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Generalizations of OWA Operators
Radko Mesiar, Andrea Stupňanová, and Ronald R. Yager, Life Fellow, IEEE

Abstract—OWA operators can be seen as symmetrized weighted
arithmetic means, as Choquet integrals with respect to symmetric
measures, or as comonotone additive functionals. Following these
three different looks on OWAs, we discuss several already known
generalizations of OWA operators, including GOWA, IOWA, OMA
operators, as well as we propose new types of such generalizations.

Index Terms—Choquet integral, comonotonicity, copula, gen-
eralized ordered weighted average (GOWA) operator, ordered
modular average (OMA) operator, ordered weighted average
(OWA) operator.

I. INTRODUCTION

ORDERED Weighted Average (OWA) operators were in-
troduced in 1988 by Yager [36]. Very soon they became

an important tool in many domains, especially in decision prob-
lems. Rather early, several generalizations of OWAs appeared,
such as generalized OWA (GOWA) [32], induced OWA (IOWA)
[34], [37], 2-D OWA operators [2], etc. Recently, a survey of
OWA literature using a citation network analysis was published
in [8], including 537 OWA related sources in supplementary
document. However, a systematic approach to OWA generaliza-
tions is still missing, at least to the best knowledge of authors.
The aim of this paper is to fill the aforementioned gap. Note that
following the basic introduction of OWA operators in [36], they
can be seen as follows:

1) weighted arithmetic means of ordered inputs;
2) Choquet integrals with respect to symmetric capacities

[11];
3) symmetric comonotone additive aggregation functions [3]

(this axiomatic characterization follows from results of
[27] and [11]).

Each of OWA generalizations known to us is related to a
generalization linked to some of items summarized previously.
Moreover, this way, several new kinds of generalized OWAs
can be obtained, as shown in this paper. It is organized as fol-
lows. In the next section, more detailed look on OWA operators
is offered. Section III reviews some known generalizations re-
lated to (1), i.e., when looking on OWAs as weighted arithmetic
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means applied to an ordered input n-tuple. Section IV deals with
integral-based generalizations of OWAs, while in Section V,
we generalize the axiomatic look on OWAs. Finally, some con-
cluding remarks are given.

II. ORDERED WEIGHTED AVERAGE OPERATORS

Through this paper, we will deal with n-ary aggregation func-
tions on [0, 1], i.e., functions A : [0, 1]n → [0, 1] which are
monotone and satisfy the boundary conditions A(0, . . . , 0) =
0, A(1, . . . , 1) = 1. For more details concerning the aggrega-
tion functions, we recommend monographs [1], [12]. Observe
that the presented definitions and results can be mostly straight-
forwardly extended to the case of a general interval I , in partic-
ular for I ∈ {[0,∞], [0,∞ [, [−1, 1], [−∞,∞],] −∞,∞ [}.
OWA operators, as a special class of aggregation functions cov-
ering the standard min,max, and arithmetic mean operators,
were introduced by Yager [36] in 1988.

Definition 2.1: Let w = (w1 , . . . , wn ) ∈ [0, 1]n be a

normed weighting vector, i.e.,
n∑

i=1
wi = 1. A function OWAw :

[0, 1]n → [0, 1] given by

OWAw (x) =
n∑

i=1

wi xσ (i) (1)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation of
{1, . . . n} such that xσ (1) ≥ · · · ≥ xσ (n) , is called an OWA
operator.

Note that a normed weighting vector w ∈ [0, 1]n can be
seen as a discrete probability distribution on the universe
X = {1, . . . , n}, with P ({i}) = wi , i = 1, . . . , n. This look al-
lows to apply ideas known for discrete probabilities in OWA
domain, too, such as the entropy concept [26], [35], for
example. Observe also that the permutation σ applied in for-
mula (1) need not be unique. However, the possible nonunique-
ness may appear only in the case of ties within the input data
(x1 , . . . , xn ) and in such case, the formula (1) gives the same
output OWAw (x), independently of permutation σ. It is evident
that OWAw is an aggregation function. Moreover, it is idempo-
tent (i.e., OWAw (c, . . . , c) = c for each c ∈ [0, 1]) and symmet-
ric (i.e., OWAw (x1 . . . , xn ) = OWAw (xα(1) , . . . , xα(n)) for
an arbitrary permutation α : {1, . . . , n} → {1, . . . , n}).

Recall some basic OWA operators:
1) OWA(1,0,...,0)(x) = max (x1 , . . . , xn );
2) OWA(0,0,...,1)(x) = min (x1 , . . . , xn );

3) OWA( 1
n ,..., 1

n )(x) = 1
n

n∑

i=1
xi (arithmetic mean);

4) OWA( 1
2 ,0,...,0, 1

2 )(x) =
= 1

2 (min (x1 , . . . , xn ) + max (x1 , . . . , xn ));
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5) OWA(0, 1
n −2 ,..., 1

n −2 ,0)(x) =

= 1
n−2

(
n∑

i=1
xi−min (x1 , . . . , xn ) − max (x1 , . . . , xn )

)

.

Now, we will discuss OWA operators from different points of
view.

1) Recall that, for a normed weighting vector w ∈ [0, 1]n ,
the weighted arithmetic mean Ww : [0, 1]n → [0, 1] is an
idempotent aggregation function given by

Ww (x) =
n∑

i=1

wi xi. (2)

Thus OWA operators, compare formula (1), can be seen
as weighted arithmetic means applied to reordered input
vectors,

OWAw (x1 , . . . , xn ) = Ww
(
xσ (1) , . . . , xσ (n)

)

with xσ (1) ≥ · · · ≥ xσ (n) . More, OWAs can be seen
as symmetrized weighted arithmetic means. Note that
following [3], [12], each aggregation function A :
[0, 1]n → [0, 1] can be symmetrized into a related aggre-
gation function As : [0, 1]n → [0, 1], As (x1 , . . . , xn ) =
A

(
xσ (1) , . . . , xσ (n)

)
, where σ is a permutation as consid-

ered above, i.e., xσ (1) ≥ · · · ≥ xσ (n) . Hence OWAw =
(Ww )s .

2) Choquet integral was introduced by Choquet in 1953 [5],
although there are some earlier predecessors, see, e.g.,
Vitali’s approach dated to 1925 [31]. When dealing with a
finite universe X = {1, . . . , n}, functions f : X → [0, 1]
can be identified with vectors x ∈ [0, 1]n , xi = f(i), i =
1, . . . , n. A capacity (fuzzy measure) m : 2X → [0, 1] is
a monotone set function constrained by the two boundary
conditions, m(∅) = 0,m(X) = 1.

Definition 2.2 ([12]): For a given vector x ∈ [0, 1]n and ca-
pacity m on X the corresponding Choquet integral is given
by

Chm (x) =
n∑

i=1

xσ (i) (m(Eσ,i) − m(Eσ,i−1)) (3)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation such that
xσ (1) ≥ · · · ≥ xσ (n) , Eσ,0 = ∅, and for i = 1, . . . , n, Eσ,i =
{σ(1), . . . , σ(i)}.

As already observed in the case of formula (1), also in the
case of formula (3) it may happen, that the permutation σ is
not unique. This fact does not hurt the correctness of formula
(3). As observed by Grabisch [11], formulae (1) and (3) may
coincide for each x ∈ [0, 1]n if and only if m(Eσ,i) does not
depend on the considered permutation σ. This means that only
card, Eσ,i = i matters, i.e., m(E) = m(σ(E)) for any E ∈ 2X

and permutation σ, σ(E) = {σ(i)| i ∈ E}. Such capacities are
called symmetric. Now, it is enough to put wi = m(Eσ,i) −
m(Eσ,i−1) to see that

OWAw = Chm . (4)

Vice-versa, for any normed weighting vector w, it is enough
to define a symmetric capacity m : 2X → [0, 1] by

m(E) =
cardE∑

i=1

wi (5)

to see the representation (4).
3) Schmeidler [27] has characterized the Choquet integral

by means of the comonotone additivity. Recall that two
vectors x,y ∈ [0, 1]n are comonotone whenever there is a
permutation σ : {1, . . . , n} → {1, . . . , n} so that xσ (1) ≥
· · · ≥ xσ (n) as well as yσ (1) ≥ · · · ≥ yσ (n) .

Proposition 2.3: [27]
Let A : [0, 1]n → [0, 1] be an aggregation function. Then, the

following are equivalent.
1) A is comonotone additive, i.e., for each comonotone vec-

tors x,y ∈ [0, 1]n satisfying x + y ∈ [0, 1]n it holds

A(x + y) = A(x) + A(y).

2) A is Choquet integral, A = Chm , where the capacity m :
2X → [0, 1] is given by m(E) = A(1E ),

1E (i) =

{
1, if i ∈ E

0, otherwise.

Considering the symmetry of OWA operators and the repre-
sentation (4), we have the next corollary, see also [12].

Corollary 2.4: Let A : [0, 1]n → [0, 1] be an aggregation
function. Then, the following are equivalent:

1) A is symmetric and comonotone additive;
2) A is OWA operator, A = OWAw , where the normed

weighting vector w ∈ [0, 1]n is given by wi =
A(1, . . . , 1

︸ ︷︷ ︸
i−times

, 0, . . . , 0) − A( 1, . . . , 1
︸ ︷︷ ︸

(i−1)−times

, 0, . . . , 0).

Observe also that the comonotone additivity of an aggregation
function forces its positive homogeneity, and thus, the positive
homogeneity can be considered as a genuine property of OWA
operators.

III. BASIC GENERALIZATIONS OF ORDERED WEIGHTED

AVERAGE OPERATORS

There are several classes of weighted aggregation functions,
for an overview see, e.g., [12]. For any weighted aggregation
function Aw : [0, 1]n → [0, 1], related to a weighting vector
w ∈ Rn

+ (in general, w need not be normed), one can consider
its symmetrization (Aw )s : [0, 1]n → [0, 1],

(Aw )s (x1 , . . . , xn ) = Aw
(
xσ (1) , . . . , xσ (n)

)

as a generalization of OWA operators. Here, as also in the re-
mainder of the paper, σ : {1, . . . , n} → {1, . . . , n} is an arbi-
trary permutation such that xσ (1) ≥ · · · ≥ xσ (n) (i.e., σ is in-
duced by the input vector x = (x1 , . . . , xn )).

In particular, when considering weighted quasi-arithmetic
mean (Ag )w : [0, 1]n → [0, 1], defined, for a continuous strictly
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monotone function g : [0, 1] → [−∞,∞] by

(Ag )w (x) = g−1

(
n∑

i=1

wi g(xi)

)

the related OWA generalization Bg,w =
(
(Ag )w

)
s

: [0, 1]n →
[0, 1] is given by

Bg,w (x) = g−1

(
n∑

i=1

wi g(xσ (i))

)

(6)

w ∈ [0, 1]n being a normed weighting vector.
Note that, when considering the extension of classical + and

· operations to the extended real line, we adopt a convention
+∞ + (−∞) = −∞ and 0.∞ = 0.

Formally, one can extend the OWA operators to act on any
interval [a, b] ⊆ [−∞,+∞], just applying formula (1). Then,
(6) can be rewritten into

Bg,w (x) = g−1 (OWAw (g(x))) . (7)

For example, considering g(x) = − ln x, one obtains the or-

dered weighted geometric average OWGAw (x) =
n∏

i=1
xwi

σ (i) .

Considering the power functions g(x) = xp, p ∈ R \ {0}, the
corresponding generalizations of OWA operator form the class
of so-called GOWA (generalized OWA) operators introduced
and discussed in [32],

GOWAp,w (x) =

(
n∑

i=1

wi xp
σ (i)

)1/p

.

To give another kind of example, recall the weighted maximum
WMaxw : [0, 1]n → [0, 1] defined for a weighting vector w ∈
[0, 1]n constrained by max{w1 , . . . , wn} = 1, and given by

WMaxw (x) = max(min(w1 , x1), . . . ,min(wn, xn )).

Then, the corresponding symmetrized aggregation function
(WMaxw )s : [0, 1]n → [0, 1] is given by

(WMaxw )s (x)=max(min(w1 , xσ (1)), . . . ,min(wn, xσ (n))).
(8)

Note that if w1 ≤ · · · ≤ wn = 1, then the OWMaxw (Ordered
Weighted Maximum) of Dubois and Prade [7] is recovered.

Till now, we have used the standard reordering pro-
cedure when transforming the input vector (x1 , . . . , xn )
into (xσ (1) , . . . , xσ (n)), replacing the projections Pi, i =
1, . . . , n, Pi(x) = xi , by the order statistics OSi , i = 1, . . . , n,
OSi(x) = xσ (i) . Thus, formally, we have replaced, before
aggregating step, the vector (P1(x), . . . , Pn (x)) by the re-
lated vector (OS1(x), . . . ,OSn (x)). However, we can con-
sider different reordering procedures. For example, considering
(OSn (x), . . . ,OS1(x)) reordering, and aggregating this new n-
tuple by means of weighted arithmetic mean Ww , it is immediate
that

Ww (OSn (x), . . . ,OS1(x)) = Ww (xσ (n) , . . . , xσ (1)) =

= OWAw ′(x)

where w′ = (wn, . . . , w1) is just the reversed normal weighting
vector w. A reordering procedure included by another n-tuple
u = (u1 , . . . , un ), not dependent on x, was proposed in [33]
and [34]. Here, the permutation τ : {1, . . . , n} → {1, . . . , n}
yielding uτ (1) ≥ · · · ≥ uτ (n) is considered and, the induced re-
ordering of the original input vector x is then (xτ (1) , . . . , xτ (n)).
Then

Ww (xτ (1) , . . . , xτ (n)) =
n∑

i=1

wi xτ (i)

is called an Induced OWA operator, IOWA, and it is well defined
once there are no ties in the order inducing vector u, i.e., when
τ is unique. If there are more acceptable τ ’s, IOWAw is simply
the arithmetic mean of all possible Ww (xτ (1) , . . . , xτ (n)) (i.e.,
for each possible τ we have to compute the weighted arithmetic
mean of τ -reordered inputs, and these computed values are then
aggregated by means of the standard arithmetic mean). Alterna-
tively (but equivalently), one can modify input vector x consid-
ering the arithmetic mean of scores from the tied positions, and
then to apply any permutation τ yielding uτ (1) ≥ · · · ≥ uτ (n) .

Some scholars have proposed to combine the aforementioned
approaches. Therefore, for example, combining the ideas of
GOWA and IOWA operators, one can define Induced General-
ized OWA (IGOWA) operators, see [19].

Another streaming in generalizing OWAs is linked to the
penalty-based approach [4] to weighted arithmetic means. In-
deed, for an arbitrary input vector x, Ww (x) is the minimizer
of the penalty function Lw ,x(r) =

∑n
i=1 wi(xi − r)2 . Gener-

alized OWA operators, dealing with replacing of weights wi by
weighting functions gi : [0, 1] → [0,∞[, i.e., looking for mini-
mizers of a penalty function

Hg ,x(r) =
n∑

i=1

gi(xσ (i))(xσ (i) − r)2

are considered, for example, in [22]. For several other proposals
in this line, we recall [30].

IV. INTEGRAL-BASED GENERALIZATIONS OF ORDERED

WEIGHTED AVERAGE OPERATORS

Recall that a symmetric capacity m : 2X → [0, 1] is given
by m(E) = vcardE , where v ∈ [0, 1]n is a vector of cumu-
lative weights assigned to a normed weighting vector w ∈
[0, 1]n , v1 = w1 , v2 = w1 + w2 , . . . , vn = w1 + · · · + wn . Re-
call once more that then OWAw = Chm . Fixing the sym-
metric capacity m (linked to v), any integral with respect
to m can be seen as a generalization of OWA operators.
Therefore, for example, one can consider the Sugeno integral
Sum : [0, 1]n → [0, 1], see [29], which is given by

Sum (x) = max(min(xσ (1) , v1), . . . ,min(xσ (n) , vn )). (9)

Comparing (9) and (8), we see that Sum = OWMaxw , i.e.,
Sugeno integral-based generalization of OWAs is just the or-
dered weighted maximum [7]. Observing that there are many
different kinds of integrals, we restrict our considerations to
integrals which are positively homogeneous only. Two typical
classes of such integrals are decomposition integrals [9] and



MESIAR et al.: GENERALIZATIONS OF OWA OPERATORS 2157

superdecomposition integrals [20]. Note that some of these in-
tegrals do not satisfy the boundary conditions for integrals. As an
example, consider the concave integral Cavm : [0, 1]n → R+
introduced by Lehrer in [18] as

Cavm (x) = max

(
∑

E⊆X

aE m(E)
∣
∣

∑

E⊆X

aE 1E ≤ x

)

considering nonnegative values aE only.
For the greatest capacity m∗ : 2X → [0, 1] given by m∗(E) ={
0, if E = ∅
1, otherwise

, it is not difficult to check that Cavm ∗(x) =
∑n

i=1 xi . Obviously, for ranking purposes, the possible defect
Cavm (1, . . . , 1) > 1 does not cause any problem. Moreover,
it would be possible to deal with a function Cavm

Cavm (1,...,1) :
[0, 1]n → [0, 1] which is an aggregation function.

Example 4.1: Consider the concave integral and a normed
weighting vector w = (0, 1, 0), i.e., v = (0, 1, 1). Obviously,
the standard OWA operator OWAw : [0, 1]3 → [0, 1] is given
by OWAw (x1 , x2 , x3) = xσ (2) , i.e., it is the median oper-
ator. Considering the related Cavm : [0, 1]3 → R+ , it holds
Cavm (1, 1, 1) = 3

2 , and for the aggregation function 2
3 Cavm :

[0, 1]3 → [0, 1] we have

2
3
Cavm (x1 , x2 , x3) =

=

⎧
⎪⎨

⎪⎩

xσ (1) + xσ (2) + xσ (3)

3
, if xσ (1) ≤ xσ (2) + xσ (3)

2
3
(xσ (2) + xσ (3)), otherwise.

To avoid the necessity of normalization of decomposition
(superdecomposition) integrals, we will consider only a hierar-
chical family of these integrals introduced in [17] and [23]; see
also [9] and [24].

Definition 4.2: Let m : 2X → [0, 1] be a capacity and let i ∈
{1, 2, . . . , 2n − 1}. A product-based integral I

(i)
m : [0, 1]n →

[0, 1] is given by
1) if i ∈ {1, . . . , n} then

I(i)
m (x) = max

⎛

⎝
i∑

j=1

xσ (kj ) · (m(Eσ,kj
) − m(Eσ,kj −1 ))

∣
∣

1 ≤ k1 < · · · < ki = n

)

(10)

with convention k0 = 0 (for definition of Eσ,kj
, see the

introduction of the Choquet integral in Section II);
2) if i ∈ {n, . . . , 2n − 1} then

I(i)
m (x) = min

( 2n−i∑

j=1

xσ (kj ) · (m(Eσ,kj + 1 −1)

−m(Eσ,kj −1 ))
∣
∣1 = k1 < · · · < k2n−i ≤ n

)

(11)

with convention

k2n−i+1 =

{
min(r|xσ (r) = 0), if xσ (n) = 0

n + 1, otherwise.

Observe that, for i = n, applying any of formulae (10) or (11),
the Choquet integral is recovered, I(n)

m = Chm . Moreover, I(1)
m

is Shilkret integral [28],

I(1)
m (x) = max(xσ (1) m(Eσ,1), . . . , xσ (n) m(Eσ,n )).

On the other hand,

I(2n−1)
m (x) = xσ (1) m(supp (x))

where supp (x) = {i ∈ X|xi > 0}. Observe that, in general, it
holds

I(1)
m ≤ I(2)

m ≤ · · · ≤ I(2n−1)
m .

Definition 4.2 allows us to define a hierarchical family of OWAs
generalizations as follows, see also [24]. In the next definition,
OWAw

(i) is based on I
(i)
m , i = 1, 2, . . . , 2n − 1.

Definition 4.3: Let w ∈ [0, 1]n be a normed weighting vec-
tor and let v ∈ [0, 1]n be the related cumulative weighting
vector. For i ∈ {1, 2, . . . , 2n − 1}, the OWA generalizations
OWAw

(i) : [0, 1]n → [0, 1] are given as follows:
1) if i ∈ {1, . . . , n},

OWAw
(i)(x) =

= max

⎧
⎨

⎩

i∑

j=1

x(kj ) · (vkj
− vkj −1 )

∣
∣

1 ≤ k1 < · · · < ki ≤ n

}

= max

⎧
⎨

⎩

i∑

j=1

⎛

⎝
kj∑

r=kj −1 +1

wr

⎞

⎠ · x(kj )
∣
∣

1 ≤ k1 < · · · < ki ≤ n

}

2) if i ∈ {n, . . . , 2n − 1},

OWAw
(i)(x) =

= min

⎧
⎨

⎩

2n−i∑

j=1

x(kj ) · (vkj + 1 −1 − vkj −1)
∣
∣

1 = k1 < · · · < k2n−i ≤ n

}

= min

⎧
⎨

⎩

2n−i∑

j=1

⎛

⎝
kj + 1 −1∑

r=kj

wr

⎞

⎠ · x(kj )
∣
∣

1 ≤ k1 < · · · < k2n−i ≤ n

}

.
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Note that OWAw
(n) = OWAw is the standard OWA operator

and that

OWAw
(1) ≤ OWAw

(2) ≤ · · · ≤ OWAw
(2n−1) .

All OWA generalizations introduced in Definition 4.3 can be
straightforwardly introduced on any domain [a, b] ⊆ [−∞,∞].
Moreover, each OWAw

(i) is symmetric, positively homoge-
neous, and translation invariant.

Example 4.4: Consider the unique additive symmetric ca-
pacity m : 2X → [0, 1], m(A) = |A |

n , related to the constant
weighting vector w =

( 1
n , . . . , 1

n

)
, linked to the cumulative

vector v =
( 1

n , 2
n , . . . , n

n

)
, and consider the input vector x =(

1, n−2
n−1 , . . . , 1

n−1 , 0
)
. Then,

OWAw
(1)(x) = max

{
n − j

n − 1
· j

n

∣
∣ j ∈ {1, . . . , n}

}

=

=

⎧
⎪⎪⎨

⎪⎪⎩

n

4(n − 1)
, if n is even

n + 1
4n

, if n is odd

OWAw
(2)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

n

3(n − 1)
, if n = 3k

n + 1
3n

, else

OWAw
(n)(x) =

1
2

OWAw
(2n−2)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

3n − 4
4n − 4

, if n is even

3n − 1
4n

, if n is odd

and

OWAw
(2n−1)(x) =

n − 1
n

.

Observe that in all cases, if n → ∞, then the corresponding
OWAw operators are approaching in limit the corresponding
Π-based integral on X = [0, 1], see [17], with respect to the
standard Lebesque measure λ, and from the identity function
f : X → [0, 1], f(x) = x. Thus

lim
n→∞

OWAw
(1)(x) =

1
4

(Shilkret integral)

lim
n→∞

OWAw
(2)(x) =

1
3

lim
n→∞

OWAw
(n)(x) =

1
2

(Choquet integral)

lim
n→∞

OWAw
(2n−2)(x) =

3
4

and

lim
n→∞

OWAw
(2n−1)(x) = 1.

V. AXIOMATIC GENERALIZATIONS OF ORDERED WEIGHTED

AVERAGE OPERATORS

As already observed in Section II, OWA operators can be
characterized as comonotone additive symmetric aggregation
functions on [0, 1]. Moreover, each OWA operator is idem-
potent, OWAw (c, . . . , c) = c for each c ∈ [0, 1] and for any
normed weighted vector w, as well as positively homogeneous,
OWAw (cx) = cOWAw (x) for any x ∈ [0, 1]n and c ≥ 0 such
that also cx ∈ [0, 1]n .

Note that the additivity property of aggregation functions can
be generalized into the modularity. We say that an aggregation
function A : [0, 1]n → [0, 1] is modular whenever

A(x ∨ y) + A(x ∧ y) = A(x) + A(y) (12)

for any x,y ∈ [0, 1]n , where the join

x ∨ y = (max(x1 , y1), . . . ,max(xn , yn ))

and the meet

x ∧ y = (min(x1 , y1), . . . ,min(xn , yn )).

Each idempotent modular aggregation function A : [0, 1]n →
[0, 1] can be represented in the form

A(x) =
n∑

i=1

fi(xi) (13)

where fi : [0, 1] → [0, 1], i = 1, . . . , n, is a nondecreasing
function and

∑n
i=1 fi(x) = x for each x ∈ [0, 1].

Hence, each fi is necessarily 1- Lipschitz, |fi(x) − fi(y)| ≤
|x − y|, and fi(0) = 0. Evidently, adding the positive homo-
geneity, we have an alternative axiomatic definition of weighted
arithmetic means (then fi(x) = wi x). Therefore, also the next
alternative axiomatic characterization of OWAs holds.

Proposition 5.1: Let A : [0, 1]n → [0, 1] be an aggregation
function. Then, the following are equivalent:

1) A is an OWA operator;
2) A is comonotone modular, symmetric, and positively ho-

mogeneous.
Omitting the positive homogeneity results into our first ax-

iomatic generalization of OWA operators, compare also [21].
Definition 5.2: Let A be a symmetric idempotent comono-

tone modular aggregation function. Then, A is called Ordered
Modular Average operator (OMA).

Due to [21], we have the next important result.
Theorem 5.3: Let A : [0, 1]n → [0, 1] be a function. Then,

the following are equivalent:
1) A is an OMA operator;
2) There are 1-Lipschitz nondecreasing functions

f1 , . . . , fn : [0, 1] → [0, 1],
∑n

i=1 fi(x) = x for each
x ∈ [0, 1], and

A(x) =
n∑

i=1

fi(xσ (i)).

Moreover, there is a link between OMA operators and copula-
based integrals with respect to symmetric capacities. We will not
go more into details, for the interested readers we recommend
[21].
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Fig. 1. Formulae for OMA(f1 ,f2 ) from Example 5.4.

Example 5.4: For n = 2, define f1 , f2 : [0, 1] → [0, 1] by

f1(x) = max
(

x

4
,
3x − 1

4

)

, f2(x) = min
(

3x

4
,
x + 1

4

)

.

Then, the corresponding OMA operator OMA(f1 ,f2 ) : [0, 1]2 →
[0, 1] is given by

OMA(f1 ,f2 )(x1 , x2) = f1(xσ (1)) + f2(xσ (2))

and it is depicted in Fig. 1 .
Observe that

OMA(f1 ,f2 ) |[0, 0.5]2 = OWA( 1
4 , 3

4 ) |[0, 0.5]2

and

OMA(f1 ,f2 ) |[0.5, 1]2 = OWA( 3
4 , 1

4 ) |[0.5, 1]2 .

Note that OMA(f1 ,f2 ) can be seen as an ordinal sum of two
OWA operators, namely of OWA( 1

4 , 3
4 ) acting on [0, 0.5] and

of OWA( 3
4 , 1

4 ) acting on [0.5, 1], as proposed by De Baets and
Mesiar in [6]. Moreover, OMA(f1 ,f2 ) can be seen as a level
dependent capacity M -based Choquet integral introduced by
Greco et al. [14], with level dependent capacity M : [0, 1] ×
2{1,2} given by

M(t, E) =

{
m1(E), if t ∈ [0, 0.5]

m2(E), otherwise

Here, m1 ,m2 are symmetric capacities related to normed
weighting vectors

( 1
4 , 3

4

)
and

( 3
4 , 1

4

)
, respectively.

Another possible axiomatic generalization of OWAs is based
on the idea to replace the additivity by pseudoadditivity. Recall
that an operation ⊕ : [0,∞]2 → [0,∞] is called a pseudoaddi-
tion whenever it is monotone, symmetric, associative, continu-
ous, and 0 is its neutral element. More details concerning the
pseudoadditions can be found in [16] and [25]. For our purpose,
it is enough to observe that each pseudo-addition ⊕ can be
represented as an ordinal sum of generated pseudoadditions,
⊕ = (〈ak , bk , ϕk 〉|k ∈ K), where {]ak , bk [ | k ∈ K} is a dis-
joint system of open subintervals of [0,∞], and ϕk : [ak , bk ] →
[0,∞], k ∈ K, are continuous strictly monotone functions sat-

isfying ϕk (ak ) = 0. Then,

x ⊕ y =

=

⎧
⎪⎪⎨

⎪⎪⎩

ϕ−1
k (min(ϕk (bk ), ϕk (x) + ϕk (y))) , if (x, y) ∈]ak , bk [2

for some k ∈ K
max(x, y), otherwise.

Definition 5.5: Let ⊕ : [0,∞]2 → [0,∞] be a given pseu-
doaddition, ⊕ = (〈ak , bk , ϕk 〉|k ∈ K). An idempotent sym-
metric aggregation function A : [0, 1]2 → [0, 1] is called a ⊕-
OWA operator whenever it is comonotone pseudoadditive, i.e.,
if for any comonotone pair x,y ∈ [0, 1]n such that x ⊕ y =
(x1 ⊕ y1 , . . . , xn ⊕ yn ) ∈ [0, 1]n it holds

A(x ⊕ y) = A(x) ⊕ A(y). (14)

For generated pseudoadditions,⊕ = (〈0,∞, ϕ〉), it is not dif-
ficult to check that OWA generalization given by formula (7) is
obtained, i.e., A is a ⊕-OWA operator if and only if A = Bϕ,w ,
where the normed weighting vector w is given by

w1 =
ϕ(A(1, 0, . . . , 0))

ϕ(1)

w2 =
ϕ(A(1, 1, 0, . . . , 0)) − ϕ(A(1, 0, . . . , 0))

ϕ(1)

...

wn =
ϕ(A(1, . . . , 1)) − ϕ(A(1, . . . , 1, 0))

ϕ(1)
.

Thus, in this case, a generalization discussed already in
Section III is recovered.

Similar results are obtained when ⊕ possesses a summand

〈ak , bk , ϕk 〉 = 〈0, bk , ϕk 〉 with bk ≥ 1.

Another distinguished case is related to K = ∅, i.e., ⊕ =
max = ∨. Then, each ∨-OWA operator A : [0, 1]n → [0, 1] is
given as

A(x) = max
(
f1(xσ (1)), . . . , fn (xσ (n))

)
(15)

where f1 , . . . , fn : [0, 1] → [0, 1] are increasing functions sat-
isfying max(f1(x), . . . , fn (x)) = x for each x ∈ [0, 1]. Note
that formula (15) generalizes the symmetric weighted maximum
(WMaxw )s given in formula (8). Observe that the same results
are obtained whenever x ⊕ y = max(x, y) for all x, y ∈ [0, 1].

Example 5.6: For n = 2 and k ∈ ]0, 1 ], consider f1 , f2 :
[0, 1] → [0, 1] given by

f1(x) = min(x, k), f2(x) =

{
0, if x ≤ k

x, otherwise

Then, the∨-OWA operator A : [0, 1]2 → [0, 1] given by formula
(15) is just k-median (idempotent nullnorm with annihilator k),
see [10] and [12],

A(x1 , x2) = med(x1 , k, x2).
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Rather nontrivial generalizations of OWAs are obtained
whenever there is a summand 〈ak , bk , ϕk 〉 of ⊕ such that
ak ∈ ]0, 1 [ or bk ∈ ]0, 1 [.

Theorem 5.7: Consider the pseudoaddition ⊕ = (〈 1
2 ,∞,

ϕ〉), where ϕ : [ 1
2 ,∞][0,∞] is given by ϕ(x) = x − 1

2 . Then,

x ⊕ y =

⎧
⎪⎨

⎪⎩

max(x, y), if min(x, y) ≤ 1
2

x + y − 1
2
, otherwise.

An aggregation function A : [0, 1]2 → [0, 1] is a ⊕-OWA op-
erator if and only if there is a normed weighting vector
w = (w1 , 1 − w1), nondecreasing functions f1 , f2 , g : [0, 1

2 ] →
[0, 1] such that max (f1(t), f2(t)) = t for all t ∈ [0, 1

2 ], and

g(t) ≥ max
(

f1

(
1
2

)

, f2(t)
)

, g

(
1
2

)

=
w1 + 1

2

and

A(x1 , x2) =

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
(
f1(xσ (1)), f2(xσ (2))

)
, if (x1 , x2) ∈ [0, 1

2 ]2

w1 xσ (1)) + (1 − w1)xσ (2) , if (x1 , x2) ∈ [ 1
2 , 1]2

g(xσ (2)), if xσ (2) < 1
2 < xσ (1)

and g(xσ (2)) ≤ 1
2

1 − g(xσ (2)) + xσ (1)
(
2g(xσ (2)) − 1

)
, otherwise.

Proof: On domain [0, 1
2 ]2 , the proof can be adopted from the

representation of ∨-OWA operators, see formula (15), forcing
the properties of functions f1 , f2 . Similarly, on domain [ 1

2 , 1]2

the standard OWA can be easily recognized.
Monotonicity of ⊕-OWAs forces the constraints for the

function g. Now, consider, for example, g(x) ≤ 1
2 for some

x ∈ [0, 1
2 [. Then, g(x) = A(x, 1) and due to comonotone ⊕-

additivity

A

(

x,
3
4

)

⊕ A

(

x,
3
4

)

= max
(

A

(

x,
3
4

)

, A

(

x,
3
4

))

= g(x)

i.e., A
(
x, 3

4

)
= g(x). Similarly

A

(

x,
5
8

)

= A

(

x,
9
16

)

= · · · = A

(

x,
2n + 1
2n+1

)

= g(x)

and due to the monotonicity of A, A(x, y) = g(x) for all y ∈
] 1

2 , 1].
On the other hand, if g(x) > 1

2 for some x ∈ [0, 1
2 [, then

A

(

x,
3
4

)

⊕ A

(

x,
3
4

)

= 2A

(

x,
3
4

)

− 1
2

= g(x) i.e.

A

(

x,
3
4

)

=
1
2

(

g(x) +
1
2

)

= 1 − g(x)

+
3
4

(2g(x) − 1) >
1
2
.

Fig. 2. Formulae describing the ⊕-OWA operator A from Example 5.8.

By induction, for any n ∈ N one can show that

A

(

x,
2n + 1
2n+1

)

= 1 − g(x) +
2n + 1
2n+1 (2g(x) − 1) >

1
2
.

On the other hand
(

x,
2n + 1
2n+1

)

⊕
(

x,
2n + 1
2n+1

)

=
(

x,
2n + 1
2n+1

)

and thus

A

(

x,
2n + 1
2n+1

)

=
(

x,
2n + 1
2n+1

)

⊕
(

x,
2n + 1
2n+1

)

=

=
(

x,
2n + 1
2n+1

)

= 2 − 2g(x) +
2n + 1

2n
(2g(x) − 1) − 1

2
=

= 1 − g(x) +
2n + 1
2n+1 (2g(x) − 1) .

By induction,

A

(

x,
2n + i

2n+1

)

= 1 − g(x) +
2n + i

2n+1 (2g(x) − 1)

for i = 1, 2, . . . , 2n , and due to the monotonicity of A,

A(x, y) = 1 − g(x) + y(2g(x) − 1) for all y ∈
]

1
2
, 1

]

.

�
Example 5.8. To illustrate Theorem 5.7, consider

f1(t) = 0, f2(t) = t, t ∈
[

0,
1
2

]

, and g(t) =
3
2

t, t ∈
[

0,
1
2

]

.

The corresponding ⊕-OWA operator A is depicted in Fig. 2 .
Observe that

g

(
1
2

)

=
3
4

= A

(
1
2
, 1

)

= w1 +
1 − w1

2

=
1 + w1

2
, i.e., w1 =

1
2
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and fixing xσ (2) = 1
2 ,

1 − 3
2
xσ (2) + xσ (1)(3xσ (2) − 1) = 1 − 3

4
+ xσ (1) ·

1
2

=
xσ (1) + xσ (2)

2
.

Remark 5.9: Observe that the ⊕-OWA operator A intro-
duced in Example 5.8 is not continuous. To guarantee the
continuity of ⊕-OWAs characterized in Theorem 5.7, one
should consider f1

( 1
2

)
= 1

2 (then A
( 1

2 , t
)

= A
(
t, 1

2

)
= 1

2 for
t ∈

[
0, 1

2

]
. Then, w1 = 0 and the corresponding ⊕-OWA oper-

ator B : [0, 1] → [0, 1] is given by

B(x1 , x2) =

⎧
⎪⎪⎨

⎪⎪⎩

xσ (1) , if (x1 , x2) ∈
[
0, 1

2

]2

xσ (2) , if (x1 , x2) ∈
[ 1

2 , 1
]2

1
2 , otherwise

i.e., B(x1 , x2) = med
(
x1 ,

1
2 , x2

)
is the 1

2 -median, see [10].

VI. CONCLUDING REMARKS

Based on three different looks on OWAs, we have dis-
cussed possible generalizations of OWA operators. In several
cases, already known generalizations were obtained. Our ap-
proach has shown the roots of these generalizations. In some
cases, completely new types of generalizations were intro-
duced, see for example Theorem 5.7. Our approach opens the
doors for several new kinds of OWA generalizations, consid-
ering, for example, new kinds of integrals, such as symmet-
ric level dependent capacities based integrals [15], or recent
generalizations of integrals based on (symmetric) aggregation
functions as proposed in [13]. As an interesting example from
[13], recall the superadditive integral based on median opera-
tor med : [0, 1]3 → [0, 1] ( i.e., an OWA operator related to the
normed weighting vector w = (0, 1, 0)), which yields an OWA
generalization med∗ : [0, 1]3 → R+ given by

med∗(x1 , x2 , x3) = min
(

x(1) + x(2) + x(3)

2
, x(2) + x(3)

)

compare also Example 4.1.
Note that similarly as in the case of some integrals discussed in

Section IV, one can normalize med∗ by a factor med∗(1, 1, 1) =
3
2 , and then the related aggregation function D : [0, 1]3 → [0, 1]
is given by

D(x1 , x2 , x3) = min
(

x(1) + x(2) + x(3)

3
,
2(x(2) + x(3))

3

)

.

Observe that for any x ∈ [0, 1]3 , |D(x) − med(x)| ≤ 1
3 .
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