeps it for quite long periods and its dissipation is thus not immediate. The fact that the online searches and implied at-
tention are usually attributed to retail and small investors, such information and attention dissipation fits into the picture
of a small investor using the information for decision-making in a longer term. Such persistent dynamics of the series might
also arise from indecisiveness of the small investors which would think twice before investing into a specific stock. Online
searches then cluster and keep their level for longer time intervals. The results remain fascinatingly universal across the
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Fig. 4. DFA scaling of Google searches related to the DJIA component stocks (Part 2).

Fig. 5. Correlation coefficients between Google searches and variance. The correlations are presented for the DCCA (left) and DMCA (right) methods with
changing scales andmoving average windows, respectively. The results are shown for all analyzed series. Only significant correlations (with p-value below
0.1) are reported.
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Fig. 6. Correlation coefficients between Google searches and traded volume. The notation holds from Fig. 5.

analyzed stocks. Even though the global dynamics of the series is very heterogeneous with different speeds of trends or
various volatility levels, they all remain strongly persistent with a smooth scaling of fluctuations.

In addition, we have studied the relationship between Google searches, traded volume and volatility using the recently
proposed DCCA and DMCA coefficients. The results primarily suggest that there is no universal relationship between the
online search queries and the analyzed financial measures. Even though we confirm positive correlation for a majority of
pairs, there are several pairs with insignificant or even negative correlations. Further, the correlations vary quite strongly
across scales. The online searches have thus retained their potential for financial modeling and various applications but our
findings suggest that one needs to carefully study each stock or asset separately as the usefulness of the queries can fluctuate
considerably. The reported results do not necessarily contradict some previous findings which find statistically significant
connections [26–28,31] or time varying correlations [35]. However, we stress that there seems to be no universal and global
relationship between the online searches and relevant financial variables (traded volume and volatility).

Our results open an interesting area of further research of the topic. First, the power-law properties of the correlation
structure might be observed also in different types of search queries, not necessarily only for stocks or financial markets
in general. This would show how information or information seeking dissipates in time and how such behavior connects
to other specific phenomena of the relevant time series. Second, the results indicate that the online searches are strongly
persistent and on the edge of (non-)stationarity. Such characteristic implies that the simple correlation studies reported
in the literature should take this property into consideration as an inappropriate analysis of persistent data using tools
for short-range dependent series can produce spurious and in turn misleading results. Third, knowing the basic dynamic
properties of the series helps to construct the forecasting models which are of high interest for practitioners, specifically in
risk management.
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