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Abstract

We first introduce the concept of Sugeno fractional integral based on the
concept of g-seminorm. Then Minkowski’s inequality for Sugeno fractional
integral of the order α > 0 based on two binary operations ⋆, ∗ is given.
Our results significantly generalize the previous results in this field of fuzzy
measure and fuzzy integral. Some examples are given to illustrate the
results.
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1. Introduction and motivation

Fractional calculus plays an important role in differential equations,
probability and statistics, see e.g. [6]. In many non-deterministic problems,
the assumption of additivity is not always plausible. So, it is necessary to
extend the concept of additivity to non-additivity case. The theory of
fuzzy measure and fuzzy integral was initially introduced by Sugeno [17]
as a tool for modeling non-deterministic problems. The Sugeno integral
with respect to a fuzzy measure is also called fuzzy integral. It is a useful
tool in several problems of theoretical and applied mathematics which has
been built on non-additive measure. The properties and applications of
the Sugeno integral have been studied by many authors, see for example
[9, 13, 16, 17, 18].
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A (⋆, ∗)-BASED MINKOWSKI’S INEQUALITY FOR . . . 863

Let us recall some notions and notations for the Sugeno integral used
in the subsequent sections of this paper. A monotone measure µ on a
measurable space (Ω,F) is a set function µ : F → B (where B = [0, 1] or
B = [0,∞] or B = [0,∞)) satisfying

(i) µ (∅) = 0;
(ii) µ(E) ≤ µ(F ) whenever E ⊆ F ;

moreover, µ is called real if µ (Ω) < ∞. The triple (Ω,F , µ) is also called
a monotone measure space if µ is a monotone measure on F . Note that a
real monotone measure µ satisfying µ (Ω) = 1, is also called fuzzy measure
or monotone probability, [17, 18].

Now, given the monotone set function space (Ω,F , µ), the Sugeno in-
tegral of X over A ∈ F w.r.t. µ can be represented as:

(S)−
∫
A
Xdµ =

∨
a>0

(a ∧ µ(A ∩ {X ≥ a}) := sup
a>0

min (a, µ (A ∩ {X ≥ a})) .

A binary operator T : [0, 1] × [0, 1] → [0, 1] is called a t-seminorm [16]
or semicopula [4], if it satisfies the following conditions:

(A) T (x, 1) = T (1, x) = x, ∀x ∈ [0, 1];
(B) ∀x1, x2, y1, y2 in [0, 1], if x1 ≤ x2, y1 ≤ y2,

then T (x1, y1) ≤ T (x2, y2).

Let T be a t-seminorm, then the seminormed fuzzy integral of X over
A with respect to T and the fuzzy measure µ is defined as

−
∫
TA

Xdµ =
∨

a∈[0,1]

T (a, µ(A ∩ {X ≥ a}) , (1.1)

which was independently proposed by Zhao [21] and Suárez and Gil [16].
Observe that this integral was also shown in [8] to be the smallest universal
integral based on T as a pseudo-multiplication on [0, 1]. Notice that, if the
seminorm T is the standard product, then the Shilkret integral [12, 15] is
obtained. For a fixed strict t-norm T [7], the corresponding seminormed
fuzzy integral is the so-called Sugeno-Weber integral [19]. Note that the
original Sugeno integral which was introduced by Sugeno [17] in 1974 is a
special seminormed fuzzy integral when the seminorm T is min.

In 2014, Hu [5] introduced a new class of fuzzy integral called Sugeno-
like integral, which is based on the concept of g-seminorm. Notice that, for
a fixed measure µ with µ (Ω) from B, a function G : B × B → B is called
a generalized seminorm (g-seminorm for short), if it satisfies:

(i) G (x, µ (Ω)) 6 x for each x ∈ B;
(ii) If x1 6 x3, x2 6 x4 for each x1, x2, x3, x4 ∈ B,

then G (x1, x2) 6 G (x3, x4).
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864 A. Babakhani, H. Agahi, R. Mesiar

Let G be a g-seminorm. The G-Sugeno integral of X over A ∈ F w.r.t.
µ can be represented as [5]:

(SG)−
∫
A
Xdµ =

∨
a∈B

G (a, µ(A ∩ {X ≥ a}) .

Clearly, if G = ∧, then the Sugeno integral is obtained. If G = T with
B = [0, 1], then we obtain the seminormed fuzzy integral. Throughout this
paper, we always consider the existence of all G-Sugeno integral.

Román-Flores et al. [14] were the first who studied several well-known
inequalities for the fuzzy integral. Recently several papers have appeared on
the study of inequalities for the Sugeno integral, as [1, 2, 3, 10, 11, 20]. For
example, in 2010, Wu et al. [20] proved a Hölder inequality for the original
Sugeno integral based on comonotone functions and a binary operation
⋆ : [0, 1] × [0, 1] → [0, 1] whenever ⋆ ≥ max. This inequality had two
major limitations: First, in general, this inequality does not work when
⋆ < max (especially when ⋆ is a seminorm). Second, it is based on the
comonotonicity condition. Recently, Agahi and Mesiar [1] have proposed
a new version of a Cauchy Schwarz type inequality for Sugeno integral
without the comonotonicity condition based on the multiplication operator.

In this paper, we first introduce the concept of G-Sugeno fractional
integral. Then we give a general version of Minkowski type inequality for
G-Sugeno fractional integral of the order α > 0 based on the concept of
g-seminorm and two binary operations (⋆, ∗). In this inequality, the binary
operation ⋆ includes not only some semiconorms but also some seminorms
in special cases. If ⋆ = ∗ = +, we can obtain Minkowski type inequality
for G-Sugeno fractional integral (see Corollary 2.1). If ∗ = ⋆ = min, then
we will generalize some results of [3] (see Remark 2.4). Also, a Cauchy
Schwarz type inequality for G-Sugeno fractional integral is obtained (see
Corollary 2.6).

The presentation of the paper is as follows. In Section 2, we introduce
the G-Sugeno fractional integral of order α > 0, including as a particular
member the Sugeno fractional integral. Next, a new version of Minkowski-
type inequality forG-Sugeno fractional integral is introduced. Furthermore,
we also present several related interesting inequalities for G-Sugeno frac-
tional integrals. Finally, some conclusions are added.

2. Main results

In this section, we introduce the following G-Sugeno fractional integral.
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A (⋆, ∗)-BASED MINKOWSKI’S INEQUALITY FOR . . . 865

Definition 2.1. For a fixed t ∈ (0,∞), let ([0, t],B([0, t]), µ) be a
monotone measure space, where B([0, t]) is the Borel σ-algebra on [0, t],
and let G be a g-seminorm. For a measurable function X : [0, t] → B and
α > 0, denote by Xα a function on [0, t] given by

Xα(ω) =
1

Γ (α)
(t− ω)α−1X (ω) ,

here Γ(α) is the Gamma function. Then the G-Sugeno fractional integral
of X w.r.t. µ is given by

GSFα,G
[0,t] [µ,X] = (SG)−

∫
[0,t]

Xαdµ. (2.1)

Note that when dealing with a concrete function X, we will often express
formula (2.1) in the form

GSFα,G
[0,t] [µ,X] = (SG)−

∫ t

0

1

Γ (α)
(t− ω)α−1X (ω) dµ (ω) , 0 6 ω 6 t,

(2.2)
as we use such form with ω in the next text.

Remark 2.1. (I) If G = min in Definition 2.1, then we obtain the
Sugeno fractional integral.

(II) If t = 1, G = T with B = [0, 1] in Definition 2.1, then we obtain
the seminormed fuzzy fractional integral. Specially if α = 1, then we have
the seminormed fuzzy integral (1.1).

(III) If G is the standard product on [0, 1], then we obtain the Shilkret
fractional integral.

Now, we intend to give a version of Minkowski type inequality for G-
Sugeno fractional integral of the order α > 0 based on two binary operations
(⋆, ∗) .

Theorem 2.1. Let t, s ∈ (0,∞) and c1, c2 ∈ (0, 1]. Let two binary
operations ⋆, ∗ : B × B → B be continuous and nondecreasing in both
arguments and X,Y : [0, t] → B be two non-negative measurable functions
such that

X (ω) > (X (ω) ∗ Y (ω)) c1, Y (ω) > (X (ω) ∗ Y (ω)) c2, (2.3)

for any 0 6 ω 6 t. If the g-seminorm G : B ×B → B satisfies

G (a, b) 6 min

{
1

cs1
G (cs1a, b) ,

1

cs2
G (cs2a, b)

}
(2.4)
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866 A. Babakhani, H. Agahi, R. Mesiar

for any a, b, then the inequality(
GSFα,G

[0,t] [µ,X
s]
) 1

s
⋆
(
GSFα,G

[0,t] [µ, Y
s]
) 1

s

> c1

(
GSFα,G

[0,t] [µ, (X ∗ Y )s]
) 1

s
⋆ c2

(
GSFα,G

[0,t] [µ, (X ∗ Y )s]
) 1

s
(2.5)

holds where the symbol GSFα,G
[0,t] is defined by (2.2).

P r o o f. Let s ∈ (0,∞) and c1, c2 ∈ (0, 1]. By (2.3), we have

(X (ω))s > cs1 (X (ω) ∗ Y (ω))s . (2.6)

Multiplying both sides of (2.6) by (t−ω)α−1

Γ(α) , ω ∈ (0, t) , α > 0, we have

(t− ω)α−1

Γ (α)
(X (ω))s > cs1

(t− ω)α−1

Γ (α)
(X (ω) ∗ Y (ω))s .

The monotonicity implies that(
GSFα,G

[0,t] [µ,X
s]
) 1

s >
(
GSFα,G

[0,t] [µ, c
s
1 (X ∗ Y )s]

) 1
s
. (2.7)

By (2.4), we can see that

GSFα,G
[0,t] [µ, c

s
1 (X ∗ Y )s] > cs1GSFα,G

[0,t] [µ, (X ∗ Y )s] . (2.8)

Therefore, (2.7) and (2.8) imply that(
GSFα,G

[0,t] [µ,X
s]
) 1

s > c1

(
GSFα,G

[0,t] [µ, (X ∗ Y )s]
) 1

s
. (2.9)

Also,

(Y (ω))s > cs2 (X (ω) ∗ Y (ω))s , (2.10)

and then, by multiplying both sides of (2.10) by (t−ω)α−1

Γ(α) , ω ∈ (0, t), we

have (
GSFα,G

[0,t] [µ, Y
s]
) 1

s >
(
GSFα,G

[0,t] [µ, c
s
2 (X ∗ Y )s]

) 1
s

> c2

(
GSFα,G

[0,t] [µ, (X ∗ Y )s]
) 1

s
. (2.11)

It follows from (2.9) and (2.11) that(
GSFα,G

[0,t] [µ,X
s]
) 1

s
⋆
(
GSFα,G

[0,t] [µ, Y
s]
) 1

s

> c1

(
GSFα,G

[0,t] [µ, (X ∗ Y )s]
) 1

s
⋆ c2

(
GSFα,G

[0,t] [µ, (X ∗ Y )s]
) 1

s
.

This completes the proof. 2
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A (⋆, ∗)-BASED MINKOWSKI’S INEQUALITY FOR . . . 867

Let ⋆ = ∗ = + in Theorem 2.1. Then the following result immediately
follows from the previous theorem.

Corollary 2.1. Let t, s ∈ (0,∞) . Let X,Y : [0, t] → B be two
non-negative measurable function such that

0 < m 6 X (ω)

Y (ω)
6 M

for any 0 6 ω 6 t. If the g-seminorm G : B ×B → B satisfies

G (a, b)6min

{(
m+1

m

)s

G

((
m

m+1

)s

a, b

)
, (M+1)sG

((
1

M+1

)s

a, b

)}
for any a, b, then the inequality(

GSFα,G
[0,t] [µ,X

s]
) 1

s
+

(
GSFα,G

[0,t] [µ, Y
s]
) 1

s > K
(
GSFα,G

[0,t] [µ, (X + Y )s]
) 1

s

(2.12)

holds, where K = m(M+1)+(m+1)
(m+1)(M+1) and GSFα,G

[0,t] is defined by (2.2). In par-

ticular, if X,Y are proportional, then(
GSFα,G

[0,t] [µ,X
s]
) 1

s
+

(
GSFα,G

[0,t] [µ, Y
s]
) 1

s >
(
GSFα,G

[0,t] [µ, (X + Y )s]
) 1

s
.

(2.13)

P r o o f. Put ⋆ = ∗ = +, c1 = m
m+1 and c2 = 1

M+1 in Theorem 2.1.

Since m 6 X(ω)
Y (ω) , we have X (ω) > m

m+1 (X (ω) + Y (ω)) . Also, if M >
X(ω)
Y (ω) , we have Y (ω) > X(ω)+Y (ω)

M+1 . Then (2.3) holds readily. If X,Y are

proportional, i.e., X(ω) = βY (ω), β > 0, then m = M = β, K = 1 and
(2.12) reduces on (2.13). This completes the proof. 2

Example 2.1. Let X(ω) = 4 − ω and Y (ω) = 2 − ω
2 , ω ∈ [0, 4]. Let

t = 4, s = 2, α = 2 and µ(A) = λ(A) where λ is the Lebesgue measure on
R. So,

GSF2,min
[0,4]

[
λ, (X+Y )2

]
= (S)−

∫ 4

0

1

Γ (2)
(4− ω)

(
6− 3

2
ω

)2

dλ = 2.9104,

GSF2,min
[0,4]

[
λ,X2

]
= (S)−

∫ 4

0

1

Γ (2)
(4− ω)3 dλ = 2.6212,

GSF2,min
[0,4]

[
λ, Y 2

]
= (S)−

∫ 4

0

1

4Γ (2)
(4− ω)3 dλ = 2.

Therefore,
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868 A. Babakhani, H. Agahi, R. Mesiar

(
GSF2,min

[0,4]

[
λ,X2

]) 1
2
+

(
GSF2,min

[0,4]

[
λ, Y 2

]) 1
2
= 3.0332

> 1.7060 =
(
GSF2,min

[0,4]

[
λ, (X + Y )2

]) 1
2
.

Remark 2.2. We can easily see that the inequality (2.12) in Corollary
2.1 (thus the inequality (2.5) in Theorem 2.1) is sharp (for example, when
X(ω) = Y (ω) ≡ 1, ω ∈ [0, 4] , G = min, ⋆ = ∗ = +, t = 4, s = 2, α =
1, µ(A) = λ(A) where λ is the Lebesgue measure on R, then (2.12) becomes
an equality).

Remark 2.3. As some special cases of ⋆ or ∗ in Theorem 2.1, we can
find some interesting results. For example, we have the following results
which works with a binary operation ∗ whenever ∗ 6 min (Notice that in
special case, if B = [0, 1] and µ (Ω) = 1, it works when ∗ is a seminorm).

Corollary 2.2. Let t, s ∈ (0,∞) and c1, c2 ∈ (0, 1]. Let two binary
operations ⋆, ∗ : B × B → B be continuous and nondecreasing in both
arguments and X,Y : [0, t] → B be two non-negative measurable functions
such that

min (X (ω) , Y (ω)) > (X (ω) ∗ Y (ω))max (c1, c2) , 0 6 ω 6 t.

If the g-seminorm G : B ×B → B satisfies

G (a, b) 6 min

{
1

cs1
G (cs1a, b) ,

1

cs2
G (cs2a, b)

}
(2.14)

for any a, b, then the inequality(
GSFα,G

[0,t] [µ,X
s]
) 1

s
⋆
(
GSFα,G

[0,t] [µ, Y
s]
) 1

s

> c1

(
GSFα,G

[0,t] [µ, (X ∗ Y )s]
) 1

s
⋆ c2

(
GSFα,G

[0,t] [µ, (X ∗ Y )s]
) 1

s
(2.15)

holds where the symbol GSFα,G
[0,t] is defined by (2.2).

Remark 2.4. (I) Let B = [0, 1], s ∈ [1,∞), t = α = 1, G (x, y) =
∗ (x, y) = ⋆ (x, y) = min (x, y) for all x, y ∈ [0, 1] in Corollary 2.2. Then we
have a Cauchy Schwarz type inequality which generalizes Theorem 2 in [3].

(II) Let B = [0, 1], t = α = 1, G (x, y) = min (x, y) , ⋆ (x, y) = ∗ (x, y) =
xy

(x+y) in Theorem 2.1. Then we have a version of Milne’s integral inequality

for the Sugeno integral.
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(III) Clearly, the condition (2.14) works for c1 = c2 = 1. If c1, c2 < 1,
for G = min (i.e., for Sugeno integral), the condition (2.14) is satisfied. In
some special cases, for example, G (x, y) = Tp (x, y) = xy,B = [0, 1] (i.e.,
for Shilkret integral), the condition is also satisfied. But if c1, c2 < 1, B =
[0, 1], G (x, y) = x2y, we can see that condition (2.14) is not established.
Furthermore, it can be easily shown that this condition in Corollary 2.2
(thus in Theorem 2.1) is essential.

Here, we would like to prove the general cases of Theorem 2.1.

Theorem 2.2. Let t, p, q, s ∈ (0,∞) and c1, c2 ∈ (0, 1]. Let two
binary operations ⋆, ∗ : B × B → B be continuous and nondecreasing in
both arguments and X,Y, Z1, Z2 : [0, t] → B be non-negative measurable
functions such that

Xp (ω) > (X (ω) ∗ Y (ω)) c1, Y q (ω) > (X (ω) ∗ Y (ω)) c2, (2.16)

for any 0 6 ω 6 t. If the g-seminorm G satisfies

G (a, b) 6 min

{
1

cs1
G (cs1a, b) ,

1

cs2
G (cs2a, b)

}
(2.17)

for any a, b, then the inequality(
GSCZ1,G

[0,t] [µ,Xps]
) 1

ps
⋆
(
GSCZ2,G

[0,t] [µ, Y qs]
) 1

qs

> c
1
p

1

(
GSCZ1,G

[0,t] [µ, (X ∗ Y )s]
) 1

ps
⋆ c

1
q

2

(
GSCZ2,G

[0,t] [µ, (X ∗ Y )s]
) 1

qs

holds, where the symbol GSCZi,µ
[0,t] , i = 1, 2 is defined by

GSCZi,G
[0,t] [µ,X] = (SG)−

∫ t

0
Zi (t− ω)X (ω) dµ (ω) , i = 1, 2 . (2.18)

P r o o f. Let p, q, s ∈ (0,∞) and c1, c2 ∈ (0, 1]. By (2.16), we have

(X (ω))ps > cs1 (X (ω) ∗ Y (ω))s . (2.19)

Multiplying both sides of (2.19) by Z1 (t− ω) , ω ∈ (0, t) . Then

Z1 (t− ω) (X (ω))ps > cs1Z1 (t− ω) (X (ω) ∗ Y (ω))s . (2.20)

The monotonicity, (2.17) and (2.20) imply that(
GSCZ1,G

[0,t] [µ,Xps]
) 1

ps >
(
GSCZ1,G

[0,t] [µ, cs1 (X ∗ Y )s]
) 1

ps

> c
1
p

1

(
GSCZ1,G

[0,t] [µ, (X ∗ Y )s]
) 1

ps
. (2.21)

Also,
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870 A. Babakhani, H. Agahi, R. Mesiar

(Y (ω))qs > cs2 (X (ω) ∗ Y (ω))s , (2.22)

and then, by multiplying both sides of (2.22) by Z2 (t− ω) , ω ∈ (0, t) , we
have (

GSCZ2,G
[0,t] [µ, Y qs]

) 1
qs >

(
GSCZ2,G

[0,t] [µ, cs2 (X ∗ Y )s]
) 1

qs

> c
1
q

2

(
GSCZ2,G

[0,t] [µ, (X ∗ Y )s]
) 1

qs
. (2.23)

By (2.21) and (2.23), the following result holds(
GSCZ1,G

[0,t] [µ,Xps]
) 1

ps
⋆
(
GSCZ2,G

[0,t] [µ, Y qs]
) 1

qs

> c
1
p

1

(
GSCZ1,G

[0,t] [µ, (X ∗ Y )s]
) 1

ps
⋆ c

1
q

2

(
GSCZ2,G

[0,t] [µ, (X ∗ Y )s]
) 1

qs
.

This completes the proof. 2

Let Z1 = Z2 = Z in Theorem 2.2. Then we obtain the following result.

Corollary 2.3. Let t, p, q, s ∈ (0,∞) and c1, c2 ∈ (0, 1]. Let two
binary operations ⋆, ∗ : B×B → B be continuous and nondecreasing in both
arguments and X,Y, Z : [0, t] → B be non-negative measurable functions
such that

Xp (ω) > (X (ω) ∗ Y (ω)) c1, Y q (ω) > (X (ω) ∗ Y (ω)) c2, (2.24)

for any 0 6 ω 6 t. If the g-seminorm G satisfies

G (a, b) 6 min

{
1

cs1
G (cs1a, b) ,

1

cs2
G (cs2a, b)

}
for any a, b, then the inequality(

GSCZ,G
[0,t] [µ,X

ps]
) 1

ps
⋆
(
GSCZ,G

[0,t] [µ, Y
qs]

) 1
qs

> c
1
p

1

(
GSCZ,G

[0,t] [µ, (X ∗ Y )s]
) 1

ps
⋆ c

1
q

2

(
GSCZ,G

[0,t] [µ, (X ∗ Y )s]
) 1

qs

holds where the symbol GSCZ,µ
[0,t] is defined by (2.18).

Corollary 2.4. Let t, s ∈ (0,∞) . Let X,Y, Z : [0, t] → B be non-
negative measurable functions such that

0 < m 6 X (ω)

Y (ω)
6 M
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A (⋆, ∗)-BASED MINKOWSKI’S INEQUALITY FOR . . . 871

for any 0 6 ω 6 t. If the g-seminorm G satisfies

G (a, b)6min

{(
m+1

m

)s

G

((
m

m+1

)s

a, b

)
, (M+1)sG

((
1

M+1

)s

a, b

)}
for any a, b, then the inequality(

GSCZ,G
[0,t] [µ,X

s]
) 1

s
+

(
GSCZ,G

[0,t] [µ, Y
s]
) 1

s > K
(
GSCZ,G

[0,t] [µ, (X + Y )s]
) 1

s

holds, where K = m(M+1)+(m+1)
(m+1)(M+1) and GSCZ,G

[0,t] is defined by (2.18) for all

α > 0. In particular, if X,Y are proportional, then(
GSCZ,G

[0,t] [µ,X
s]
) 1

s
+

(
GSCZ,G

[0,t] [µ, Y
s]
) 1

s >
(
GSCZ,G

[0,t] [µ, (X + Y )s]
) 1

s
.

Corollary 2.5. Let t ∈ (0,∞). Let X,Y, Z : [0, t] → B be non-
negative measurable functions such that

0 < m 6 X (ω)

Y (ω)
6 M ∀ω ∈ [0, t].

If the g-seminorm G satisfies

G (a, b) 6 min

{
1

m
G (ma, b) ,MG

( a

M
, b
)}

for any a, b, such that max
{

1
M ,m

}
6 1, then the inequality(

GSCZ,G
[0,t]

[
X2

]) 1
2
(
GSCZ,G

[0,t]

[
Y 2

]) 1
2 > K

(
GSCZ,G

[0,t] [XY ]
)

holds, where K =
√

m
M and the symbol GSCZ,µ

[0,t] is defined by (2.18).

P r o o f. Put s = 1, p = q = 2, ⋆ = ∗ = ×, c1 = m and c2 = 1
M where

max
{

1
M ,m

}
6 1 in Corollary 2.3. Since m 6 X(ω)

Y (ω) , we have X2 (ω) >
m (X (ω)Y (ω)) . Also, if M > X(ω)

Y (ω) , we have Y 2 (ω) > 1
MX (ω)Y (ω) .

Then (2.24) holds readily. This completes the proof. 2

If we take Z = (Γ (α))−1 (t− ω)α−1 , α > 0 in Corollary 2.5, then we
have the following result (notice that for α = 1, the results of [1] is ob-
tained).

Corollary 2.6. Let t ∈ (0,∞). Let X,Y, Z : [0, t] → B be non-
negative measurable functions such that

0 < m 6 X (ω)

Y (ω)
6 M, ∀ω ∈ [0, t].

If the g-seminorm G satisfies

G (a, b) 6 min

{
1

m
G (ma, b) ,MG

( a

M
, b
)}

(2.25)
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for any a, b, such that max
{

1
M ,m

}
6 1, then the inequality(

GSFα,G
[0,t]

[
X2

]) 1
2
(
GSFα,G

[0,t]

[
Y 2

]) 1
2 > K

(
GSFα,G

[0,t] [XY ]
)

holds, where K =
√

m
M and the symbol GSFα,G

[0,t] is defined by (2.2).

Remark 2.5. Clearly, min on any B, usual product on [0, 1], etc.,
satisfy the constraint (2.25) of this corollary.

The following example easily shows that the condition max
{

1
M ,m

}
6 1

in Corollary 2.6 is essential.

Example 2.2. Using Example 2.1, then

GSF2,min
[0,4] [λ,XY ] = (S)−

∫ 4

0

1

Γ (2)
(4− ω)2

(
2− ω

2

)
dλ = 2. 3298.

Therefore,(
GSF2,min

[0,4]

[
λ,X2

]) 1
2
(
GSF2,min

[0,4]

[
λ, Y 2

]) 1
2
= 2.2896

� 2.3298 = GSF2,min
[0,4] [λ,XY ] .

3. Conclusion

We have introduced the G-Sugeno fractional integral, extending the
Sugeno fractional integral and the seminormed fuzzy fractional integral. We
have proved a general version of Minkowski type inequality for G-Sugeno
fractional integral of the order α > 0 based on two binary operations (⋆, ∗).
Also, a Cauchy Schwarz type inequality for G-Sugeno fractional integral is
obtained. For further investigation, it would be a challenging problem to
determine the conditions under which (2.5) becomes an equality.
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