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This study discusses the relationship between the concave integrals and the pan-
integrals on finite spaces. The minimal atom of a monotone measure is introduced 
and some properties are investigated. By means of two important structure 
characteristics related to minimal atoms: minimal atoms disjointness property and 
subadditivity for minimal atoms, a necessary and sufficient condition is given that 
the concave integral coincides with the pan-integral with respect to the standard 
arithmetic operations + and · on finite spaces. Following this result, we have 
shown that these two integrals coincide if the underlying monotone measure is sub-
additive.
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1. Introduction

In non-additive measure and integral theory, several prominent nonlinear integrals with respect to mono-
tone measure (or capacity) have been defined and discussed in detail. Among them, we mention the Choquet 
integral [2] (see also [3,19]), the pan-integral introduced by Yang [27] (see also [25,24]) and the concave in-
tegral introduced by Lehrer [9] (see also [10]). Although all the three types of integrals coincide with the 
Lebesgue integral in the case where the monotone measure is σ-additive, they are significantly different from 
each other. The Choquet integral is based on chains of sets, while, similarly to the Lebesgue integral, the 
pan-integral deals with disjoint finite set systems. Finally, the concave integral deals with arbitrary finite set 
systems, see [16]. Note that all these integrals can be seen as particular instances of decomposition integrals 
recently introduced by Even and Lehrer [5], see also [16].
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Lehrer [9] showed that the Choquet integral is less than or equal to the concave integral and these two 
integrals coincide if and only if the underlying capacity ν is convex (also known as supermodular, see [3,19]). 
In [24] it was proved that the pan-integral with respect to the usual addition + and usual multiplication ·
is less than or equal to the Choquet integral if the underlying monotone measure μ is superadditive, while 
the pan-integral is greater than or equal to the Choquet integral if μ is subadditive.

This paper will focus on the relationship between the concave integrals and the pan-integrals. We explore 
the conditions under which the concave integral coincides with the pan-integral w.r.t. the usual addition +
and usual multiplication ·.

We shall introduce the concept of minimal atom of a monotone measure and investigate its prop-
erties. As a special kind of atom of monotone measure, the minimal atom plays an essential role in 
our discussions. By means of minimal atoms we describe the relationship between the concave inte-
grals and pan-integrals on finite spaces. We introduce two important concepts related to minimal atoms: 
minimal atoms disjointness property which is weaker than weak null-additivity, and subadditivity w.r.t. 
minimal atoms which is weaker than subadditivity. Our main results are in Section 4. We shall show 
that on finite spaces the concave integral coincides with the pan-integral w.r.t. the usual addition +
and usual multiplication · if and only if the underlying monotone measure μ satisfies both the mini-
mal atoms disjointness property and subadditivity w.r.t. minimal atoms. As a direct corollary, we obtain 
that on finite spaces the above mentioned two integrals coincide if the monotone measure μ is subaddi-
tive.

2. Preliminaries

Let X be a nonempty set and F a σ-algebra of subsets of X. F denotes the class of all finite nonnegative 
real-valued measurable functions on (X, F). Unless stated otherwise all the subsets mentioned are supposed 
to belong to F , and all the functions mentioned are supposed to belong to F.

We assume that μ is a monotone measure on (X, F), i.e., μ : F → [0, +∞] is an extended real-valued set 
function satisfying the following conditions:

(1) μ(∅) = 0 and μ(X) > 0;
(2) μ(A) ≤ μ(B) whenever A ⊂ B and A, B ∈ F . (monotonicity)

When μ is a monotone measure, the triple (X, F , μ) is called a monotone measure space [19,24]. In some 
literature, the monotone measure constraint by μ(X) = 1 is also known as capacity or fuzzy measure, or 
nonadditive probability, etc. (see [3,9,17,23,25]).

A monotone measure μ is said to be weakly null-additive [24], if μ(A ∪B) = 0 whenever μ(A) = μ(B) = 0; 
subadditive if μ(A ∪B) ≤ μ(A) + μ(B) for any A, B ∈ F .

The concept of a pan-integral [24,27] involves two binary operations, the pan-addition ⊕ and pan-
multiplication ⊗ of real numbers (see also [15,19,20,25,24]). To be able to compare the concave and 
pan-integrals, in this paper we consider the pan-integrals based on the standard addition + and multi-
plication · only. We recall the following definition.

Definition 2.1. Let (X, F , μ) be a monotone measure space and f ∈ F. The pan-integral of f on X w.r.t. 
the usual addition + and usual multiplication · is given by

∫ pan
fdμ = sup

{
n∑

λiμ(Ai) :
n∑

λiχAi
≤ f, {Ai}ni=1 ⊂ F is a partition of X,λi ≥ 0, n ∈ N

}
.

i=1 i=1
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Lehrer [9] introduced a new integral known as concave integral (see also [10,22]), as follows:

Definition 2.2. (See [9].) Let (X, F , μ) be a monotone measure space and f ∈ F. The concave integral of f
on X is defined by

∫ cav
fdμ = sup

{
n∑

i=1
λiμ(Ai) :

n∑
i=1

λiχAi
≤ f, {Ai}ni=1 ⊂ F , λi ≥ 0, n ∈ N

}
.

Note that the pan-integral is related to finite partitions of X, while the concave integral to any finite set 
systems of measurable subsets of X. Comparing these two integrals, it is obvious that for any f ∈ F.∫ cav

fdμ ≥
∫ pan

fdμ.

In general, ∫ cav
fdμ �=

∫ pan
fdμ.

Example 2.3. Let X = {a, b} and μ: 2X → [0, 1] be defined by

μ(E) =

⎧⎪⎪⎨⎪⎪⎩
0 if E = ∅,
0.4 if E = {a},
0.5 if E = {b},
1 if E = X,

and put

f(x) =
{

0.8 if x = a,

0.4 if x = b.

Then we have 
∫ pan

fdμ = 0.8 × μ({a}) + 0.4 × μ({b}) = 0.52 and∫ cav
fdμ = 0.4 × μ

(
{a}

)
+ 0.4 × μ

(
{a, b}

)
= 0.56.

Thus, 
∫ cav

fdμ >
∫ pan

fdμ.

3. Minimal atom of a monotone measure

The atom of a measure is an important concept in the classical measure theory. This concept was 
generalized in nonadditive measure theory, see [4,21] and further discussed, see [6,7,11,18,19,26].

Definition 3.1. (See [19,21].) Let μ be a monotone measure on F . A set A ∈ F is called an atom of μ if 
μ(A) > 0 and for every B ⊂ A holds either

(i) μ(B) = 0, or
(ii) μ(A) = μ(B) and μ(A −B) = 0.

To describe the relationship between the pan-integral and concave integral on finite space, we introduce 
the concept of minimal atom of a monotone measure.
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Definition 3.2. Let μ be a monotone measure on F . A set A ∈ F is called a minimal atom of μ if μ(A) > 0
and for every B ⊂ A holds either

(i) μ(B) = 0, or
(ii) A = B.

Comparing Definition 3.1 and Definition 3.2, obviously, a minimal atom A of μ is a special atom of μ (it 
is also pseudo-atom of μ, see [7,26]). If A is a minimal atom of μ, then there is no proper subset B of A
such that μ(B) > 0. The following Example 3.3 shows that an atom of μ may not be a minimal atom of μ.

Example 3.3. Let X = {a, b} and μ: 2X → [0, 1] be defined by

μ(E) =
{

1 if E = {a}, {a, b},
0 else.

Then X is an atom of μ, but it is not a minimal atom of μ. {a} is an atom of μ and also a minimal atom 
of μ.

From the definition of minimal atom, we can easily obtain the following result. It will play a key role in 
the proof of Theorem 4.1 in the next section.

Proposition 3.4. Let X be a finite set and μ be a monotone measure defined on (X, F). Then every set 
A ∈ F with μ(A) > 0 contains at least one minimal atom of μ.

Proof. Suppose A ∈ F with μ(A) > 0 and define

A =
{
E ∈ F|E ⊂ A, μ(E) > 0

}
.

Then every minimal element of A is a minimal atom contained in A. �
We present some examples for minimal atoms in the following.

Example 3.5. Let (X, F) be a measurable space and μ: F → [0, 1] be defined as

μ(E) =
{

0 if E �= X,

1 if E = X.

Then X is the only minimal atom of μ.

Example 3.6. Let X = {a, b, c, d}.

(1) Let μ: 2X → [0, 1] be defined by

μ(E) =

⎧⎪⎪⎨⎪⎪⎩
1 if E = X,
3
5 if E = {a, b, c}, {a, b, d}, {a, c, d},
2
5 if E = {a, b}, {a, c},
0 otherwise.

Then there are two minimal atoms of μ, namely {a, b} and {a, c}.
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(2) Let μ: 2X → [0, 1] be defined by

μ(E) =

⎧⎨⎩
1 if E = X,
2
5 if E �= X,

0 if E = ∅.

Then every singleton is a minimal atom of μ.

In the following we introduce two concepts concerning minimal atoms of a monotone measure: minimal 
atoms disjointness property (Definition 3.7) and subadditivity w.r.t. minimal atoms (Definition 3.10). They 
play important role in our discussion.

Definition 3.7. A monotone measure μ on (X, F) is said to have the minimal atoms disjointness property, 
if every two distinct minimal atoms of μ are disjoint, i.e., for every pair of minimal atoms A and B of μ, 
A �= B implies A ∩B = ∅.

Note that not every monotone measure possesses the minimal atoms disjointness property. For example, 
in Example 3.6(1), {a, b} and {a, c} are two minimal atoms of μ, but {a, b} ∩ {a, c} = {a} �= ∅. But, the 
following result reveals that the minimal atoms disjointness property is a rather weak condition.

Proposition 3.8. Let (X, F , μ) be a monotone measure space. If μ is weakly null-additive, then μ possesses 
the minimal atoms disjointness property.

Proof. Let A, B be a pair of minimal atoms such that A ∩ B �= ∅ and A �= B. Then, by the definition of 
minimal atom, we have μ(A ∩ B) = 0 and μ(A − (A ∩ B)) = 0. Since μ is weakly null-additive, μ(A) =
μ[(A − (A ∩B)) ∪ (A ∩B)] = 0, a contradiction. �

The subadditivity of μ implies the weak null-additivity, so a subadditive monotone measure μ possesses 
the minimal atoms disjointness property.

Note that a monotone measure μ with the minimal atoms disjointness property may not be weakly null-
additive. Therefore the minimal atoms disjointness property is a weaker condition than weak null-additivity.

Example 3.9. Let X = {a, b, c} and μ: 2X → [0, 1] be defined by

μ(E) =

⎧⎨⎩
0 if E = ∅, {b}, {c},
1/2 if E = {a},
1 otherwise.

Then μ has the minimal atoms disjointness property (there are only two minimal atoms of μ, namely {a}
and {b, c}). But μ is not weakly null-additive.

Definition 3.10. Let X be a finite set. A monotone measure μ on (X, F) is said to be subadditive w.r.t. 
minimal atoms, if for every set A ∈ F with μ(A) > 0, we have

μ(A) ≤
n∑

i=1
μ(Ai),

where {Ai}ni=1 is the set of all minimal atoms contained in A.

Proposition 3.11. Let X be a finite set and μ be a monotone measure on (X, F). If μ is subadditive, then it 
is subadditive w.r.t. minimal atoms.
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Proof. Let A ∈ F with μ(A) > 0 and {Ai}ni=1 is the set of all minimal atoms contained in A.
Put

Ã0 = A\(A1 ∪A2 ∪ · · · ∪An).

Then μ(Ã0) = 0 (otherwise, from Proposition 3.4, Ã0 contains at least one minimal atom contained in A, 
a contradiction). Thus A is expressed as

A = A1 ∪A2 ∪ · · · ∪An ∪ Ã0.

By the subadditivity of μ, then

μ(A) = μ(A1 ∪A2 ∪ · · · ∪An ∪ Ã0)

≤ μ(A1) + μ(A2) + · · · + μ(An).

This shows that μ is subadditive w.r.t. minimal atoms. �
Note that a monotone measure μ with subadditivity w.r.t. minimal atoms may not be subadditive. For 

example, the monotone measure μ in Example 3.6(2) is subadditive w.r.t. minimal atoms, but μ(X) >
μ({a, b}) + μ({c, d}), thus it is not subadditive. Therefore, the subadditivity w.r.t. minimal atoms is really 
weaker than subadditivity.

Let μ be a monotone measure on a finite set X with the minimal atoms disjointness property. If μ is not 
subadditive w.r.t. minimal atoms, then there is at least one set A with μ(A) > 0 such that

μ(A) >
n∑

i=1
μ(Ai),

where {Ai}ni=1 is the set of all minimal atoms contained in A. In this case we say that A is a strictly 
superadditive set for minimal atoms (shortly, a strictly superadditive set). We point out that for every 
strictly superadditive set A, there is a superadditive subset B ⊂ A such that for any proper subset C � B

with μ(C) > 0, C is not a strictly superadditive set (we call B a minimal strictly superadditive set contained 
in A). In fact, let A be a strictly superadditive set, define

SA = {B | B ⊂ A and B is a strictly superadditive set}.

Every minimal element of SA is a minimal strictly superadditive set contained in A.

Example 3.12. Let X = {a, b, c, d}. The monotone measure μ: 2X → [0, 1] is defined by

μ(E) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if E = X,
3
5 if E = {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d},
2
5 if E = {a, b}, {c, d},
1
5 if E = {a, c}, {b, c}, {c},
0 otherwise.

Obviously, X is a strictly superadditive set and

SX =
{
X, {a, b, d}, {a, c, d}, {b, c, d}, {c, d}

}
.

SX contains three chains X ⊃ {a, b, d}, X ⊃ {a, c, d} ⊃ {c, d} and X ⊃ {b, c, d} ⊃ {c, d}. There are two 
minimal strictly superadditive sets contained in X, namely {a, b, d} and {c, d}.
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4. The main results

Now we present our main results. We emphasize that in this section the universe X is a finite set and 
the monotone measure μ defined on (X, F) is supposed to be finite, i.e., μ(X) < ∞.

Theorem 4.1. Let X be a finite space and μ be a finite monotone measure on (X, F). Then, for all f ∈ F∫ pan
fdμ =

∫ cav
fdμ

if and only if the following two conditions hold:

(i) μ possesses the minimal atoms disjointness property;
(ii) μ is subadditive w.r.t. minimal atoms.

Proof. Necessity: Suppose that for all f ∈ F, 
∫ pan

fdμ =
∫ cav

fdμ. We use a proof by contradiction.
First of all, assume that the condition (i) is not true. Then there is a pair of minimal atoms A and B

such that A �= B, but A ∩ B �= ∅. We will show that 
∫ cav

fdμ >
∫ pan

fdμ for some f . Let k be a positive 
integer, define

fk(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if x ∈ A\B;
k, if x ∈ B\A;
k + 1, if x ∈ A ∩B;
0, otherwise.

Then fk ∈ F. Let 
∑n

i=1 λiχEi
be an arbitrary summation such that λi > 0 for i from {1, .., n}, and 

Ei ∩ Ej = ∅, i �= j and 
∑n

i=1 λiχEi
≤ fk. Due to the fact that fk = 0 on X\(A ∪B), evidently Ei ⊂ A ∪B

for any i = 1, .., n. Then there are two cases: (1) If there is some Ei, say E1, such that E1 = B, then λ1 ≤ k. 
Thus for any i �= 1, Ei ⊂ A\B, noting that A is a minimal atom of μ and A\B is a proper subset of A, then 
μ(Ei) = 0. Therefore

n∑
i=1

λiμ(Ei) = λ1μ(E1) ≤ kμ(E1) = kμ(B). (4.1)

(2) If for any i (1 ≤ i ≤ n), Ei �= B, then we have μ(Ei) = 0 for any Ei � B (since B is minimal atom of μ) 
and λi ≤ 1 for any Ei ∩ (A −B) �= ∅. Thus

n∑
i=1

λiμ(Ei) ≤
n∑

i=1
μ(Ei) ≤ μ+(A ∪B), (4.2)

where

μ+(A ∪B) = sup
{

n∑
i=1

μ(Fi)
∣∣∣ {Fi} is a partition of A ∪B

}

(for more details, see [12]).
Therefore, combining (4.1) and (4.2), we have∫ pan

fkdμ = max
{

n∑
i=1

λiμ(Ei)
∣∣∣ n∑
i=1

λiχEi
≤ fk, Ei ⊂ A ∪B,Ei ∩ Ej = ∅, i �= j

}
≤ max

{
kμ(B), μ+(A ∪B)

}
.
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Since μ+(A ∪ B) < ∞ and μ(B) > 0, there exists k0 such that k0μ(B) > μ+(A ∪ B) and thus, on one 
hand, we have 

∫ pan
fk0dμ ≤ k0μ(B). On the other hand, by the definition of the concave integral and noting 

μ(A) > 0, we have ∫ cav
fk0dμ ≥ μ(A) + k0μ(B) > k0μ(B).

We get a contradiction: 
∫ cav

fk0dμ >
∫ pan

fk0dμ. So, the condition (i) is true.
Secondly, assume that the condition (ii) is not true (note that we have proved the condition (i) holds, i.e., 

μ has the minimal atoms disjointness property). Then there is a set E ∈ F such that μ(E) >
∑n

i=1 μ(Ei), 
where {Ei}i is the set of all minimal atoms contained in E (E is called a strictly superadditive set, see 
Section 3). Noting the discussion to the subadditivity for minimal atoms in Section 3, there exists a strictly 
superadditive set F ⊂ E such that for any proper subset C � F with μ(C) > 0, C is not a strictly 
superadditive set (F is called a minimal strictly superadditive set contained in E, see Section 3). Let 
{F1, F2, · · · , Fn} be the set of all minimal atoms contained in F (notice that Proposition 3.4 guarantees that 
the set {F1, F2, · · · , Fn} is nonempty).

Now, let the measurable function f be defined by

f(x) =

⎧⎨⎩
2, if x ∈ F1;
1, if x ∈ F\F1;
0, elsewhere.

Let 
∑k

i=1 λiχAi
be an arbitrary summation such that Ai ∩ Aj = ∅, i �= j and 

∑k
i=1 λiχAi

≤ f . We can 
assume that Ai ⊂ F and μ(Ai) > 0 (i = 1, 2, . . . , k) without any loss of generality. Thus there are two cases:

Case I : There is some i0 (1 ≤ i0 ≤ k) such that Ai0 = F . Then it follows from Ai ⊂ F (i = 1, 2, . . . , k)
and Ai ∩Aj = ∅ (i �= j) that k = 1, and hence Ai0 = A1 = F , λ1 ≤ 1. Thus, we get

k∑
i=1

λiμ(Ai) = λ1μ(A1) ≤ μ(F ). (4.3)

Case II : For any i (1 ≤ i ≤ k), Ai � F . Then there are two situations: (a) if there is some i0 such 
that Ai0 = F1, then λi0 ≤ 2, and for every i �= i0, it follows from Ai ⊂ F\F1 that λi ≤ 1; (b) if for any 
i (1 ≤ i ≤ k), Ai �= F1, noting that F is minimal atom and μ(Ai) > 0, then Ai ∩ (F\F1) �= ∅, and hence for 
any i (1 ≤ i ≤ k), λi ≤ 1. No matter what kind of situation, we have

k∑
i=1

λiμ(Ai) = λi0μ(Ai0) +
∑
i�=i0

λiμ(Ai) ≤ 2μ(F1) +
∑
i�=i0

μ(Ai). (4.4)

Now let {Ai,1, Ai,2, · · · , Ai,si} be the set of all minimal atoms contained in Ai, i = 1, 2, . . . , k. (Notice again 
that Proposition 3.4 guarantees that for every i = 1, 2, . . . , k, the set {Ai,1, Ai,2, · · · , Ai,si} is nonempty.)
Since F is a minimal strictly superadditive set contained in E and Ai � F , so Ai is not strictly superadditive 
set. Therefore we have

μ(Ai) ≤
si∑
j=1

μ(Ai,j) (i = 1, 2, . . . , k). (4.5)

By combining (4.4) and (4.5), and noting that

k⋃
{Ai,1, Ai,2, · · · , Ai,si} ⊂ {F1, F2, · · · , Fn},
i=1
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we obtain

k∑
i=1

λiμ(Ai) ≤ 2μ(F1) +
∑
i�=i0

μ(Ai)

≤ 2μ(F1) +
∑
i�=i0

λi

(
si∑
j=1

μ(Ai,j)
)

≤ 2μ(F1) +
n∑

i=2
μ(Fi)

= μ(F1) +
n∑

i=1
μ(Fi). (4.6)

Combining (4.3) and (4.6), and noting μ(F ) >
∑n

i=1 μ(Fi), it follows that

∫ pan
fdμ = max

{
k∑

i=1
λiμ(Ai)

∣∣∣ k∑
i=1

λiχAi
≤ f,Ai ⊂ F,Ai ∩Aj = ∅, i �= j

}

≤ max
{
μ(F ), μ(F1) +

n∑
i=1

μ(Fi)
}
.

But, by the definition of the concave integral and χF1 + χF ≤ f , and μ(F1) > 0, then we have

∫ cav
fdμ ≥ μ(F1) + μ(F ) > max

{
μ(F ), μ(F1) +

n∑
i=1

μ(Fi)
}
.

Thus, 
∫ cav

fdμ >
∫ pan

fdμ. This is a contradiction. The condition (ii) is proved.
Sufficiency: Now assume that both conditions (i) and (ii) are true. Let {Ej}nj=1 be the set of all 

minimal atoms contained in X. For any function f ∈ F and an arbitrary summation 
∑k

i=1 λiχAi
with ∑k

i=1 λiχAi
≤ f , define a sequence {l(i)j }i,j as

l
(i)
j =

{
1, if Ej ⊂ Ai;
0, otherwise,

then we have

n∑
j=1

(
k∑

i=1
λil

(i)
j

)
χEj

=
k∑

i=1
λi

(
n∑

j=1
l
(i)
j χEj

)

≤
k∑

i=1
λiχAi

≤ f,

and by the condition (ii),

k∑
λiμ(Ai) ≤

k∑
λi

(
n∑

l
(i)
j μ(Ej)

)
=

n∑(
k∑

λil
(i)
j

)
μ(Ej).
i=1 i=1 j=1 j=1 i=1
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Noting the condition (i), if we denote αj =
∑k

i=1 λil
(i)
j then for any summation 

∑k
i=1 λiχAi

≤ f we have 

another summation 
∑n

j=1 αjχEj
≤ f with Ei∩Ej = ∅, i �= j and 

∑n
j=1 αjμ(Ej) ≥

∑k
i=1 λiμ(Ai). Therefore, 

we have

∫ cav
fdμ = sup

{
k∑

i=1
λiμ(Ai)

∣∣∣ k∑
i=1

λiχAi
≤ f

}

≤ sup
{

n∑
j=1

αjμ(Ej)
∣∣∣ n∑
j=1

αjχEj
≤ f,Ei ∩ Ej = ∅, i �= j

}

≤
∫ pan

fdμ.

From 
∫ cav

fdμ ≥
∫ pan

fdμ, it follows that ∫ cav
fdμ =

∫ pan
fdμ

for any function f ∈ F.
The proof of the theorem is completed. �
Note that the conditions (i) and (ii) in Theorem 4.1 are independent, as shown in the following examples.

Example 4.2. Let X = {a, b} and F = 2X . Let

μ(E) =

⎧⎨⎩
0 if E = ∅,
1
3 if E = {a}, {b},
1 if E = X.

Then {a} and {b} are all minimal atoms of μ, so μ possesses the minimal atoms disjointness property. But, 
it is not subadditive w.r.t. minimal atoms. In fact, μ(X) > μ({a}) + μ({b}).

Example 4.3. Let X = {a, b, c, d} and F = 2X . Let

μ(E) =
{

1 if E = X, {a, b, c}, {a, b, d}, {a, c, d}, {a, b}, {a, c},
0 otherwise.

Then {a, b} and {a, c} are all minimal atoms of μ, and μ is subadditive w.r.t. minimal atoms. But, {a, b} ∩
{a, c} = {a} �= ∅, so μ has not minimal atoms disjointness property.

Note 4.4. If we abandon the finiteness of μ, then both conditions (i) and (ii) in Theorem 4.1 are only 
sufficient, not necessary. That is, we can find an example which violates both conditions (i) and (ii) but the 
concave integral coincides with the pan-integral.

Example 4.5. Let X = {a, b, c} and the monotone measure μ: 2X → [0, ∞] be defined as:

μ(E) =

⎧⎨⎩
∞ if E = X,

1 if E = {a, b} or {a, c},
0 otherwise.

Then there are two minimal atoms {a, b}, {a, c}. We note that {a, b} ∩ {a, c} = {a} and μ(X) >

μ({a, b}) + μ({a, c}), that is, both the conditions (i) and (ii) in Theorem 4.1 are not true. But for any 
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function f : X → [0, ∞] we have 
∫ cav

fdμ =
∫ pan

fdμ. In fact, if min{f(x) | x ∈ X} > 0 then both the con-
cave and pan-integrals are infinite. If f(a) = 0 or f(b) = f(c) = 0 then both the concave and pan-integrals
are zero. If f(a) > 0, f(b) > 0 and f(c) = 0 then 

∫ cav
fdμ =

∫ pan
fdμ = min{f(a), f(b)}. Otherwise ∫ cav

fdμ =
∫ pan

fdμ = min{f(a), f(c)}.

As a direct result of Proposition 3.8 and Theorem 4.1, we obtain the following corollary.

Corollary 4.6. Let X be a finite set and μ be finite weakly null-additive monotone measure on (X, F). Then, 
for all f ∈ F ∫ pan

fdμ =
∫ cav

fdμ

if and only if μ is subadditive w.r.t. minimal atoms.

By Proposition 3.8 and Proposition 3.11, we know that if μ is subadditive then it satisfies the conditions 
(i) and (ii) in Theorem 4.1. Thus we obtain the next result.

Corollary 4.7. Let X be a finite set. If μ is finite and subadditive, then for all f ∈ F∫ pan
fdμ =

∫ cav
fdμ.

Note 4.8. A monotone measure satisfying the conditions (i) and (ii) in Theorem 4.1 may not be subadditive. 
For example, the monotone measure μ in Example 3.6(2) satisfies the conditions (i) and (ii) in Theorem 4.1, 
but it is not subadditive. In fact, μ(X) > μ({a, b}) + μ({c, d}).

The following example shows that the subadditivity in Corollary 4.7 is not a necessary condition.

Example 4.9. Let X = {1, 2, · · · , n} and F = P(X) (the power set of X), μ be considered as in Example 3.5, 
i.e.,

μ(E) =
{

1 if E = X,

0 if E �= X.

Then, for all f ∈ F ∫ cav
fdμ = min

{
f(x)

∣∣ x ∈ X
}

=
∫ pan

fdμ.

But μ is not subadditive.

5. Concluding remarks

We have introduced the concept of minimal atom of a monotone measure (Definition 3.2) and, by means 
of characteristics of minimal atoms, obtained a necessary and sufficient condition that the concave integral 
coincides with the pan-integral w.r.t. arithmetic operations + and · on finite spaces (Theorem 4.1).

In this study we have only considered the case that the underlying space X is finite. It should be pointed 
out that when X is an infinite space with finite σ-algebra F (i.e., F is finite as a set), then all of the results 
obtained in this paper remain true. However, when F is infinite, a monotone measure μ defined on (X, F)
may not have any minimal atom, as shown in the following examples. Thus, our approach based on minimal 
atoms does not apply to this situation.
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Example 5.1. (1) Let X = N (the set of all positive integers) and F = 2N. μ: F → [0, 1] is defined by

μ(E) =
{

1 if |E| = ∞ and 1 ∈ E,

0 otherwise,

where |E| stands for the cardinality of E. Then each infinite subset E of N containing the element 1 is an 
atom of μ. However, since every infinite set has a proper infinite subset, there are no minimal atoms in this 
case.

(2) Let X = [0, 1] and (X, B, m) be the Borel measure space. If we define μ(A) =
√
m(A), then the 

monotone measure μ has no atom, thus it has no minimal atom.

In our further research, we will try to find some new methods in order to discuss the necessary and/or 
sufficient conditions such that the concave integral coincides with the pan-integral w.r.t. the usual addition 
+ and usual multiplication · on infinite spaces with infinite σ-algebra.

Finally, observe that the pan-integral [24,27] was established based on a special type of commutative 
isotonic semiring (R+, ⊕, ⊗). A related concept of generalizing Lebesgue integral based on a generalized 
ring (R+, ⊕, ⊗) (the commutativity of ⊗ is not required), which is called generalized Lebesgue integral, 
was proposed and discussed in [28]. On the other hand, Mesiar et al. introduced pseudo-concave integrals
[13] (see also [14]) and pseudo-concave Benvenuti integrals [8] by means of the pseudo-addition ⊕ and 
pseudo-multiplication ⊗ of reals based on a generalized ring (R+, ⊕, ⊗) (see also [1]). In next deeper study, we 
shall investigate the relationships among these three integrals based on a fixed generalized ring (R+, ⊕, ⊗).
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