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Abstract

This study introduces and discusses a new class of integrals based on superdecompositions of integrated functions, including
an analysis of their relationship with decomposition integrals, which were introduced recently by Even and Lehrer. The proposed
superdecomposition integrals have several properties that are similar or dual with respect to decomposition integrals, but they
also have some significant differences. The convex integral is obtained by considering all possible superdecompositions with no
constraints on the applied sets, which can be treated as the greatest convex homogeneous functional that is bounded from above
by the measure we consider. The relationship with the universal integral of Klement et al. is also discussed. Finally, some possible
generalizations are outlined.
© 2014 Elsevier B.V. All rights reserved.

Keywords: Choquet integral; Convex integral; Decomposition integral; Monotone measure; Superdecomposition integral

1. Introduction

Integrals play a key role in many theoretical and applied areas where the information contained in a measure
(for example, weights of groups of criteria) and a function (for example, a score vector) is expressed using a sin-
gle representative value. The origin of integrals is linked to measuring actual descriptions of the physical world,
such as the length, area, and volume, which are sigma-additive, and real-valued functions. More general measures
were considered only in the last century, especially their associations with human sciences. For example, the in-
teractions within groups of people cannot be modeled directly using additive measures. Modified techniques were
also introduced for constructing classical integrals such as the Riemann integral in 1854 and the Lebesgue integral
in 1902. Various approaches developed for general integration include the Choquet integral [2] and the Sugeno integral
[20]. For state-of-the-art accounts of generalized measures and integral theory (real-valued functions and monotone
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measures), we recommend a published handbook [16] and previous monographs [3,4,6,15,23] and [1,10,11,17,24,25].
Recently, Lehrer and Teper [8,9,22] introduced a concave integral, which can be treated as a solution to an optimiza-
tion problem that maximizes the lower integral sums, i.e., it is based on a subdecomposition of a considered function.
A common framework for Lehrer and Teper’s concave integral and the Choquet integral was proposed by Even and
Lehrer [5], who introduced the decomposition integrals. These decomposition integrals maximize the lower integral
sums related to subdecompositions of the functions under consideration given some constraints on the sets being con-
sidered. Klement et al. [7] introduced a framework for functionals based on monotone measures, which should be
referred to as universal integrals. Integrals that are both universal and decomposition integrals were characterized by
Stupnaňová [19].

Inspired by the idea of decomposition integrals, we introduce and study a dual view of integration based on the
upper integral sums, i.e., superdecompositions of the functions being considered. In the next section, we introduce
decomposition and universal integrals, as well as some results related to these special integrals. Section 3 describes
the proposed superdecomposition integrals, including several examples. In Section 4, we discuss the convex integral as
a special superdecomposition integral related to convex functionals. Finally, some concluding remarks are provided,
including possible further generalizations obtained by modifying the arithmetical operations applied.

2. Universal and decomposition integrals

2.1. Universal integral

Let A be a σ -algebra of subsets of set X. A set function m : A → [0,∞] is called a monotone measure whenever
m(∅) = 0 < m(X), and for every A,B ∈ A such that A ⊆ B we have m(A) ≤ m(B). The following concepts are
needed to define a universal integral.

Definition 1. (See [7].) Let (X,A) be a measurable space.

(i) F (X,A) is the set of all A-measurable functions f : X → [0,∞].
(ii) For each number a ∈]0,∞], M(X,A)

a is the set of all monotone measures that satisfy m(X) = a, and we take

M(X,A) =
⋃

a∈]0,∞]
M(X,A)

a .

An equivalence relation between pairs of measures and functions was introduced in [7].

Definition 2. Two pairs, (m1, f1) ∈ M(X1,A1) ×F (X1,A1) and (m2, f2) ∈ M(X2,A2) ×F (X2,A2), which satisfy

m1
({f1 ≥ t}) = m2

({f2 ≥ t}) for all t ∈]0,∞],
are called integral equivalent, which are represented as

(m1, f1) ∼ (m2, f2).

Integral equivalence can be viewed as a generalization of the stochastic equivalence of random variables. Thus, two
random variables (possibly defined on two different probability spaces) are integral equivalent, i.e., (X,P1) ∼ (Y,P2)

if and only if they have coincident distribution functions, FX = FY .
The notion of pseudo-multiplication is required to describe the universal integral.

Definition 3. (See [15,21].) A function ⊗: [0,∞]2 → [0,∞] is called a pseudo-multiplication if it satisfies the fol-
lowing properties:

(i) It is non-decreasing in each component, i.e., for all a1, a2, b1, b2 ∈ [0,∞] with a1 ≤ a2 and b1 ≤ b2, we have
a1 ⊗ b1 ≤ a2 ⊗ b2;

(ii) 0 is an annihilator of ⊗, i.e., for all a ∈ [0,∞], we have a ⊗ 0 = 0 ⊗ a = 0;
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(iii) It has a neutral element that differs from 0, i.e., there exists an e ∈]0,∞] such that for all a ∈ [0,∞], we have
a ⊗ e = e ⊗ a = a.

Let S be the class of all measurable spaces and take

D[0,∞] =
⋃

(X,A)∈S
M(X,A) ×F (X,A).

The Choquet, Sugeno, and Shilkret integrals are particular cases of the following integral, which was given in [7].

Definition 4. A function I:D[0,∞] → [0,∞] is called a universal integral if the following axioms hold:

(I1) For any measurable space (X,A) from S , the restriction of the function I to M(X,A) ×F (X,A) is non-decreasing
in each coordinate;

(I2) There exists a pseudo-multiplication ⊗: [0,∞]2 → [0,∞] such that for all pairs (m, c · 1A) ∈ D[0,∞] (where 1A

is the characteristic function of the set A)

I(m, c · 1A) = c ⊗ m(A);
(I3) For all integral equivalent pairs (m1, f1), (m2, f2) ∈ D[0,∞], we have

I(m1, f1) = I(m2, f2).

For any fixed pseudo-multiplication ⊗, and for any two universal integrals I1 and I2 based on ⊗, the convex
combination I = a · I1 + (1 − a) · I2, where a is from [0,1], is also a universal integral based on ⊗. Moreover, for
any fixed pseudo-multiplication ⊗, we can specify two distinct universal integrals based on ⊗ (for more details see
Proposition 3.1 in [7]).

Theorem 1. Let ⊗: [0,∞]2 → [0,∞] be a pseudo-multiplication on [0,∞]. Then, the smallest universal integral I⊗
and the greatest universal integral I⊗ based on ⊗ are given by

I⊗(m,f ) = sup
{
t ⊗ m

({f ≥ t}) ∣∣ t ∈]0,∞]},
I⊗(m,f ) = essupm f ⊗ sup

{
m

({f ≥ t}) ∣∣ t ∈]0,∞]},
where essupm f = sup{t ∈ [0,∞] | m({f ≥ t}) > 0}.

Note that for the Sugeno integral Su = IMin and for the Shilkret integral Sh = IProd , where the pseudo-
multiplications Min and Prod are given by Min(a, b) = min(a, b) and Prod(a, b) = a · b.

2.2. Decomposition integral

From Even and Lehrer [5], we recall some results related to decomposition integrals. Their construction copies the
idea of lower integral sums and it is based on a system H of finite set systems from A \ {∅} (called collections in [5],
see also Section 3),

IH(m,f ) = sup

{∑
i∈I

aim(Ai)

∣∣∣ (Ai)i∈I ∈H,
∑
i∈I

ai1Ai
≤ f

}
, (1)

where all constants ai, i ∈ I , are non-negative. Depending on H, several classical integrals can be constructed. For
example, for a fixed measurable space (X,A), if

H1 = {{A} ∣∣ A ∈A
}
,

then IH1 is a Shilkret integral [18], whereas if

H2 = {B | B is a finite chain in A},
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then IH2 is a Choquet integral [2]. Recall that B is a finite chain in A if and only if there is an integer k and B =
{A1, . . . ,Ak} ⊂A that satisfies A1 ⊂ A2 ⊂ · · · ⊂ Ak . Considering

H3 = {B | B is a finite subset of A},
IH3 is the concave integral introduced by Lehrer [8]. Note that IH3(m, ·) is the smallest concave, positively homo-
geneous functional F that satisfies F(1A) ≥ m(A) for all A ∈ A. For further details, we recommend [5,14,19]. Some
other generalizations based on modifications of the classical arithmetical operations + and · can be found in [13].

Each decomposition integral is positively homogeneous, IH(m, cf ) = cIH(m,f ) for any c ∈]0,∞[. Moreover,
considering a singleton space X = {x}, there is a unique decomposition integral I and I (m, c · 1A) = c · m(A).
Therefore, decomposition integrals that are also universal integrals are necessarily related to the standard product as
the underlying pseudo-multiplication. This fact reflects the general property that integrals based on standard multi-
plication can be linked to universal integrals only when the corresponding pseudo-multiplication ⊗ is the standard
multiplication on [0,∞]. For typical examples, we recall the Shilkret [18] and Choquet [2] integrals, which belong
to both types of integrals. The study of integrals that are simultaneously decomposition and universal integrals was
initiated previously in [5]. A complete solution of this problem was presented in [14], which led to a hierarchical
family of integrals (by interpolating from the Shilkret integral to the Choquet integral) that are described in the next
theorem.

Theorem 2. A function I :D[0,∞] → [0,∞] is both a universal and decomposition integral (on any measurable space
(X,A)) if and only if

I ∈ {I(1), I(2), . . . , I(n), . . . , I(∞)},
which, for n ∈ N, I(n)/M(X,A) × F (X,A) (integral In is restricted to an (m,f ) pair, which are linked to a fixed
measurable space (X,A)), is given by

I(n) = sup

{
n∑

i=1

ai · m(Ai)
∣∣ (Ai)i∈{1,...,n} ⊂A, is a chain, a1, . . . , an ≥ 0, and

n∑
i=1

ai · 1Ai
≤ f

}
,

and I(∞) = sup{I(n) | n ∈ N}.

Note that I(1) is simply the Shilkret integral and I(∞) is the Choquet integral. Moreover, I(1) ≤ I(2) ≤ · · · ≤ I(∞).

3. Superdecomposition integrals

For a fixed measurable space (X,A) denoted by X, the set of all collection systems H where C ⊆ A \ {∅} is a
collection whenever it is finite. Considering that (X,A) fixed and to shorten the notation, we denote M as the set of
all monotone measures on (X,A) and F is the set of all bounded measurable functions f : X → [0,∞[.

Definition 5. Let H ∈ X be fixed. Then, the mapping IH :M×F → [0,∞] given by

IH(m,f ) = inf

{∑
A∈C

aA · m(A)

∣∣∣ C ∈ H, aA ≥ 0 for each A ∈ C,
∑
A∈C

aA1A ≥ f

}

is called a superdecomposition integral.

It is obvious that each superdecomposition integral IH is positively homogeneous and increasing in each coordi-
nate.

Example 1.

(i) Consider H1 = {{A} | A ∈A}. Then,



R. Mesiar et al. / Fuzzy Sets and Systems 259 (2015) 3–11 7
IH1(m,f ) = inf
{
a · m(A)

∣∣ A ∈ A, a · 1A ≥ f
}

= sup
{
f (x)

∣∣ x ∈ X
} · m({f > 0}).

Note that if m has no non-trivial null-sets, i.e., m(A) = 0 only if A = ∅, then IH1 coincides with the greatest
universal integral related to the product as the underlying multiplication.

(ii) Consider that H2 = {B | B is a finite chain in A}, then IH2 is the Choquet integral [2] given by

IH2(m,f ) =
∞∫

0

m
({f ≥ t})dt.

Remark 1.

(i) Evidently, if for H,G ⊆ X it holds that H ⊆ G, then IH ≥ IG , i.e., for each m ∈ M and f ∈ F it holds that
IH(m,f ) ≥ IG(m,f ). Thus, considering that H3 = {B | B is a finite subset of A}, it holds that H3 ⊇H for each
H ∈X, thus IH3 ≤ IH, i.e., IH3 is the smallest superdecomposition integral.

(ii) The decomposition integral IH1 (i.e., the Shilkret integral) is the smallest universal integral linked to the product
Prod, IH1 = IProd . However, as shown by Example 1, IH1 need not coincide with the greatest universal integral
based on Prod. In general, IH1 > IProd , i.e., IH1 is not a universal integral.

Example 2. For a fixed universe X = {1, . . . , n}, n ≥ 2,A = 2X , denoted by m∗,m∗ : A → [0,∞], the monotone
measures given by

m∗(A) =
{

0 if A =∅,

1 else,

m∗(A) =
{

1 if A = X,

0 else,

respectively. Then, for every f ∈F , it holds

IH1
(
m∗, f

) = IH1

(
m∗, f

) = max
{
f (i)

∣∣ i ∈ X
}
,

IH1(m∗, f ) = IH1(m∗, f ) = min
{
f (i)

∣∣ i ∈ X
}
,

IH3

(
m∗, f

) =
n∑

i=1

f (i),

IH3
(
m∗, f

) = max
{
f (i)

∣∣ i ∈ X
}
,

IH3(m∗, f ) = min
{
f (i)

∣∣ i ∈ X
}
,

IH3(m∗, f ) = 0.

Therefore, IH1(m
∗, f ) = IH3(m∗, f ) for all f ∈F , and IH1(m∗, f ) > IH3(m∗, f ) whenever min{f (i) | i ∈ X} > 0.

For the sum m∗ + m∗, we obtain

IH1

(
m∗ + m∗, f

) = max
{
max

{
f (i)

∣∣ i ∈ X
}
,2 min

{
f (i)

∣∣ i ∈ X
}}

,

IH3
(
m∗ + m∗, f

) = max
{
f (i)

∣∣ i ∈ X
} + min

{
f (i)

∣∣ i ∈ X
}
.

Therefore, IH1(m
∗ + m∗, f ) < IH

3
(m∗ + m∗, f ) whenever

0 < min
{
f (i)

∣∣ i ∈ X
}

< max
{
f (i)

∣∣ i ∈ X
}
.

Thus, we can see that IH1 and IH3 are generally incomparable.
The following diagram represents the relationships between the introduced integrals.



8 R. Mesiar et al. / Fuzzy Sets and Systems 259 (2015) 3–11
IH3 IH1

� �

IH2 = IH2

� �

IH3 IH1

4. Convex integral

The integrals IH can be treated as counterparts of decomposition integrals IH. An interesting decomposition
integral inspired by real-world problems is the concave integral IH3 introduced by Lehrer [8], which can also be
viewed as a special concave functional. In a similar manner, this section focuses on the superdecomposition integral
IH3 , which can also be called a convex integral.

Proposition 1. The integral IH3(m, ·) :F → [0,∞] is an increasing, convex, positively homogeneous functional.

Proof. We only need to show the convexity of IH3 because the remaining properties are satisfied by any superde-
composition integral IH. Due to its positive homogeneity, the convexity of IH3 is equivalent to its subadditivity, i.e.,
we need to show that

IH3(m,f + g) ≤ IH3(m,f ) + IH3(m,g) (2)

for each m ∈M, f, g ∈F . For arbitrary superdecompositions
∑

i∈I ai1Ai
≥ f and

∑
j∈J bj 1Bj

≥ g it holds

∑
i∈I

ai1Ai
+

∑
j∈J

bj 1Bj
≥ f + g.

Therefore,

IH3(m,f ) + IH3(m,g) = inf

{∑
i∈I

aim(Ai)

∣∣∣ ∑
i∈I

ai1Ai
≥ f

}
+ inf

{ ∑
j∈IJ

bjm(Bj )

∣∣∣ ∑
j∈J

bj 1Bj
≥ g

}

= inf

{∑
i∈I

aim(Ai) +
∑
j∈J

bjm(Bj )

∣∣∣ ∑
i∈I

ai1Ai
≥ f and

∑
j∈J

bj 1Bj
≥ g

}

≥ inf

{∑
k∈K

ckm(Ck)

∣∣∣ ∑
k∈K

ck1Ck
≥ f + g

}
,

thereby proving (2). �
Based on Proposition 1 and using similar arguments to those given in [9] regarding the concave integral, the next

corollary holds true.

Corollary 1. For a fixed monotone measure m ∈ M, denote by Qm the set of all convex increasing positively homo-
geneous functionals H :F → [0,∞] that satisfy H(1A) ≤ m(A) for all A ∈A. Then,

IH3(m,f ) = sup
{
H(f )

∣∣ H ∈Qm

}
,

i.e., IH3 is the maximal element of Qm.

Based on the convexity of IH3(m, ·), the superdecomposition integral IH3 can also be called a convex integral.
We illustrate the idea of a convex integral based on the next optimization problem.
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Example 3. Suppose that we have to go to a market to buy four pieces of products of type a, three pieces of type b,
and five pieces of type c. The price m depends on the groups of products we are buying. More precisely, suppose
that we have m({a, b, c}) = 6, this means that for 6 euro we can buy a group of three products that comprises one
piece of each product. For the other groups A of the products considered, the corresponding price m(A) will be
given later. Our task is to minimize the price that we should pay to obtain the desired products (if by chance we buy
more products than required, this has no affect on our strategy). The solution is exactly the integral value IH3(m,f ),
where X = {a, b, c}, f (a) = 4, f (b) = 3, f (c) = 5. Consider m(X) = 6,m(A) = 2 if |A| = 1,m(A) = 3 if |A| = 2,
m(∅) = 0. Then, we obtain IH3(m,f ) = 18, e.g., for the decomposition

f = 2 · 1X + 2 · 1{a,c} + 1{b,c}.

Indeed, by only considering singletons, we have a superdecomposition f = 4 · 1{a} + 3 · 1{b} + 5 · 1{c} and the corre-
sponding integral sum is 4 · 2 + 3 · 2 + 5 · 2 = 24. When considering only singletons or sets of cardinality 2, in several
cases we are able to obtain the integral sum 19, such as in the case of the decomposition

f = 2 · 1X + 2 · 1{a,c} + 1{b,c} + 2 · 1{c},

but never a smaller value. Next, if we also consider the full space X, the smallest integral sums when considering
3 · 1X is 23 when

f = 3 · 1X + 1{a,c} + 1{c}.

When 2 · 1X is considered in the decomposition of f and only singletons or two-point sets, we obtain the smallest
possible output of integral sums 18, as shown above. Finally, considering 1X (and singletons or two-point sets), we
can never obtain less than 19.

Remark 2. The dual problem with respect to that considered in Example 3 would concern a seller. Using the same
numerical values, if f (a) = 4 means that a seller has only 4 products of type a, etc., and the measure m has the same
meaning as in Example 3 (i.e., m(A) is the price for the group A of products), the aim of the seller is to maximize
his profit, i.e., to sell his products in groups that will yield the maximal total profit. Thus, this is simply the concave
integral IH3 and it is not difficult to check that it holds that IH3(m,f ) = 24, which is achieved if the goods are all
sold as singletons (where the profit is 12 · 2 = 24), or if the seller sells 3 groups {a, b, c} and the remaining goods as
singletons (where the profit is 3 · 6 + 3 · 2 = 24).

The concave integral IH3 was shown to coincide with the Choquet integral IH2 if and only if the underlying
monotone measure m ∈M is supermodular, i.e.,

m(A ∩ B) + m(A ∪ B) ≥ m(A) + m(B), A,B ∈A,

for more details see [8,9].
We obtained a similar result for the convex integral. The arguments are similar to those in [8,9], thus we omit the

proof of this result.

Proposition 2. The convex integral coincides with the Choquet integral for all functions f ∈ F if and only if the
underlying monotone measure m is submodular, i.e.,

m(A ∪ B) + m(A ∩ B) ≤ m(A) + m(B)

for all A,B ∈A.

Example 4. By extending the discussion presented in Example 3, we note that the monotone measure m is neither
submodular nor supermodular. Moreover, the corresponding Choquet integral

IH2(m,f ) = 3 · m(X) + m
({a, c}) + m

({c}) = 23 > 18 = IH3(m,f ).

In addition, note that the concave integral in this case is IH3(m,f ) = 24 (for example, this is obtained by only
considering singletons). Obviously, IH3(m,f ) > IH2(m,f ) in this case.
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After considering the constraints from Example 3, IH3(m,f ) = 18 is the optimal solution for a buyer, whereas
IH3(m,f ) = 24 is the best possible situation for a seller. The Choquet integral IH2(m,f ) = IH2(m,f ) = 23 is related
to the same strategy for a buyer and a seller, i.e., first buying (or selling) the maximum number of full packages of
products (in our case, 3 times the full package X = {a, b, c}), then restricting the choice to the remaining goods X′
to be bought (or sold) by applying the same strategy (i.e., in our case, X′ = {a, c} and we have to buy/sell 1 package
X′), and repeating this strategy until all of the goods are bought (or sold).

5. Conclusion

In this study, we introduced and discussed superdecomposition integrals, which are counterparts of the decompo-
sition integrals introduced by Even and Lehrer [5], although they are not related by duality. For example, while IH1

is the smallest universal integral based on the standard product, IH1 is generally a stronger functional than the great-
est universal integral based on the product [7]. Moreover, the concave integral introduced by Lehrer and Teper [8,9]
acts on all non-negative measurable functions, but the boundedness of integrands is essential in the case of convex
integrals.

In further research, we could modify the standard arithmetic operations + and · into pseudo-operations, i.e.,
pseudo-addition ⊕ and pseudo-product �, which may be compared with [12,13]. Note that we may obtain unusual
integrals in these cases, such as ⊕ = max and ⊗ = min. In the case of decomposition integrals, such as H1,H2,
or H3, the Sugeno integral is always obtained [12,13]. However, we obtain three different integrals based on the
generalization of superdecomposition integrals. A deeper study of this topic is an interesting area for future research.
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