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Abstract

In this paper, we introduce the notion of a fuzzy Bi-cooperative game in multilinear extension form. An LG value as a possible 
solution concept is obtained using standard fuzzy game theoretic axioms.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we propose a Bi-cooperative game with fuzzy bi-coalitions in multilinear extension form. Owen’s [12]
multilinear extension of a game is a very important tool in game theory particularly for computing the Shapley like 
solutions for large games. Moreover, it serves as a tool to characterize many related concepts, a remarkable one being 
identification of its linkage with the Choquet integral [7]. Following Owen, we integrate the multilinear extension over 
a simplex to construct a new class of Bi-cooperative games with fuzzy bi-coalitions. Meng and Zhang [10] defined a 
fuzzy cooperative game in multilinear extension form and obtained the characterization of the corresponding Shapley 
value.

Theory of Cooperative games since its inception by von Neumann and Morgenstern [13] has been instrumental 
in building decision models where a group of people (players) indulge in a joint endeavur with the single motive to 
gain more than what they would generate individually. However, it is found to be insensitive to the situations where 
a second group of players opposes the formation of the former group and the rest of the players remain indifferent. 
This idea extends the notion of a coalition to a bi-coalition: a pair of mutually exclusive coalitions of which the 
former coalition comprises of the positive contributors and the later coalition comprises of the negative contributors. 
Bipolarity of this kind was initially modeled in ternary voting games by Felsenthal and Machover [4]. Bilbao et al. [2]
proposed a more general framework and called the corresponding games the Bi-cooperative games. They defined 
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the order related to the bipolar monotonicity among the bi-coalitions to make the corresponding class a distributive 
lattice. Hsiao and Raghavan [8] introduced the notion of multi-choice games where players have contributions to 
coalitions at finitely many distinct levels. Here a partition of the player set exists with each member being labeled
from zero (no participation) to some fixed number (highest level of participation). In this sense the Bi-cooperative 
games are a particular class of (or isomorphic to) the multi-choice games with three levels of participations. However 
in [9], Labreuche and Grabisch observed that the class of Bi-cooperative games should differ from their multi-choice 
counterparts because of the bipolarity they adhere. They have shown that by considering the product order instead of 
the one implied by monotonicity adopted by Bilbao et al. [1], one can distinguish them from the multi-choice games. 
Moreover it is interesting to note that under this product order, the class of bi-coalitions becomes an inf-semilattice.

A solution to a Bi-cooperative game is a payoff vector that satisfies some pre-imposed rationality conditions. The 
ith component of the vector represents the payoff to the ith player after she chooses her role in the game. Bilbao 
et al. [1] obtained the Shapley value for the class of Bi-cooperative games. Labreuche and Grabisch [9] proposed an 
alternative solution concept which we call here the LG value. These two rules differ by the underlying lattice structures 
imposed on the set of bi-coalitions. The LG value provides a more natural justification to the notion of bipolarity that 
distinguishes it from the multi-choice games.

In crisp Bi-cooperative game the membership of players (rates of participation) is assessed in binary terms (i.e., 1 
for participation in the game, and 0 for nonparticipation). By contrast, fuzzy set theory permits the gradual assessment 
of the memberships of players (rates of participation) in a game. When in a coalition, players are participating partially 
with some membership degrees in the interval [0, 1], we call it a fuzzy coalition. In the similar fashion, when players 
participate partially in a bi-coalition, we can call it a fuzzy bi-coalition. The notion of a Bi-cooperative game with 
fuzzy bi-coalitions and its intuitive justifications were proposed by Borkotokey and Sarmah [3] where they obtained a 
set of axioms for the characterizations of the LG value [9] under fuzzy environment. The class of fuzzy Bi-cooperative 
games in Choquet integral type was introduced and finally the corresponding LG value for this class was obtained. In 
the present paper, we obtain an LG value for the class of fuzzy Bi-cooperative games in multilinear extension form. 
Possible relationships with the existing models are explored.

The rest of the paper is organized as follows. Section 2, presents the notion of Bi-cooperative games and corre-
sponding solution concepts in both crisp and fuzzy environments. In Section 3, we introduce the notion of a fuzzy 
Bi-cooperative game in multilinear extension form. An LG value for this class has been proposed and shown to satisfy 
the LG axioms given in [3]. Section 4 includes the concluding remarks.

2. Bi-cooperative games in crisp and fuzzy settings

In this section, we present the basic definitions and results of Bi-cooperative games with both crisp and fuzzy 
coalitions and also define the LG value as a suitable solution concept. To a large extent, this section is based on Bilbao 
et al. [1,2], Labreuche and Grabisch [9] and Borkotokey and Sarmah [3]. Throughout the paper N = {1, 2, 3, . . . , n}
denotes the players’ set and Q(N) = {(S, T ) | S, T ∈ N and S ∩ T = ∅}, the set of all bi-coalitions of N . Further, we 
assume that the members of (S, T ) ∈ Q(N) exhibit bipolarity through their contributions to S or T . By what is called 
abuse of notations we alternatively use i for the singleton set {i}. Denote by small letters the cardinalities of sets, e.g., 
s for S etc.

2.1. Bi-cooperative games with crisp bi-coalitions and the LG value

A Bi-cooperative game is a pair (N, v) of which N is the players’ set and v : Q(N) → R, a real valued function 
such that v(∅, ∅) = 0. In what follows, we formally present the two important ordering relations defined on Q(N) and 
their possible implications, see [2,9]. The first relation �1 defined by Bilbao et al. [2] is implied by monotonicity, i.e., 
for (S, T ), (S′, T ′) ∈ Q(N), (S, T ) �1 (S′, T ′) iff S ⊆ S′ and T ′ ⊆ T . This makes the two elements (∅, N) and (N, ∅)

as the bottom and top elements of Q(N) and Q(N) becomes a distributive lattice. A second relation: the product 
order �2 given in [9] is defined as follows. For (S, T ), (S′, T ′) ∈ Q(N), (S, T ) �2 (S′, T ′) iff S ⊆ S′ and T ⊆ T ′
so that (∅, ∅) becomes the bottom element and all (S, N \ S), S ⊆ N , the maximal elements. Under this ordering 
relation, Q(N) is an inf-semilattice. Note that this relation is in cognition with the notion of Bi-cooperative games 
as it incorporates bipolarity, a crucial concept for such games. Therefore, in this paper, we shall adopt this ordering 
relation and denote it simply without a suffix i.e., by �.
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In [9], a value on BGN is defined as a function Φ : BGN → (Rn)Q(N) which associates each Bi-cooperative game 
v a vector (Φ1(v), Φ2(v), . . . , Φn(v)) representing a payoff distribution to the players in the game. There are two 
more definitions of a value found in the literature (see [1,5,6]). However, the definition given in [9] is more natural 
due to its endorsements with bipolarity of a Bi-cooperative game. To this end, we define the class of monotone games 
as follows, see [9].

Definition 2.1. Let v ∈ BGN . A player i is called left monotone with respect to v if

∀(S,T ) ∈Q(N \ i), v(S ∪ i, T ) ≥ v(S,T ).

A player i is right monotone with respect to v if

∀(S,T ) ∈Q(N \ i), v(S,T ∪ i) ≤ v(S,T ).

The Bi-cooperative game v is monotone if all players are left and right monotone with respect to v.

The monotonicity of a Bi-cooperative game v is, in fact, its increasingness when considering the ordering �1 (and 
thus it is not compatible with the second ordering �2). Denote by BGM(N) the class of monotone games over Q(N).

Remark 2.2. The expression v(S ∪ i, T ) − v(S, T ) (respectively v(S, T ) − v(S, T ∪ i)) is called the marginal con-
tribution of player i with respect to (S, T ) ∈ Q(N \ i) when she is a positive contributor (respectively a negative 
contributor).

Prior to the definition of the LG value as a possible solution concept in a crisp Bi-cooperative game, we define the 
following:

Definition 2.3. Let (S, T ) ∈ Q(N) and v ∈ BGN . Player i ∈ N is a null player for v, if it satisfies

v(S ∪ i, T ) = v(S,T ) = v(S,T ∪ i) (2.1)

for every (S, T ) ∈ Q(N \ i).

We now define the LG value for the class BGN as follows.

Definition 2.4. A function Φ : BGN → (Rn)Q(N) defines a value due to Labreuche and Grabisch (the LG value) if for 
every (S, T ) ∈ Q(N) it satisfies the following axioms.

Axiom b1 (Efficiency). If (N, v) ∈ BGN , it holds that,
∑
i∈N

Φi(N,v)(S,T ) = v(S,T )

Axiom b2 (Linearity). For all α, β ∈ R and (N, b), (N, v) ∈ BGN ,

Φi(N,αb + βv)(S,T ) = α Φi(N,b)(S,T ) + β Φi(N,v)(S,T ).

Axiom b3 (Null Player Axiom). If player i is null for (N, v) ∈ BGN , then Φi(N, v)(S, T ) = 0.

Axiom b4 (Intra-Coalition Symmetry). If (N, v) ∈ BGN and a permutation π is defined on N , such that πS = S and 
πT = T , then it holds that, for all i ∈ N ,

Φπi

(
N,v ◦ π−1)(S,T ) = Φi(N,v)(S,T )

where πv(πL, πM) = v(L, M) and πL = {πi : i ∈ L} for every (L, M) ∈ Q(N).
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Axiom b5 (Inter-Coalition Symmetry). Let i ∈ S and j ∈ T , and (N, vi), (N, vj ) be two Bi-cooperative games such 
that for all (S′, T ′) ∈ Q((S ∪ T ) \ {i, j}),

vi

(
S′ ∪ i, T ′) − vi

(
S′, T ′) = vj

(
S′, T ′) − vj

(
S′, T ′ ∪ j

)
vi

(
S′ ∪ i, T ′ ∪ j

) − vi

(
S′, T ′ ∪ j

) = vj

(
S′ ∪ i, T ′) − vj

(
S′ ∪ i, T ′ ∪ j

)
Then,

Φi(N,vi)(S,T ) = −Φj(N,vj )(S,T ). (2.2)

Axiom b6 (Monotonicity). Given (N, v), (N, v′) ∈ BGN such that ∃i ∈ N with

v′(S′, T ′) = v
(
S′, T ′) (2.3)

v′(S′ ∪ i, T ′) ≥ v
(
S′ ∪ i, T ′) (2.4)

v′(S′, T ′ ∪ i
) ≥ v

(
S′, T ′ ∪ i

)
(2.5)

for all (S′, T ′) ∈ Q(N \ i), then Φi(N, v′)(S, T ) ≥ Φi(N, v)(S, T ).

The following theorem ensures existence and uniqueness of the LG value.

Theorem 2.5. There exists a unique value Φ(N, v)(S, T ) on BGN for (S, T ) ∈ Q(N) that satisfies Axioms b1–b6 and 
is given by,

Φi(N,v)(S,T ) =
∑

K⊆(S∪T )\i

k!(s + t − k − 1)!
(s + t)!

[
V (K ∪ i) − V (K)

]
(2.6)

for all i ∈ N where for K ⊆ S ∪ T , V (K) := v(S ∩ K, T ∩ K). Moreover, if i ∈ N \ (S ∪ T ), Φi(N, v)(S, T ) = 0.

An important corollary to Theorem 2.5 given in [9] is as follows.

Result 2.6. We have,

∀i ∈ N \ (S ∪ T ), Φi(v)(S,T ) = 0 (2.7)

∀i ∈ S, with i left monotone, Φi(v)(S,T ) ≥ 0 (2.8)

∀i ∈ T , with i right monotone, Φi(v)(S,T ) ≤ 0 (2.9)

2.2. Bi-cooperative games with fuzzy bi-coalitions and the Fuzzy LG value

Extending the notion of crisp bi-coalition to its fuzzy counterpart we define a fuzzy bi-coalition as follows:

Definition 2.7. Let N = {1, 2, . . . , n} be given. A fuzzy bi-coalition is an expression A on N given by

A =
{〈

i,μN
A (i), νN

A (i)
〉 ∣∣∣ i ∈ N,min

i∈N

(
μN

A(i), νN
A (i)

) = 0
}

where, μN
A : N → [0, 1], νN

A : N → [0, 1] represent respectively, the membership functions over N of the fuzzy sets 
of positive and negative contributors of A.

Remark that minimum condition in the above definition implies that the two options (positive and negative contri-
butions) are mutually exclusive so that one cannot choose a little bit of both options simultaneously [3].

Thus, it follows from Definition 2.7 that a fuzzy bi-coalition A of N can be completely identified with the functions 
μN

A and νN
A . As N is fixed here, μN

A and νN
A can be simply written as μA and νA. Player i is a positive contributor 

in A if μA(i) > 0 and a negative contributor if νA(i) > 0. Let FB(N) denote the set of all fuzzy bi-coalitions on N . 
Note that every crisp bi-coalition can be considered as a fuzzy bi-coalition with memberships either 0 or 1. Thus with 
an abuse of notations, we write Q(N) ⊆FB(N).
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For comparing the fuzzy bi-coalitions A, B ∈ FB(N), the following operations and relations are adopted.

A � B ⇔ μA(i) ≤ μB(i) and νA(i) ≤ νB(i) ∀i ∈ N.

A = B ⇔ μA(i) = μB(i) and νA(i) = νB(i) ∀i ∈ N.

For any A ∈FB(N), denote by FB(A), the set of all fuzzy bi-coalitions B such that B � A.
The intersection of two fuzzy bi-coalitions A and B is obtained using the minimum operator ‘∧’ as follows.

A ∩ B = {〈
i,μA(i) ∧ μB(i), νA(i) ∧ νB(i)

〉 ∣∣ i ∈ N
}
. (2.10)

This ensures the existence of the infimum of every pair of elements in FB(N) and thus similar to its crisp counter-
part Q(N), FB(N) can be considered as an inf-semilattice. The union however can be defined only on a restricted 
sub-domain of FB(N). Formally we have the following.

For A, B ∈FB(N) such that {μA(i) ∨ μB(i)} ∧ {νA(i) ∨ νB(i)} = 0, ∀i ∈ N , we define, A ∪ B as follows.

A ∪ B = {〈
i,μA(i) ∨ μB(i), νA(i) ∨ νB(i)

〉
: i ∈ N

}
(2.11)

The Support of a fuzzy bi-coalition A, denoted by Supp(A) is given by

Supp(A) = ({
i ∈ N

∣∣ μA(i) > 0
}
,
{
i ∈ N

∣∣ νA(i) > 0
})

(2.12)

Definition 2.8. The null fuzzy bi-coalition ∅B is given by

∅B = {〈
i,μ∅B

(i), ν∅B
(i)

〉 ∣∣ i ∈ N
}

where μ∅B
(i) = 0, and ν∅B

(i) = 0 ∀i ∈ N .

Thus a Bi-cooperative game with fuzzy bi-coalitions can be defined as follows:

Definition 2.9. A Bi-cooperative game with fuzzy bi-coalitions is a function w : FB(N) → R with w(∅B) = 0. We 
call the value w(A), the worth of A due to the fuzzy or partial contributions by the members of N .

The worth w(A) for every A ∈FB(N) is interpreted as the gain (whenever w(A) > 0) or loss (whenever w(A) < 0) 
that A can receive when the players can participate in it in either of the three distinct capacities: positive, negative 
or absentees. We call a “Bi-cooperative game with fuzzy bi-coalitions” a “fuzzy Bi-cooperative game” in short. Let 
GFB(N) denote the class of all fuzzy Bi-cooperative games. It follows that the class BGN , of crisp Bi-cooperative 
games is a subclass of the class GFB(N) of fuzzy Bi-cooperative games.

Definition 2.10. Let w ∈ GFB(N). Player i ∈ N is called left monotone in fuzzy sense with respect to w if for 
every A, B ∈ FB(N) such that μA(i) > μB(i) with μA(j) = μB(j) and νA(j) = νB(j) for i �= j ∈ N , we have 
w(A) ≥ w(B). Similarly, player i is right monotone in fuzzy sense with respect to w if for every A, B ∈ FB(N) such 
that νA(i) > νB(i) with μA(j) = μB(j) and νA(j) = νB(j) for i �= j ∈ N , we have w(A) ≤ w(B).

The game w ∈ GFB(N) is monotone in fuzzy sense if every player is both left and right monotone in fuzzy sense.

Note that Definition 2.10 provides a more general form of a monotone game in fuzzy sense than in [3]. Preparatory 
to the definition of the LG axioms for a fuzzy Bi-cooperative game, we describe the following.

Definition 2.11. If A ∈ FB(N), and w ∈ GFB(N), the player i ∈ N is said to be null for w in A if w(B ∪ I ) = w(B)

for all B ∈ FB(A) with μB(i) = νB(i) = 0 and all I ∈ FB(N) such that μI (j) = νI (j) = 0 when j �= i, where ∪ is 
as defined in (2.11).

Definition 2.12. Let A ∈FB(N), for any permutation π on N , define the fuzzy bi-coalition πA by

μπA(i) = μA

(
π−1i

)
(2.13)

νπA(i) = νA

(
π−1i

)
(2.14)

Then πA is called a permutation of the fuzzy bi-coalition A.
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Now we define the LG value for Bi-cooperative games with fuzzy bi-coalitions as follows.

Definition 2.13. A function Φ : GFB(N) → (Rn)FB(N) is said to be an LG value on GFB(N) if it satisfies the follow-
ing six axioms:

Axiom f1 (Efficiency). If w ∈ GFB(N) and A ∈FB(N), then
∑
i∈N

Φi(w)(A) = w(A).

Axiom f2 (Linearity). For α, β ∈ R and w, w′ ∈ GFB(N) we must have

Φ
(
αw + βw′) = αΦ(w) + βΦ

(
w′).

Axiom f3 (Null Player Axiom). If player i ∈ N is a null player for w ∈ GFB(N), in A ∈FB(N), then, Φi(w)(A) = 0.

Axiom f4 (Intra-Coalition Symmetry). For any w ∈ GFB(N), a fuzzy bi-coalition A, and a permutation π defined on 
N such that πA = A, it holds for all i ∈ N ,

Φi(w)(A) = Φπi(πw)(A) (2.15)

where πw ∈ GFB(N) is defined by πw(πB) = w(B), with πB defined for every B ∈ FB(N) as in Definition 2.12.

Axiom f5 (Inter-Coalition Symmetry). Given A ∈ FB(N) and i, j ∈ N , if wi and wj are two Bi-cooperative games 
with fuzzy bi-coalitions such that for every B ∈FB(A) with i, j /∈ Supp(B) (i.e. μB(i) = 0 = μB(j) and νB(i) = 0 =
νB(j)), and every pair of I, J ∈ FB(N), such that μI (i) = νJ (j) > 0 or μJ (j) = νI (i) > 0 and μI (k) = μJ (k) =
0 = νI (k) = νJ (k) ∀ k ∈ N \ {i, j}, it holds that

wi(B ∪ I ) − wi(B) = wj(B) − wj(B ∪ J )

wi(B ∪ I ∪ J ) − wi(B ∪ J ) = wj(B ∪ I ) − wj(B ∪ I ∪ J )

then, Φi(wi)(A) = −Φj(wj )(A).

Axiom f6 (Monotonicity). Let w and w′ be two Bi-cooperative games with fuzzy bi-coalitions and A ∈ FB(N). Let 
further that there exists an i ∈ N such that for every I ∈ FB(N) with μI (i) > 0 or νI (i) > 0, μI (j) = νI (j) = 0, 
∀j �= i, and for all B ∈FB(A) such that μB(i) = νB(i) = 0, it holds that

w′(B) = w(B)

w′(B ∪ I ) ≥ w(B ∪ I )

Then, Φi(w
′)(A) ≥ Φi(w)(A).

Note that if Φ satisfies Axioms f1–f6 then its restriction to the class of crisp Bi-cooperative games namely, Φ|BGN

satisfies Axioms f1–f6. As a matter of fact the Axioms f1–f6 are intuitive extensions of their crisp analogues. Further-
more, the above definition can apply to any class of Bi-cooperative games with fuzzy bi-coalitions. The reader may 
look into [3] for a detailed discussion on the solution concept that has been developed through the characterization 
process. In the next section, we propose the notion of fuzzy Bi-cooperative games in multilinear extension form and 
discuss their properties.

3. Fuzzy Bi-cooperative games in multilinear extension form

Take SuppA = (L, M) ∈ Q(N). Given v ∈ BGN and A ∈ FB(N), define the fuzzy Bi-cooperative game 
wM : FB(N) → R in multilinear extension form as follows.
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wM(A) = 1

2

∑
(S,T )⊆Supp A

{∏
i∈S

μA(i)
∏

j∈L\S

(
1 − μA(j)

) +
∏
i∈T

νA(i)
∏

j∈M\T

(
1 − νA(j)

)}
v(S,T ) (3.1)

Denote by Gm
FB(N) the class of fuzzy Bi-cooperative games in multilinear extension form. In what follows, we define 

an LG value for Gm
FB(N). Prior to this we have the following. Given K ⊆ N , define the fuzzy bi-coalition AK as 

follows.

μAK
(j) = μA(j) ∧ χK(j), ∀j ∈ N (3.2)

νAK
(j) = νA(j) ∧ χK(j), ∀j ∈ N (3.3)

where χK is the characteristic (membership) function of K given by

χK(j) =
{

1 if j ∈ K

0 otherwise
(3.4)

Then we have,

SuppAK = ({
j ∈ N :μAK

(j) > 0
}
,
{
j ∈ N :νAK

(j) > 0
})

= (L ∩ K,M ∩ K) (3.5)

Similarly, for I ∈FB(N) such that,

μI (i) = μA(i), νI (i) = νA(i) (3.6)

μI (j) = νI (j) = 0, if i �= j (3.7)

we have Supp(AK ∪ I ) = (L ∩ (K ∪ i), M ∩ (K ∪ i)) which follows from the facts that

μ(AK∪I )(j) = μA(j) ∧ χK∪{i}(j) (3.8)

ν(AK∪I )(j) = νA(j) ∧ χK∪{i}(j) (3.9)

Set Q(L, M) = {(S, T ): S ⊆ L, T ⊆ M}. For every wM ∈ Gm
FB(N), we define the function Φ : Gm

FB(N) → (Rn)FB(N)

by

Φi

(
wM(A)

)

=
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!
(l + m)!

× 1

2

[ ∑
(S0,T0)∈Q(L∩(K∪i),M∩(K∪i))

{∏
t∈S0

μA(t)
∏

r∈L\S0

(
1 − μA(r)

) +
∏
t∈T0

νA(t)
∏

r∈M\T0

(
1 − νA(r)

)}
v(S0, T0)

−
∑

(S′
0,T

′
0)∈Q(L∩K, M∩K)

{∏
t∈S′

0

μA(t)
∏

r∈L\S′
0

(
1 − μA(r)

) +
∏
t∈T ′

0

νA(t)
∏

r∈M\T ′
0

(
1 − νA(r)

)}
v
(
S′

0, T
′

0

)]

(3.10)

Using (3.2) through (3.9), expression (3.10) can be simplified to the following:

Φi

(
wM(A)

) =
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!
(l + m)!

{
wM(AK ∪ I ) − wM(AK)

}
(3.11)

Now we have our main theorem as follows.
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Theorem 3.1. The function Φ : BGN → (Rn)Q(N) given by (3.10) (or equivalently by (3.11)) is an LG value for the 
class of fuzzy Bi-cooperative games in multilinear extension form given by (3.1).

In order to prove Theorem 3.1, we need to show that the function Φ given in (3.10) (or equivalently in (3.11)) 
satisfies Axioms f1–f6.

Proof.
Axiom f1 (Efficiency). Take L ∪ M = {i1, i2, i3, . . . , ip} in (3.10). Note that here, we do not specify the roles of the 
players (positive or negative) in the formulation however it does not affect their bipolar nature.

For every ij (j = 1, 2, . . . p) and K ⊆ (L ∪ M) \ ij , in the following we list all the possible (K ∪ ij )s (where 
K ∪ ij = (L ∩ (K ∪ ij )) ∪ (M ∩ (K ∪ ij ))) as entries in a matrix Pk of p clusters with k + 1 repeated entries.

Pk = (
A1

k

... A2
k

... · · · ... A
p
k

)
where

A
p
k =

⎛
⎜⎜⎜⎜⎝

{i1, i2, . . . ik, ip} {i2, i3, . . . ik+1, ip} · · · {ip−k, ip−(k−1), . . . ip−1, ip}
{i1, i3 · · · ik+1, ip} {i2, i4 · · · ik+2, ip} · · ·×

...
...

...

{i1, ip−k · · · ip−2, ip} {i2, ip−(k−1) · · · ip−1, ip} · · ·×
{i2, ip−(k−1) · · · ip−1, ip} × · · ·×

⎞
⎟⎟⎟⎟⎠

In a similar way, for every ij (j = 1, 2, . . . p) and K ⊆ (L ∪ M) \ ij , we list all the possible Ks (K = (L ∩ K) ∪
(M ∩ K)) as entries in a matrix Qk of p clusters with p − k repeated entries as follows.

Qk = (
B1

k

... B2
k

... · · · ... B
p
k

)
where the entries of Bl

k (l = 1, 2, . . . , p) are exactly same as those of the corresponding Al
k with only the exception 

that they do not contain il (l = 1, 2, . . . , p).
Since the j th cluster of Qk+1 corresponds to the j th cluster of Pk , it follows from (3.10)

∑
ij ∈(L∪M)

Φij

(
wM(A)

) =
p−1∑
k=0

( ∑
ij ∈(L∪M)

C
ij
k

)
−

p−1∑
k=0

( ∑
ij ∈(L∪M)

D
ij
k

)
(3.12)

where

C
ij
k =

∑
K:|K|=k,ij /∈K

k!(p − k − 1)!
p! × 1

2

×
∑

(S0,T0)∈Q(L∩(K∪ij ),M∩(K∪ij ))

{ ∏
it∈S0

μA(it )
∏

ir∈L\S0

(
1 − μA(ir )

)

+
∏
it∈T0

νA(it )
∏

ir∈M\T0

(
1 − νA(ir )

)}
v(S0, T0)

D
ij
k =

∑
K:|K|=k,ij /∈K

k!(p − k − 1)!
p! × 1

2

×
∑

(S′
0,T

′
0)∈Q(L∩K, M∩K)

{ ∏
it∈S′

0

μA(it )
∏

ir∈L\S′
0

(
1 − μA(ir )

)

+
∏
i ∈T ′

νA(it )
∏

i ∈M\T ′

(
1 − νA(ir )

)}
v
(
S′

0, T
′

0

)

t 0 r 0
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Now ∑
ij ∈(L∪M)

C
ij
k =

∑
ij ∈(L∪M)

∑
K:|K|=k,ij /∈K

k!(p − k − 1)!
p! × 1

2

×
∑

(S0,T0)∈Q(L∩(K∪{ij }),M∩(K∪{ij }))

{ ∏
it∈S0

μA(it )
∏

ir∈L\S0

(
1 − μA(ir )

)

+
∏
it∈T0

νA(it )
∏

ir∈M\T0

(
1 − νA(ir )

)}
v(S0, T0) (3.13)

∑
ij ∈(L∪M)

D
ij
k =

∑
ij ∈(L∪M)

∑
K:|K|=k,ij /∈K

k!(p − k − 1)!
p! × 1

2

×
∑

(S′
0,T

′
0)∈Q(L∩K, M∩K)

{ ∏
it∈S′

0

μA(it )
∏

ir∈L\S′
0

(
1 − μA(ir )

)

+
∏
it∈T ′

0

νA(it )
∏

ir∈M\T ′
0

(
1 − νA(ir )

)}
v
(
S′

0, T
′

0

)
(3.14)

It follows from the matrix Pk and Qk the entries of Pk and Qk+1 are identical whereas each entry of Pk is repeated 
k + 1 times and each entry of Qk is repeated p − k times. In view of this along with (3.13)–(3.14) and noting that 
the expressions of 

∑
ij ∈(L∪M) C

ij
k−1 and 

∑
ij ∈(L∪M) D

ij
k are identical for k = 1, 2, . . . p, we see that in (3.12) the 

corresponding elements cancel each other. Thus we have,

∑
ij ∈(L∪M)

Φij

(
wM(A)

) =
∑

ij ∈(L∪M)

C
ij
p−1

= 1

2

∑
(S0,T0)∈Q(L∩(K∪{ij }),M∩(K∪{ij }))

{ ∏
it∈S0

μA(it )
∏

ir∈L\S0

(
1 − μA(ir )

)

+
∏
it∈T0

νA(it )
∏

ir∈M\T0

(
1 − νA(ir )

)}
v(S0, T0)

Following the fact that, when |K| = p − 1 and ij /∈ K , Q((L ∩ (K ∪ {ij }), M ∩ (K ∪ {ij }))) = Q(L, M), we obtain,

∑
ij ∈(L∪M)

Φij

(
wM(A)

) = 1

2

∑
(S0,T0)∈Q(L,M)

{ ∏
it∈S0

μA(it )
∏

ir∈L\S0

(
1 − μA(ir )

)

+
∏
it∈T0

νA(it )
∏

ir∈M\T0

(
1 − νA(ir )

)}
v(S0, T0)

= wM(A).

As the player set N = {i1, i2, . . . , ip} is arbitrary the result holds for any players’ set N . This proves the efficiency.

Axiom f2 (Linearity). Let, α, β ∈ R and wM, w′
M ∈ Gm

FB(N). Following (3.1) we have,

wM(A) = 1

2

∑
(S,T )⊆Supp A

{∏
i∈S

μA(i)
∏

j∈L\S

(
1 − μA(j)

) +
∏
i∈T

νA(i)
∏

j∈M\T

(
1 − νA(j)

)}
v(S,T )

w′
M(A) = 1

2

∑ {∏
i∈S

μA(i)
∏

j∈L\S

(
1 − μA(j)

) +
∏
i∈T

νA(i)
∏

j∈M\T
(1 − νA)(j)

}
v′(S,T )
(S,T )⊆Supp A
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Now
(
αwM + βw′

M

)
(A)

= 1

2

∑
(S,T )⊆Supp A

{∏
i∈S

μA(i)
∏

j∈L\S

(
1 − μA(j)

) +
∏
i∈T

νA(i)
∏

j∈M\T

(
1 − νA(j)

)}(
αv(S,T ) + βv′(S,T )

)

Thus, Φi(αwM + βw′
M)(A) = αΦi(wM) + βΦi(w

′
M).

Axiom f3 (Null Player Axiom). Let i ∈ N be a Null Player. Then by Definition 2.11, for each A ∈ FB(N), we have 
wM(B ∪ I ) = wM(B), ∀B ∈ FB(A) with μB(i) = νB(i) = 0 and ∀I ∈ FB(N) such that μI (j) = νI (j) = 0, when 
j �= i. Thus we obtain,

Φi

(
wM(A)

) =
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!
(l + m)!

(
wM(AK ∪ I ) − wM(AK)

)

= 0

Axiom f4 (Intra-Coalition Symmetry). It follows from (3.1) that for any A ∈FB(N), permutation π such that πA = A

and wM ∈ Gm
FB(N),

Φπi

(
πwM(πA)

) =
∑

πK⊆π(L∪M)\{πi}

k!(l + m − k − 1)!
(l + m)!

{
πwM

(
πAπK ∪ (πI)

) − πwM(πAπK)
}

=
∑

K ′⊆(L∪M)\{i}

k!(l + m − k − 1)!
(l + m)!

{
πwM

(
πAπK ∪ (πI)

) − πwM(πAπK)
}

(3.15)

Following (3.2) and (3.3) we have,

μπAπK
(j) = μπA(j) ∧ χπK(j), ∀j ∈ N

= μA

(
π−1j

) ∧ χK

(
π−1j

)
, ∀j ∈ N

= μAK

(
π−1j

)
= μπAK

(j) (3.16)

It follows that,

νπAπK
(j) = νπAK

(j), ∀j ∈ N (3.17)

μ(πAπK∪(πI))(j) = μπ(AK∪I )(j), ∀j ∈ N (3.18)

ν(πAπK∪(πI))(j) = νπ(AK∪I )(j), ∀j ∈ N (3.19)

Putting (3.16) through (3.19) in (3.15), we get,

Φπi

(
πwM(πA)

) =
∑

K ′⊆(L∪M)\{i}

k!(l + m − k − 1)!
(l + m)!

{
πwM

(
π

(
AK ∪ (I )

)) − πwM

(
π(AK)

)}
(3.20)

Using the fact that (πwM)(πA) = wM(A) and πA = A, (3.20) becomes

Φπi

(
πwM(A)

) =
∑

K ′⊆(L∪M)\{i}

k!(l + m − k − 1)!
(l + m)!

{
wM(AK ∪ I ) − wM(AK)

}

= Φi

(
wM(A)

)

Axiom f5 (Inter-Coalition Symmetry). Let wi
M and wj

M be two Bi-cooperative games with fuzzy bi-coalitions such 
that for every B ∈ FB(A) with i, j /∈ SuppB and every pair I, J ∈ FB(N) such that μI (i) = νJ (j) > 0 or μJ (j) =
νI (i) > 0 and μI (k) = μJ (k) = 0 = νI (k) = νJ (k), ∀k ∈ N \ {i, j}, it holds that,
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(i) wi
M(B ∪ I ) − wi

M(B) = w
j
M(B) − w

j
M(B ∪ J )

(ii) wi
M(B ∪ J ∪ I ) − wi

M(B ∪ J ) = w
j
M(B ∪ I ) − w

j
M(B ∪ I ∪ J )

Given K ⊆ N and i, j, l ∈ N , we construct Aij
K as follows.

μ
A

ij
K

(l) =
{

μA(l) ∧ χK(l), if l ∈ N \ {i, j}
0, otherwise

(3.21)

ν
A

ij
K

(l) =
{

νA(l) ∧ χK(l), if l ∈ N \ {i, j}
0, otherwise

(3.22)

where the function χK is given by (3.4).
Let J ∈FB(N) be such that,

μJ (j) = μAK
(j), νJ (j) = νAK

(j) (3.23)

μJ (k) = νJ (k) = 0, if k �= j (3.24)

Therefore using the facts that AK = A
ij
K ∪ J when K ⊆ (L ∪ M) \ {i} and AK = A

ij
K ∪ I when K ⊆ (L ∪ M) \ {j}, 

we have from (3.10),

Φi

(
wi

M(A)
) =

∑
K⊆(L∪M)\{i}

k!(l + m − k − 1)!
(l + m)!

(
wi

M(AK ∪ I ) − wi
M(AK)

)
, i, j /∈ K

=
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!
(l + m)!

(
wi

M

(
A

ij
K ∪ J ∪ I

) − wi
M

(
A

ij
K ∪ J

))

and

Φj

(
w

j
M(A)

) =
∑

K⊆(L∪M)\{j}

k!(l + m − k − 1)!
(l + m)!

(
w

j
M

(
AK ∪ I

) − w
j
M

(
AK

))

=
∑

K⊆(L∪M)\{j}

k!(l + m − k − 1)!
(l + m)!

(
w

j
M

(
A

ij
K ∪ I ∪ J

) − w
j
M

(
A

ij
K ∪ I

))

Using (i) and (ii), this further simplifies to, Φi(w
i
M(A)) = −Φj(w

j
M(A)).

Axiom f6 (Monotonicity). Let wM and w′
M be two Bi-cooperative games with fuzzy bi-coalitions and A ∈FB(N). Let 

further that ∃ an i ∈ N , such that for every I ∈ FB(N) with μI (i) > 0 or νI (i) > 0, μI (j) = νI (j) = 0, ∀j �= i and 
∀B ∈FB(A) such that μB(i) = νB(i) = 0, it holds that

(i) w′
M(B) = wM(B)

(ii) w′
M(B ∪ I ) ≥ wM(B ∪ I )

The result follows from (3.11) along with (i) and (ii). This completes the proof. �
Example 3.2. Let N = {1, 2, 3}. Take an illustrative example where the crisp Bi-cooperative game v : Q(N) →R is 
given by v(∅, ∅) = 0, v(1, ∅) = 1, v(3, ∅) = 2, v(∅, 2) = 3, v(1, 2) = 4, v(3, 2) = 2, v((1, 3), 2) = 5, v((1, 3), ∅) = 6
and v(S, T ) = 0 for any other (S, T ) ∈ Q(N). Let A be a fuzzy bi-coalition over N given by

A = {〈1,0.1,0〉, 〈2,0,0.2〉, 〈3,0.3,0〉}
Thus using (3.1), wM(A) = 2.2. After some computations, the LG value of wM for A is obtained as (0.5497, 0.9628,

0.7123). A close look at the values of the crisp Bi-cooperative game reveals that player 2 is a negative contributor 
and both players 1 and 3 are positive contributors, yet 3 is more influential than 1 in generating a value. Moreover, 
player 3 has more membership as a positive contributor than 1 in the fuzzy bi-coalition A also. Keeping all these into 
account, the LG value divides the value wM(A) among the three players accordingly.
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4. Conclusion

This paper proposes a new class of fuzzy Bi-cooperative games, namely the fuzzy Bi-cooperative games in multi-
linear extension form. An LG value is obtained as a solution concept to those games. The class of games we defined 
here generalizes Owen’s multilinear extension. Similar extensions incorporating bipolarity exist in the literature and 
are related to various forms of the Choquet integrals [5,6,11]. Basically they are distinguished by the order relation on 
the class of bi-coalitions. Since the product order naturally endorses bipolarity among the players in a game, we focus 
only on extensions with product order, see [9]. In a future work, we aim to focus on alternative extensions based on 
principles of symmetric extensions of Choquet integral as discussed in [11].
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