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Abstract. In this paper, a new class of bi-cooperative games with fuzzy bi-coalitions is proposed in multilinear extension form.
The extension is shown to be unique. The solution concept discussed in [3] is investigated and characterized for this class of
games.
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1. Introduction

In this paper, a new class of fuzzy bi-cooperative
games (bi-cooperative games with fuzzy bi-coalitions)
in multilinear extension form is proposed. The multi-
linear extension of a game [8] has been instrumental
for easy computations of the Shapley like solutions
for large games. In [7] a fuzzy cooperative game in
multilinear extension form is defined. Here a simi-
lar approach to obtain a fuzzy bi-cooperative game is
adopted however it breaks from the former due to the
presence of bipolarity among players.

Bi-cooperative games á la Bilbao [2] consider
problems arising from certain social and economic sit-
uations, where the players’ set is divided into a partition
of three groups viz., the group of the positive contribu-
tors, the negative contributors and the absentees. Each
such partition can be uniquely represented by a pair
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of positive and negative contributors and is called a bi-
coalition. A solution in this paradigm distributes the net
payoff among the players that is accrued by the game.
Labreuche and Grabisch [6] introduced the LG value
for the class of crisp bi-cooperative games. Alterna-
tive solution concepts are found in [1, 4, 5]. However
their difference is attributed to the two distinct order-
ings on the set of bi-coalitions namely, the product order
and the order implied by monotonicity. Labreuche and
Grabisch [6] highlighted this idea in details.

In a crisp bi-coalition the memberships of the players
(rates of participation) can be considered as 1 for her
full involvement as a positive or negative contributor
and 0 for being indifferent or absentee.2 Furthermore,
it is possible to have players who participate partially
in a bi-coalition, an idea similar to the notion of fuzzy
cooperative games. In [3] a class of fuzzy bi-cooperative
games and its solution concept (LG value) is defined.
A particular class of bi-cooperative games namely the

2A player in a crisp bi-coalition has three options : to join the
group of positive contributors (denoted this by 1), the group of neg-
ative contributors (denoted by −1) or remain indifferent (denoted
by 0). However if we only consider her rate of participation in the
bi-coalition irrespective of her polarity, it ranges in [0, 1].
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fuzzy bi-cooperative games in Choquet integral form
is investigated and the solution is characterized with
the LG axioms. A similar approach is adopted in this
paper to obtain the LG value for the class of fuzzy bi-
cooperative games in multilinear extension form.

The rest of the paper is organized as follows. Sec-
tion 2 presents the notion of bi-cooperative games and
a corresponding solution concept in both crisp and
fuzzy environment. In Section 3, the notion of a fuzzy
bi-cooperative game in multilinear extension form is
introduced followed by an illustrative example. Finally,
Section 4 brings some concluding remarks.

2. Model formulation

In this section, the basic definitions and results related
to the development of the model is introduced. To a large
extent, this section is based on [6] and [3]. Throughout
the paper let N = {1, 2, 3, ..., n} denote the players’ set
and

Q(N) = {(S, T ) | S, T ⊆ N and S ∩ T = ∅} ,

the set of all bi-coalitions of N. Let us consider the
members of S in (S, T ) ∈ Q(N) contribute positively
and the members of T contribute negatively to the game.
By what is called an abuse of notations we alterna-
tively use i for the singleton set {i}, wherever there is
no possibility of confusion.

2.1. Bi-cooperative games with crisp bi-coalitions

A bi-cooperative game is a pair (N, v) of which N

is the players’ set and v : Q(N) → R, a real valued
function such that v(∅, ∅) = 0. Whenever N is fixed,
(N, v) is replaced by v to simplify the notations. In
[6] a value is defined on BGN , the class of all bi-
cooperative games as a function � : BGN → (Rn)Q(N)

which associates each bi-cooperative game v a vector
(�1(v), �2(v), ..., �n(v)) representing a payoff distri-
bution to the players in the game. There are two more
definitions of a value found in the literature, see [1, 4, 5].
However, the definition given in [6] is seen to be more
natural as it incorporates the bi-polar nature of the
model. For a detailed discussion related to this idea,
one can refer to [6].

Definition 2.1. Let v ∈ BGN . A player i is called
left monotone with respect to v if

∀(S, T ) ∈ Q(N \ i) , v(S ∪ i, T ) ≥ v(S, T ).

A player i is right monotone with respect to v if

∀(S, T ) ∈ Q(N \ i) , v(S, T ∪ i) ≤ v(S, T ).

The bi-cooperative game v is monotone if all players
are left and right monotone with respect to v.

Remark 2.2. The expression v(S ∪ i, T ) − v(S, T )
(respectively v(S, T ) − v(S, T ∪ i)) is called the
marginal contribution of player i with respect to
(S, T ) ∈ Q(N \ i) when she is a positive contributor
(respectively a negative contributor).

Prior to the definition of the LG value of the class of
crisp bi-cooperative games, define the following.

Definition 2.3. Let (S, T ) ∈ Q(N) and v ∈ BGN . Player
i ∈ N is a null player for v, if it satisfies

v(S ∪ i, T ) = v(S, T ) = v(S, T ∪ i) (1)

for every (S, T ) ∈ Q(N \ i).
Now the LG value for the class BGN is defined as

follows.

Definition 2.4. A function � : BGN → (Rn)Q(N)

defines the LG value if for every (S, T ) ∈ Q(N) it sat-
isfies the following axioms.

Axiom b1 (Efficiency) : If v ∈ BGN , it holds that,

∑
i∈N

�i(N, v)(S, T ) = v(S, T )

Axiom b2 (Linearity) : For all α, β ∈ R, b, v ∈ BGN ,
�i(N, αb + βv)(S, T )

= α �i(N, b)(S, T ) + β �i(N, v)(S, T ).

Axiom b3 (Null Player Axiom) : If player i is null for
v ∈ BGN , then �i(N, v)(S, T ) = 0.

Axiom b4 (Intra-Coalition Symmetry) : Ifv ∈ BGN and
a permutation π is defined on N, such that πS = S and
πT = T , then it holds that, for all i ∈ N,

�πi(N, v ◦ π−1)(S, T ) = �i(N, v)(S, T )

where πv(πL, πM) = v(L, M) and πL = {πi : i ∈ L}
for every (L, M) ∈ Q(N).

Axiom b5 (Inter-Coalition Symmetry) : Let i ∈ S and
j ∈ T , and vi, vj be two bi-cooperative games such that
for all (S′, T ′) ∈ Q((S ∪ T ) \ {i, j}),
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vi(S
′ ∪ i, T ′) − vi(S

′, T ′)

= vj(S′, T ′) − vj(S′, T ′ ∪ j)

vi(S
′ ∪ i, T ′ ∪ j) − vi(S

′, T ′ ∪ j)

= vj(S′ ∪ i, T ′) − vj(S′ ∪ i, T ′ ∪ j)

Then,

�i(N, vi)(S, T ) = −�j(N, vj)(S, T ). (2)

Axiom b6 (Monotonicity): Given v, v′ ∈ BGN such
that ∃i ∈ N with

v′(S′, T ′) = v(S′, T ′) (3)

v′(S′ ∪ i, T ′) ≥ v(S′ ∪ i, T ′) (4)

v′(S′, T ′ ∪ i) ≥ v(S′, T ′ ∪ i) (5)

for all (S′, T ′) ∈ Q(N \ i), then

�i(N, v′)(S, T ) ≥ �i(N, v)(S, T ).

In [6], an intuitive explanation about axioms b1-b6
is given in details. In addition to the standard Shapley
axioms viz., Efficiency (b1), Linearity (b2) and Null
Player (b3), here we have the intra and inter-coalition
symmetry axioms ((b4) and (b5) respectively) that take
care of the anonymity of the players in two different
ways. The intra-coalition symmetry axiom suggests that
the role of the players of S, T and N \ (S ∪ T ) is dif-
ferent. Thus symmetry holds only among players of S,
players of T and players of N \ (S ∪ T ). On the other
hand the inter-coalition symmetry axiom tells that when
the contribution of a player i ∈ S to a game vi is exactly
the opposite of that of a player j ∈ T to a game vj , then
the incentive payoff for i shall be exactly the opposite
of the payoff for j. The monotonicity axiom (b6) says
that the value to a player for a larger game can not be
less than that of the smaller game.

The following theorem ensures existence and unique-
ness of the LG value.

Theorem 2.5. There exists a unique value
�(N, v)(S, T ) on BGN for (S, T ) ∈ Q(N) that
satisfies Axiom (b1)- Axiom (b6) and is given by,

�i(N, v)(S, T )

=
∑

K⊆(S∪T )\{i}

k!(s+t−k−1)!

(s+t)!
[V (K∪{i}) − V (K)] (6)

for all i ∈ N where for K ⊆ S ∪ T , V (K) :=
v(S ∩ K, T ∩ K). Moreover, if i ∈ N \ (S ∪ T ),
�i(N, v)(S, T ) = 0.

An important corollary to Theorem 2.5 given in [6]
is as follows.

Result 2.6. We have,

∀i ∈ N \ (S ∪ T ), �i(v)(S, T ) = 0

∀i ∈ S, with i left monotone, �i(v)(S, T ) ≥ 0

∀i ∈ T, with i right monotone, �i(v)(S, T ) ≤ 0

(7)

2.2. Bi-cooperative games with fuzzy bi-coalitions

Let N = {1, 2, ..., n} be given. A fuzzy bi-coalition
is an expression A on N given by,

A = {< i, µN
A (i), νN

A (i) > | min (µN
A, νN

A ) = 0}
where µN

A : N → [0, 1], νN
A : N → [0, 1] represent

respectively, the membership functions over N of the
fuzzy sets of positive and negative contributors of A.
Note that the minimum condition in the above defini-
tion implies that the two roles (positive and negative
contributions) are mutually exclusive so that one can
not simultaneously put her partial participations in both
of them, see [3].

Thus it follows that the functions µN
A and νN

A fully
identify the fuzzy bi-coalition A of N. As N is fixed
here, µN

A and νN
A can be replaced by µA and νA. Player

i is a positive contributor in A if µA(i) > 0 and a nega-
tive contributor if νA(i) > 0. Let FB(N) denote the set
of all fuzzy bi-coalitions on N. Every crisp bi-coalition
can also be considered as a fuzzy bi-coalition with
each player participating fully (with membership 1) or
abstaining (with membership 0). Thus with an abuse of
notations, write Q(N) ⊆ FB(N).

For comparing the fuzzy bi-coalitions A, B ∈
FB(N), the following operations and relations are
adopted.

A � B ⇔ µA(i) ≤ µB(i) and νA(i) ≤ νB(i) ∀i ∈ N.

A = B ⇔ µA(i) = µB(i) and νA(i) = νB(i) ∀i ∈ N.

For any A ∈ FB(N), denote by FB(A), the set of all
fuzzy bi-coalitions B such that B � A.

The intersection of two fuzzy bi-coalitions A and B

is obtained using the minimum operator ’∧’ as follows.

A ∩ B = {< i, µA(i) ∧ µB(i), νA(i) ∧ νB(i) >: i ∈ N}
It follows that under the above mentioned ordering rela-
tion FB(N) is an inf-semilattice. However, the union is
defined only on a restricted sub-domain of FB(N). For
A, B ∈ FB(N) such that {µA(i) ∨ µB(i)} ∧{νA(i) ∨
νB(i)} = 0, ∀i ∈ N, A ∪ B is defined as follows.
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A ∪ B = {< i, µA(i) ∨ µB(i), νA(i) ∨ νB(i) > : i ∈ N}
(8)

The Support of a fuzzy bi-coalition A, denoted by
Supp(A), is given by

Supp(A) = ({i ∈ N|µA(i) > 0}, {i ∈ N|νA(i) > 0})
(9)

Note that, Supp(A) ∈ Q(N).

Definition 2.7. The null fuzzy bi-coalition ∅B is given
by

∅B = {< i, µ∅B
(i), ν∅B

(i) > |i ∈ N}
where µ∅B

(i) = 0, and ν∅B
(i) = 0 ∀i ∈ N.

Thus a bi-cooperative game with fuzzy bi-coalitions
is defined as follows.

Definition 2.8. A bi-cooperative game with fuzzy bi-
coalitions (a fuzzy bi-cooperative game in short) is a
function w : FB(N) → R with w(∅B) = 0. We call the
value w(A) the worth of A due to the fuzzy or partial
contributions by the members of N.

The worth w(A) for every A ∈ FB(N) is interpreted
as the gain (whenever w(A) > 0) or loss (whenever
w(A) < 0) that A can receive when the players par-
ticipate in it in either of the three distinct capacities
: positive, negative or absentees. Denote by GFB(N)
the class of all fuzzy bi-cooperative games. It follows
that the class BGN , of crisp bi-cooperative games is a
subclass of the class GFB(N) of fuzzy bi-cooperative
games.

Definition 2.9. Let w ∈ GFB(N). Player i ∈ N is called
left monotone in fuzzy sense with respect to w if for
every A, B ∈ FB(N) such that µA(i) > µB(i) with
µA(j) = µB(j) and νA(j) = νB(j) for i /= j ∈ N, it
follows that w(A) ≥ w(B). Similarly, player i is right
monotone in fuzzy sense with respect to w if for every
A, B ∈ FB(N) such that νA(i) > νB(i) with µA(j) =
µB(j) and νA(j) = νB(j) for i /= j ∈ N, it follows that
w(A) ≤ w(B).

The game w ∈ GFB(N) is fuzzy monotone if every
player is both left and right monotone in fuzzy sense.

Let us define the LG value for a fuzzy bi-cooperative
game. Preparatory to this, following definitions due
to [3] are given.

Definition 2.10. If A ∈ FB(N), and w ∈ GFB(N), the
player i ∈ N is said to be a null player for w in A

if w(B ∪ I) = w(B) for all B ∈ FB(A) with µB(i) =
νB(i) = 0 and all I ∈ FB(N) such that µI (j) =
νI (j) = 0 when j /= i, where the union ∪ is defined
in (8).

Definition 2.11. Let A ∈ FB(N). For any permutation
π on N, define the fuzzy bi-coalition πA by

µπA(i) = µA(π−1i) (10)

νπA(i) = νA(π−1i) (11)

Then πA is called a permutation of the fuzzy bi-
coalition A.

The LG value for fuzzy bi-cooperative games is
defined as follows.

Definition 2.1. A function � : GFB(N) → (Rn)FB(N)

is said to be the LG value on GFB(N) if it satisfies the
following six axioms:

Axiom f1 (Efficiency): If w ∈ GFB(N) and A ∈
FB(N), then

∑
i∈N

�i(w)(A) = w(A).

Axiom f2 (Linearity): For α, β ∈ R and w, w′ ∈
GFB(N) it follows that �(αw + βw′) = α�(w) +
β�(w′),

Axiom f3 (Null Player Axiom): If player i ∈ N is
a null player for w ∈ GFB(N), in A ∈ FB(N), then,
�i(w)(A) = 0.

Axiom f4 (Intra coalition Symmetry): For any w ∈
GFB(N), and a permutation π, defined on N such that
πA = A, it holds for all i ∈ N,

�i(w)(A) = �πi(πw)(A) (12)

where πw ∈ GFB(N) is defined by πw(πA) = w(A),
with πA defined as in Definition 2.11.

Axiom f5 (Inter coalition Symmetry): Given A ∈
FB(N) and i, j ∈ N, if wi and wj are two bi-
cooperative games with fuzzy bi-coalitions such that
for everyB ∈ FB(A) with i, j /∈ Supp(B) (i.e.,µB(i) =
0 = µB(j) and νB(i) = 0 = νB(j)), and every pair
of I, J ∈ FB(N), such that µI (i) = νJ (j) > 0 or
µJ (j) = νI (i) > 0 and µI (k) = µJ (k) = 0 = νI (k) =
νJ (k) ∀ k ∈ N \ {i, j}, it holds that,

wi(B ∪ I) − wi(B)

= wj(B) − wj(B ∪ J)

wi(B ∪ I ∪ J) − wi(B ∪ J)

= wj(B ∪ I) − wj(B ∪ I ∪ J)
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then, �i(wi)(A) = −�j(wj)(A).

Axiom f6 (Monotonicity): Let w and w′ be two bi-
cooperative games with fuzzy bi-coalitions and A ∈
FB(N). Let further that there exists an i ∈ N such
that for every I ∈ FB(N) with µI (i) > 0 or νI (i) >

0, µI (j) = νI (j) = 0, ∀j /= i, and for all B ∈ FB(A)
such that µB(i) = νB(i) = 0, it holds that,

w′(B) = w(B)

w′(B ∪ I) ≥ w(B ∪ I)

then, �i(w
′)(A) ≥ �i(w)(A).

In [3] it is remarked that it is easy to see that if �

satisfies Axioms f1-f6 then its restriction to the class
of crisp bi-cooperative games satisfies Axioms b1-b6.
Thus we can recover the crisp value from its fuzzy coun-
terpart under restriction of its domain. As a matter of
fact all the above axioms are obtained intuitively from
their crisp analogues by generalizing the idea of partic-
ipation of players. For example, Axiom f5(an analogue
to Axiom b5), says that when contribution of a player i

to a game wi, is exactly opposite of that of player j, to a
game wj , (i and j having equal rates of participations)
then i’s payoff will be exactly opposite to the one for j.
Similarly, Axiom f6 implies that if i provides some pos-
itive contribution to B ∈ FB(A), and the added value
for w′ is greater than that for w or if i provides some
negative contribution to B ∈ FB(A), and the negative
added value for w′ is lesser than that for w in abso-
lute value, then its payoff due to w′ can not be lesser
than the one due to w. This establishes a well deserved
link between the crisp and fuzzy frameworks pertain-
ing to bi-cooperative games. Furthermore, the definition
above can be adopted for any class of bi-cooperative
games with fuzzy bi-coalitions. Following section deals
with the notion of fuzzy bi-cooperative games in mul-
tilinear extension form and their properties.

3. Fuzzy bi-cooperative games in multilinear
extension form

Given v ∈ BGN , define a fuzzy bi-cooperative game
w : FB(N) → R in multilinear extension form as fol-
lows.

w(A) =
∏
i∈L

µA(i)
∏
j∈M

(1 − νA(j))v(L, ∅)

+
∏
i∈M

νA(i)
∏
j∈L

(1 − µA(j))v(∅, M)

+
∑

(S,T )∈Q∗(L,M)

γ(A)v(S, T ) (13)

for every A ∈ FB(N) with Supp(A) = (L, M)∈Q(N)
and Q∗(L, M) = {(S, T ) : S ⊆ L, T ⊆ M, (S, T ) /∈
{(L, ∅), (∅, M)}} and where,

γ(A) =
⎧⎨
⎩

∏
i∈S

µA(i)
∏

j∈L\S
(1 − µA(j))

∏
i∈T

νA(i)
∏

j∈M\T
(1 − νA(j))

⎫⎬
⎭

(14)

Denote by Gm
FB(N) the class of fuzzy bi-cooperative

games in multilinear extension form. Observe that w

restricted to BGN gives the crisp bi-cooperative game
v. More precisely we have the following.

For (S, T ) ∈ Q(N), define a fuzzy bi-coalition A(S,T )

as follows.

µA(S,T ) (j) =
{

1 if j ∈ S

0 if j /∈ S
(15)

νA(S,T ) (j) =
{

1 if j ∈ T

0 if j /∈ T
(16)

It is easy to see that A(S,T ) represents the crisp bi-
coalition (S, T ). In the following uniqueness of the
above multilinear extension is shown in the line of
Owen [8].

Theorem 2.1. The fuzzy bi-cooperative game w :
FB(N) → R given by (13) is uniquely defined in the
sense that if v1, v2 are two distict games then the cor-
responding fuzzy bi-cooperative games in multilinear
extension form are also distinct .

Proof. Observe that for a particular fuzzy bi-coalition
A, we have exactly one of the following mutually exclu-
sive cases.

Case (a): L /= ∅, M = ∅; it follows from (13)

w(A) =
∏
i∈L

µA(i)
∏
j∈M

(1 − νA(j))v(L, ∅)
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Case (b): L = ∅, M /= ∅; thus (13) becomes,

w(A) =
∏
i∈M

νA(i)
∏
j∈L

(1 − µA(j))v(∅, M)

Case (c): L /= ∅, M /= ∅; thus (13) becomes,

w(A) =
∑

(S,T )∈Q∗(L,M)

γ(A)v(S, T )

where γ(A) is given by (14). Let w have the form

w(A) =
∑

(S,T )∈Q∗(L,M)

C(S,T )

{∏
i∈S

µA(i)
∏
i∈T

νA(i)

}

where C(S,T ) are constants. Then for every (S, T ) ∈
Q(N), it follows from (15) and (16)

w(A(S,T )) =
∑

(S′,T ′)⊆(S,T )

C(S′,T ′)

so that the condition w(A(S,T )) = v(S, T ) reduces to

w(A(S,T )) =
∑

(S′,T ′)⊆(S,T )

C(S′,T ′)

Now the proof follows exactly in the same way as of
Owen ([8], pg-79). �

In what follows we define a function � : Gm
FB(N) →

(Rn)FB(N) and show that it is the LG value for the class
Gm

FB(N). Define � : Gm
FB(N) → (Rn)FB(N) by

�i(w)(A) =
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!
×

∏
t∈L

µA(t)
∏
r∈M

(1 − νA(r))

[v(L ∩ (K ∪ i), ∅) − v(L ∩ K, ∅)]

+
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!

×
∏
t∈M

νA(t)
∏
r∈L

(1 − µA(r))

[v(∅, M ∩ (K ∪ i)) − v(∅, M ∩ K)]

+
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!
×

∑
(S0,T0)∈Q∗

1

⎧⎨
⎩

∏
t∈S0

µA(t)
∏

r∈L\S0

(1 − µA(r))

∏
t∈T0

νA(t)
∏

r∈M\T0

(1 − νA(r))

⎫⎬
⎭ v(S0, T0)

−
∑

(S
′
0,T

′
0)∈Q∗

2

⎧⎪⎨
⎪⎩

∏
t∈S

′
0

µA(t)
∏

r∈L\S′
0

(1 − µA(r))

∏
t∈T

′
0

νA(t)
∏

r∈M\T ′
0

(1 − νA(r))

⎫⎪⎬
⎪⎭ v(S

′
0, T

′
0)

(17)

where, Q∗
1 = Q∗(L ∩ (K ∪ i), M ∩ (K ∪ i)) and Q∗

2 =
Q∗(L ∩ K, M ∩ K). An equivalent expression of (17)
is given below.

�i(w)(A) =
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!
×

∏
t∈L

µA(t)
∏
r∈M

(1 − νA(r))

[v(L∩(K ∪ i), ∅) − v(L ∩ K, ∅)]

+
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!
×

∏
t∈M

νA(t)
∏
r∈L

(1 − µA(r))

[v(∅, M∩(K ∪ i)) − v(∅, M ∩ K)]

+
∑

(S,T )∈Q∗(L,M)

{
∏
t∈S

µA(t)
∏

r∈L\S
(1 − µA(r))

∏
t∈T

νA(t)
∏

r∈M\T
(1−νA(r))}�i(v)(S, T )

(18)

where �i(v) on the right hand side of (18) is the
i-th component of the LG value for the correspond-
ing crisp bi-cooperative game v. Since for a particular
fuzzy bi-coalition A, exactly one of the following mutu-
ally exclusive cases : Case (a): L = ∅, M /= ∅; Case
(b): L /= ∅, M = ∅ and Case (c): L /= ∅, M /= ∅ occurs
therefore exactly one of the three components on the
right side of (17) is non-zero. In what follows, a second
alternative expression of (17) is developed. Preparatory
to this, define the following.

µAK (j) =µA(j)
∧

χK(j), ∀j ∈ N (19)

νAK (j) =νA(j)
∧

χK(j), ∀j ∈ N (20)
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where χK is the characteristic (membership) function
of K given by

χK(j) =
{

1 if j ∈ K

0 otherwise
(21)

It follows that

Supp(AK) (22)

= ({j ∈ N : µAK (j) > 0}, {j ∈ N : νAK (j) > 0})
=(L ∩ K, M ∩ K) (23)

Similarly, for I ∈ FB(N) such that

µI (i) = µA(i), νI (i) = νA(i) (24)

µI (j) = νI (j) = 0, if i /= j (25)

we have Supp (AK ∪ I) = (L ∩ (K ∪ i), M ∩ (K ∪ i))
which follows from the facts that

µ(AK∪I)(j) = µA(j)
∧

χK∪{i}(j) (26)

ν(AK∪I)(j) = νA(j)
∧

χK∪{i}(j) (27)

Using (19) through (27),

w(AK ∪ I)

=
∏
l∈L

µA(l)
∏
j∈M

(1 − νA(j))v(L ∩ (K ∪ i), ∅)

+
∏
l∈M

νA(l)
∏
j∈L

(1 − µA(j))v(∅, M ∩ (K ∪ i))

+
∑

(S0,T0)∈Q∗
1

⎧⎨
⎩

∏
l∈S0

µA(l)
∏

j∈L\S0

(1 − µA(j))

∏
l∈T0

νA(l)
∏

j∈M\T0

(1 − νA(j))

⎫⎬
⎭ v(S0, T0) (28)

w(AK) =
∏
l∈L

µA(l)
∏
j∈M

(1 − νA(j))v(L ∩ K, ∅)

+
∏
l∈M

νA(l)
∏
j∈L

(1 − µA(j)) v(∅, M ∩ K)

+
∑

(S0,T0)∈Q∗
2

⎧⎨
⎩

∏
l∈S0

µA(l)
∏

j∈L\S0

(1 − µA(j))

∏
l∈T0

νA(l)
∏

j∈M\T0

(1 − νA(j))

⎫⎬
⎭ v(S0, T0) (29)

Therefore using (19) through (29), expression (17)
can be simplified to the following.

�i(w)(A)

=
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!

{w(AK ∪ I) − w(AK)} (30)

Our main theorem stands as follows.

Theorem 3.2.The function � : Gm
FB(N) → (Rn)Q(N)

given by (17) (or equivalently by (30)) is the unique
LG-value for the class of fuzzy bi-cooperative games in
multilinear extension form given by (13).

Proof. The proof includes two parts: � given by (17)
(or equivalently (30)) is an LG value for Gm

FB(N) and it
is unique.

The uniqueness of � follows from the uniqueness of
the LG value of the corresponding crisp bi-cooperative
game and that of the multilinear extension followed by
the axiom of linearity. Thus it is enough to show that �

is an LG value i.e., � satisfies the LG-axioms given by
Axiom f1 − f6. Let us proceed as follows.

Axiom f1 (Efficiency).
Let us consider L ∪ M = {i1, i2, i3, ...ip} in (??).

It is worth mentioning here that the roles of the
players (positive or negative) are not important in
the formulation however it does not affect their
bipolarity.

For every ij (j = 1, 2, ...p) and K ⊆ (L ∪ M) \ {ij},
in the following all the possible (K ∪ ij)s (where K ∪
ij = (L ∩ (K ∪ ij)) ∪ (M ∩ (K ∪ ij))) have been listed
as entries in a matrix Pk of p clusters with k + 1
repeated entries.

Pk =
(
A1

k

... A2
k

... · · · ... A
p
k

)

A1
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

{i2, · · · ik+1, i1} · · · {ip−(k−1), · · · ip, i1}
{i2, · · · ik+2, i1} · · · ×

...
...

{i2, · · · ip−1, i1} ×
{i2, · · · ip, i1} · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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A2
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

{i1, · · · ik+1, i2} · · · {ip−(k−1), · · · ip, i2}
{i1, i4 · · · ik+2, i2} {i4, · · · ik+4, i2}

...
...

{i1, · · · ip−1, i2}
{i1, · · · ip, i2} ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

A
p
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

{i1, · · · ik, ip} · · · {ip−k, · · · ip}
{i1, · · · ik+1, ip} {i3, · · · ip}

...
...

{i1, · · · ip−2, ip} ×
{i2, ip−(k−1) · · · ip−1, ip} ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

In a similar way, for every ij(j = 1, 2, ...p) and K ⊆
(L ∪ M) \ ij , all the possible K s (K = (L ∩ K) ∪
(M ∩ K)) have been listed as entries in a matrix Qk

of p clusters with p − k repeated entries as follows.

Qk =
(
B1

k

... B2
k

... · · · ... B
p
k

)
where the entries of Bl

k(l = 1, 2, ..., p) are exactly same
as those of the corresponding Al

k with only the excep-
tion that they do not contain il(l = 1, 2, ..., p).
Since the jth cluster of Qk+1 corresponds to the jth

cluster of Pk, it follows from (17)∑
ij∈(L∪M)

�ij (w)(A)

=
p−1∑
k=0

⎛
⎝ ∑

ij∈(L∪M)

C
ij
k

⎞
⎠ −

p−1∑
k=0

⎛
⎝ ∑

ij∈(L∪M)

D
ij
k

⎞
⎠ (31)

where

C
ij
k =

∑
K:|K|=k,ij /∈K

k!(p − k − 1)!

p!

×
⎡
⎣∏

it∈L

µA(it)
∏
ir∈M

(1−νA(ir))v(L ∩ (K ∪ ij), ∅)

+
∏
it∈M

νA(it)
∏
ir∈L

(1 − µA(ir))v(∅, M ∩ (K ∪ ij))

+
∑

(S0,T0)∈Q∗(L∩(K∪{ij}),M∩(K∪{ij}))

{ ∏
it∈S0

µA(it)

∏
ir∈L\S0

(1 − µA(ir))
∏
it∈T0

νA(it)

∏
ir∈M\T0

(1 − νA(ir))
}

v(S0, T0)

⎤
⎦

D
ij
k =

∑
K:|K|=k
ij /∈ K

k!(p − k − 1)!

p!

×
⎡
⎣∏

it∈L

µA(it)
∏
ir∈M

(1 − νA(ir))v(L ∩ K, ∅)

+
∏
it∈M

νA(it)
∏
ir∈L

(1 − µA(ir))v(∅, M ∩ K)

+
∑

(S
′
0,T

′
0)∈Q∗(L∩K, M∩K)

⎧⎪⎨
⎪⎩

∏
it∈S

′
0

µA(it)

∏
ir∈L\S′

0

(1 − µA(ir))
∏
it∈T

′
0

νA(it)

∏
ir∈M\T ′

0

(1 − νA(ir))

⎫⎪⎬
⎪⎭ v(S

′
0, T

′
0)

⎤
⎥⎦

Now∑
ij∈(L∪M)

C
ij
k

=
∑

ij∈(L∪M)

∑
K:|K|=k,ij /∈K

k!(p − k − 1)!

p!
×

⎡
⎣∏

it∈L

µA(it)
∏
ir∈M

(1 − νA(ir))v(L ∩ (K ∪ ij), ∅)

+
∏
it∈M

νA(it)
∏
ir∈L

(1 − µA(ir))v(∅, M ∩ (K ∪ ij))

+
∑

(S0,T0)∈Q∗(L∩(K∪{ij}),M∩(K∪{ij}))

⎧⎨
⎩

∏
it∈S0

µA(it)

∏
ir∈L\S0

(1 − µA(ir))
∏
it∈T0

νA(it)

∏
ir∈M\T0

(1 − νA(ir))

⎫⎬
⎭ v(S0, T0)

⎤
⎦ (32)
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∑
ij∈(L∪M)

D
ij
k

=
∑

ij∈(L∪M)

∑
K:|K|=k,ij /∈K

k!(p − k − 1)!

p!
×

⎡
⎣∏

it∈L

µA(it)
∏
ir∈M

(1 − νA(ir))v(L ∩ K, ∅)

+
∏
it∈M

νA(it)
∏
ir∈L

(1 − µA(ir))v(∅, M ∩ K)

+
∑

(S
′
0,T

′
0)∈Q∗(L∩K, M∩K)

⎧⎪⎨
⎪⎩

∏
it∈S

′
0

µA(it)

∏
ir∈L\S′

0

(1 − µA(ir))
∏
it∈T

′
0

νA(it)

∏
ir∈M\T ′

0

(1 − νA(ir))

⎫⎪⎬
⎪⎭ v(S

′
0, T

′
0)

⎤
⎥⎦ (33)

It follows from the matrix Pk and Qk the entries of
Pk and Qk+1 are identical whereas each entry of Pk is
repeated k + 1 times and each entry of Qk is repeated
p − k times. In view of this along with (32) - (33)

and noting that the expressions of
∑

ij∈(L∪M)
C

ij
k−1

and
∑

ij∈(L∪M)
D

ij
k are identical for k = 1, 2, · · · p, we

see that in (31) the corresponding elements cancel each
other. It follows that,

∑
ij∈(L∪M)

�ij (w)(A) =
∑

ij∈(L∪M)

C
ij
p−1

=
∏
it∈L

µA(it)
∏
ir∈M

(1 − νA(ir))v(L ∩ (K ∪ ij), ∅)

+
∏
it∈M

νA(it)
∏
ir∈L

(1 − µA(ir))v(∅, M ∩ (K ∪ ij))

+
∑

(S0,T0)∈Q∗(L∩(K∪{ij}),M∩(K∪{ij}))

{ ∏
it∈S0

µA(it)

∏
ir∈L\S0

(1 − µA(ir))
∏
it∈T0

νA(it)

∏
ir∈M\T0

(1 − νA(ir))
}

v(S0, T0)

It follows from the fact that, when |K| = p −
1 and ij /∈ K, Q∗(L ∩ (K ∪ {ij}), M ∩ (K ∪ {ij})) =
Q∗(L, M),∑
ij∈(L∪M)

�ij (w)(A)

=
∏
it∈L

µA(it)
∏
ir∈M

(1 − νA(ir))v(L, ∅)

+
∏
it∈M

νA(it)
∏
ir∈L

(1 − µA(ir))v(∅, M)

+
∑

(S0,T0)∈Q∗(L,M)

⎧⎨
⎩

∏
it∈S0

µA(it)

∏
ir∈L\S0

(1 − µA(ir))

∏
it∈T0

νA(it)
∏

ir∈M\T0

(1 − νA(ir))

⎫⎬
⎭ v(S0, T0)

= w(A).

N = {i1, i2, ..., ip} being arbitrary the result holds
for every N. This proves efficiency of �.

Axiom f2 (Linearity). This is obvious.

Axiom f3 (Null Player Axiom). Let i ∈ N be a null
player. Then by definition 2.10, for every A ∈ FB(N),
we have w(B ∪ I) = w(B), ∀B ∈ FB(A) with µB(i) =
νB(i) = 0 and ∀I ∈ FB(N) such that µI (j) = νI (j) =
0, when j /= i. It follows from (30),

�i(w)(A) =
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!

(w(AK ∪ I) − w(AK)) = 0

Axiom f4 (Intra Coalition Symmetry). It follows from
(13) that for any A ∈ FB(N), w ∈ Gm

FB(N) and a per-
mutation π such that πA = A,

�πi(πw)(πA)

=
∑

πK⊆π(L∪M)\{πi}

k!(l + m − k − 1)!

(l + m)!

{πw(πAπK ∪ (πI)) − πw(πAπK)}

=
∑

K
′⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!

{πw(πAπK ∪ (πI)) − πw(πAπK)} (34)



A
U

TH
O

R
 C

O
P

Y

690 S. Borkotokey et al. / A multilinear extension of a class of fuzzy bi-cooperative games

Following (19) and (20)

µπAπK (j) =µπA(j)
∧

χπK(j), ∀j ∈ N

= µA(π−1j)
∧

χK(π−1j), ∀j ∈ N

= µAK (π−1j)

= µπAK (j)

(35)

It follows that

νπAπK (j) =νπAK (j), ∀j ∈ N

µ(πAπK∪(πI))(j) =µπ(AK∪I)(j), ∀j ∈ N

ν(πAπK∪(πI))(j) =νπ(AK∪I)(j), ∀j ∈ N

(36)

Putting (35) through (36) in (34) ,

�πi(πw)(πA) =
∑

K
′⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!

{πw(π(AK ∪ (I))) − πw(π(AK))}
(37)

Using the fact that (πw)(πA) = w(A) and πA = A,
(37) becomes

�πi(πw)(A) =
∑

K′⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!

{w(AK ∪ I) − w(AK)}
= �i(w)(A)

Axiom f5 (Inter coalition Symmetry). Let wi and wj be
two bi-cooperative games with fuzzy bi-coalitions such
that for every B ∈ FB(A) with i, j /∈ Supp B and every
pair I, J ∈ FB(N) such that
µI (i) = νJ (j) > 0 or µJ (j) = νI (i) > 0 and µI (k) =
µJ (k) = 0 = νI (k) = νJ (k), ∀k ∈ N \ {i, j}, it holds
that,

1. wi(B ∪ I) − wi(B) = wj(B) − wj(B ∪ J)
2. wi(B ∪ J ∪ I) − wi(B ∪ J)

= wj(B ∪ I) − wj(B ∪ I ∪ J)

Given K ⊆ N and i, j, l ∈ N, let us construct A
ij
K as

follows.

µ
A

ij

K

(l) =
{

µA(l)
∧

χK(l), if l ∈ N \ {i, j}
0, otherwise

(38)

ν
A

ij

K

(l) =
{

νA(l)
∧

χK(l), if l ∈ N \ {i, j}
0, otherwise

(39)

where the function χK is given by (21).
Let J ∈ FB(N) be such that

µJ (j) = µAK (j), νJ (j) = νAK (j) (40)

µJ (k) = νJ (k) = 0, if k /= j (41)

Therefore using the facts that AK = A
ij
K ∪ J when K ⊆

(L ∪ M) \ {i} and AK = A
ij
K ∪ I when

K ⊆ (L ∪ M) \ {j}, it follows from (17),

�i(w
i)(A) =

∑
K⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!

(
wi(AK ∪ I) − wi(AK)

)
, i, j /∈ K

=
∑

K⊆(L∪M)\{i}

k!(l + m − k − 1)!

(l + m)!

(wi(Aij
K ∪ J ∪ I) − wi(Aij

K ∪ J))

and

�j(wj)(A) =
∑

K⊆(L∪M)\{j}

k!(l + m − k − 1)!

(l + m)!

(
wj(AK ∪ I) − wj(AK)

)
=

∑
K⊆(L∪M)\{j}

k!(l + m − k − 1)!

(l + m)!

(wj(Aij
K ∪ I ∪ J) − wj(Aij

K ∪ I))

Using (1) and (2), upon further simplifications we
obtain �i(wi)(A) = − �j(wj)(A).

Axiom f6 (Monotonicity). Let w and w
′

be two bi-
cooperative games with fuzzy bi-coalitions and A ∈
FB(N). Let further that ∃ an i ∈ N, such that for
every I ∈ FB(N) with µI (i) > 0 or νI (i) > 0, µI (j) =
νI (j) = 0, ∀j /= i and ∀B ∈ FB(A) such that µB(i) =
νB(i) = 0, it holds that

1. w
′
(B) = w(B)

2. w
′
(B ∪ I) ≥ w(B ∪ I)

The result follows from (30) along with (1) and (2).This
completes the proof. �

Example 3.3. Let us take an illustrative example where
the crisp bi-cooperative game
v : Q({1, 2, 3}) → R is given by
v(∅, ∅) = 0, v({1}, ∅) = 1, v({3}, ∅) = 2, v(∅, {2}) =
3, v({1}, {2}) = 4, v({3}, {2}) = 2, v({1, 3}, {2}) = 5,
v({1, 3}, ∅) = 6. and v(S, T ) = 0 for any other (S, T ) ∈
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Q({1, 2, 3}). Let A be a fuzzy bi-coalition over {1, 2, 3}
given by

A = {< 1, 0.1, 0 >, < 2, 0, 0.2 >, < 3, 0.3, 0 >}
Thus using (13), w(A) = .716. After some com-

putations, the LG value of w for A is found to be
(0.0973, 0.4699, 0.1488). A close look at the values of
the crisp bi-cooperative game reveals that player 2 is a
negative contributor and both player 1 and 3 are posi-
tive contributors, however 3 is more influential than 1 in
generating a value. Moreover, Player 3 has more mem-
bership as a positive contributor than 1 in the fuzzy
bi-coalition A also. The LG value divides the value
w(A) among the three players accordingly.

4. Conclusion

This paper proposes a new class of fuzzy bi-
cooperative games, namely the fuzzy bi-cooperative
games in multilinear extension form. The LG value is
obtained as a solution concept for these games. The
class of games what is defined here generalizes Owen’s
multilinear extension. For the future research, the rela-
tionship between the defined value and the other payoff

indices such as the fuzzy core, the fuzzy population
monotonic allocation scheme etc., may be further con-
sidered.
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