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EMPIRICAL ESTIMATES IN STOCHASTIC PROGRAMS WITH

PROBABILITY AND SECOND ORDER STOCHASTIC

DOMINANCE CONSTRAINTS

V. KAŇKOVÁ and V. OMELCHENKO

Abstract. 1

Stochastic optimization problems with an operator of the mathematical expec-

tation in the objective function, probability and stochastic dominance constraints

belong to “deterministic” problems depending on a probability measure (for a defi-
nition of the probability and stochastic dominance constraints see, e.g., [1], [12] or

[18]). Complete knowledge of the probability measure is a necessary condition for

solving these problems. However, since this assumption is very rarely fulfilled (in
applications), problems are mostly solved on the basis of data. Mathematically it

means that the “underlying” probability measure is replaced by an empirical one
(determined by the corresponding data). Stochastic estimates of an optimal value

and an optimal solution can only then be obtained. Properties of these estimates

have been investigated many times, mostly in the case of constraint sets not de-
pending on the probability measure. Our results generalize such estimates to two

separate cases (already mentioned above) when the constraint sets do depend on

the probability measure.
We focus on the case of heavy–tailed distributions. First we try to emphasize

the results achieved (for the above–mentioned problems) in the cases of the both

light– and heavy–tailed distributions. However, the aim of this paper is mainly to
analyze the case of second order stochastic dominance constraints for heavy tailed

distributions. Namely, it seems that troubles can arise that are not usual in the

case of the light–tailed distributions. The heavy–tailed distributions (and especially
stable distributions; for the definition see, e.g., [8]) correspond to many economic

and financial applications (see, e.g., [10], [13]). Consequently, to include their case
in the investigation is evidently very desirable. Theoretical analysis is completed

by a simulation investigation.
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1. Introduction

Let (Ω,S, P ) be a probability space, ξ := ξ(ω) = (ξ1(ω), . . . , ξs(ω)) a random vec-
tor of dimension s defined on (Ω,S, P ), F := Fξ the distribution function of ξ, PF ,
and ZF the probability measure and the support corresponding to F , respectively.
Let, moreover, g0 : IRn × IRs → IR1 be a real-valued function, XF ⊂ X ⊂ IRn

a nonempty set generally depending on F , X ⊂ IRn a nonempty “deterministic”
set. If EF denotes the operator of mathematical expectation corresponding to F
and if for x ∈ X there exists EF g0(x, ξ), then a rather general one-stage (static)
stochastic optimization problem can be introduced in the form:

(1) to find ϕ(F,XF ) = inf
{
EF g0(x, ξ)|x ∈ XF

}
.

In this paper we focus on two types of the constraint sets:

1. individual probability constraints:

XF := XF (α) :=

s⋂
i=1

{
x ∈ X : P [ω|gi(x) ≤ ξi] ≥ αi

}
,(2)

where αi ∈ (0, 1), i = 1, . . . , s, α = (α1, . . . , αs), and gi : IRn → IR1, i =
1, . . . , s;

2. second–order stochastic dominance constraints: let g : IRn × IRs →
IR1, Y : IRs → IR1 be such that g(x, ξ) is a random value for every x ∈ X.
If

F
(2)
g(x,ξ)(u) :=

u∫
−∞

Fg(x,ξ)(y)dy, F
(2)
Y (u) :=

u∫
−∞

FY (y)dy, u ∈ IR1,

then a second order stochastic dominance constraint can be defined by

(3) XF :=
{
x ∈ X : F

(2)
g(x,ξ)(u) ≤ F (2)

Y (u) for every u ∈ IR1
}
.

(For more information about stochastic dominance see, e.g., [18].)

In applications we often must replace the measure PF with an empirical measure
PFN determined from a random sample (not necessary independent) corresponding
to the measure PF . Consequently, instead of Problem (1) the following problem is
often solved:

(4) to find ϕ(FN , XFN ) = inf
{
EFN g0(x, ξ)|x ∈ XFN

}
.

Solving (4) we obtain (empirical) estimates of the optimal value and optimal
solutions of Problem (1). The aim of this paper is, first, to investigate the empirical
estimates in the case of light– and heavy–tailed distributions. We shall measure
the quality of this approximation by the convergence rate of the optimal value
approximation. Of course, by employing the growth condition we can obtain
results concerning the optimal solution. To this end, the approach of [15] can be
employed. However, the aim of this paper is to focus on analysis of the problems
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with second order stochastic dominance constraints. This is where very serious
troubles can arise.

According to the above–mentioned plan, the paper is organized as follows. First,
we recall some auxiliary assertions (Section 2), and a brief survey of empirical
estimates (corresponding to the constraint sets (2) and (3)) can be found in Section
3. Section 4 is devoted to an analysis of the second order stochastic dominance
problems in the case of heavy–tailed distributions. There, a new serious problem
will be introduced. The paper is completed with a conclusion (Section 5).

2. Some Definitions and Auxiliary Assertions

Problem (1) depends on the distribution function F. Replacing F by another s–
dimensional distribution function G we obtain a modified problem. Employing
triangular inequality we have

(5) |ϕ(F,XF )− ϕ(G,XG)| ≤ |ϕ(F,XF )− ϕ(G,XF )|+ |ϕ(G,XF )− ϕ(G,XG)|.
To recall the first auxiliary assertion, let P(IRs) denote the set of all (Borel) prob-
ability measures on IRs and let the system M1

1(IRs) be defined by the relation:
(6)

M1
1(IRs) :=

{
ν ∈ P(IRs)|

∫
IRs
‖z‖s1dν(z) <∞

}
, ‖ · ‖s1 denotes L1 norm in IRs.

If the assumption A.0 is defined as

A.0 g0(x, z) is, for x ∈ X, a Lipschitz function of z ∈ IRs with the Lipschitz
constant L (corresponding to the L1 norm) not depending on x,

and if Fi, i = 1, . . . , s denotes one-dimensional marginal distribution functions
corresponding to F , then the following assertion has been proven.

Proposition 1. [5] Let PF , PG ∈M1
1(IRs). If Assumption A.0 is fulfilled, then

(7) |EF g0(x, ξ)− EGg0(x, ξ)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi, x ∈ X.

To recall equivalent forms of the constraint sets XF , let kF (α) be defined by the
following relations:

(8)
kF (α) = (kF1

(α1), . . . , kFs(αs)), α = (α1, . . . , αs),

kFi(αi) = sup
{
zi|PFi{ω| zi ≤ ξi(ω)} ≥ αi

}
, αi ∈ (0, 1), i = 1, . . . , s.

Lemma 1. [4] Let gi(x), i = 1, . . . , s be continuous functions defined on IRn,
PFi , i = 1, . . . , s absolutely continuous w. r. t. the Lebesgue measure on IR1. Let,
moreover, XF be defined by (2), then

XF = X̄(kF (α)),

where

(9) X̄(v) =

s⋂
i=1

{x ∈ X| gi(x) ≤ vi}, v = (v1, . . . , vs), v ∈ IRs.
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Lemma 2. [7] Let g(x, z), Y (z) be, for every x ∈ X, Lipschitz functions of
z ∈ IRs with the Lipschitz constant Lg not depending on x ∈ X. Let, moreover,
PF , PG ∈M1

1(IRs). If XF is defined by the relation (3), then

1. XF = {x ∈ X |EF (u− g(x, ξ))+ ≤ EF (u− Y (ξ))+, u ∈ IR1};
2. (u − g(x, z))+, (u − Y (z))+ are Lipschitz functions of z ∈ IRs with the

Lipschitz constant Lg not depending on u ∈ IR1, x ∈ IRn;

3. for u ∈ IR1, x ∈ X it holds that

|EF (u− g(x, ξ))+ − EG(u− g(x, ξ))+| ≤ Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi,

|EF (u− Y (ξ))+ − EG(u− Y (ξ))+| ≤ Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi.

To complete this auxiliary section, let us recall the notions of light- and heavy–
tailed distributions. The distribution function Fη of a random variable η (defined
on (Ω,S, P )) has light tails if its finite moment generating function exists in a
neighbourhood of zero; η has the distribution function with heavy tails if its fi-
nite moment generating function does not exist (for the definition of the moment
generating function see, e. g., [2]). Consequently, a light–tailed distribution has all
moments and they are finite. On the other hand finiteness of all moments does
not guarantee a finite moment generating function. Other (not quite equivalent)
definitions of light- and heavy–tailed distributions can be found in the literature.
However, stable distributions (with the exception of normal ones) always belong
to the class of the heavy-tailed distributions.

Stable distributions are characterized by four parameters: index of stability
ν ∈ (0, 2] that says how heavy the tails of the distributions are; the scale parameter
σ ≥ 0; the skewness parameter β ∈ [−1, 1], and the shift parameter µ ∈ IR1.
The stable distribution with parameters ν, σ, β, µ can be denoted by the symbol
Sν(σ, β, µ). A stable distribution is Gaussian when ν = 2, and in this case σ
is proportional to the standard deviation, β can be taken as zero and µ is the
mean. It is known that probability densities of stable random variables exist and
are continuous but, with a few exceptions, they are not known in closed forms.
Moreover, it is known that a finite first moment exists if ν > 1.

The following simple assertion is important for the problem of portfolio selection
[18]. We shall see (in Section 4) that this assertion will be very important for the
demonstration of our new problem introduced there.

Lemma 3. Let ξi, i = 1, . . . s be independent and moreover Sν(σi, βi, µi), xi ≥
0, i = 1, . . . , s, x = (x1, . . . , xn). If s = n, g(x, ξ) =

s∑
i=1

xiξi, Y (ξ) =
s∑
i=1

1
sξi,
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then

(10)

g(x, ξ) is Sν(σ, β, µ), x ∈ X with

σ = [
s∑
i=1

(xiσi)
ν ]1/ν , β =

s∑
i=1

sgn(xi)βi(xiσi)
ν

s∑
i=1

(xiσi)ν
, µ =

s∑
i=1

xiµi.

Consequently,

(11)

Y (ξ) is Sν(σ, β, µ) with

σ = 1
s [

s∑
i=1

σνi ]1/ν , β =

s∑
i=1

βi(σi)
ν

s∑
i=1

(σi)ν
, µ =

s∑
i=1

1
sµi.

Proof. The assertion of Lemma 3 follows immediately from the standard results
presented in [17], pp. 10–11.

(The symbol α is usually employed in the literature to represent index stability.
We employ the symbol ν because the symbol α is already employed in the definition
of probability constraints. For more details about stable distributions see, e.g., [8]).

If we replace G by FN in the previous section, then we can formulate auxiliary
assertions concerning empirical estimates (in the case of XF = X) that will be
useful for the investigation of Problem (1) with more general constraint sets XF .
To this end, we first introduce the following system of assumptions:

A.1 g0(x, z) is either a uniformly continuous function on X × IRs, or X is a
convex bounded set and there exists ε > 0 such that g0(x, z) is a convex
bounded function on X(ε), where X(ε) denotes the ε–neighborhood of the
set X;

A.2 • {ξi}∞i=1 is an independent random sequence corresponding to F ,
• FN is an empirical distribution function determined by {ξi}Ni=1, N =

1, 2, . . . ,
A.3 PFi , i = 1, . . . , s are absolutely continuous w. r. t. the Lebesgue measure on

IR1,
A.4 For every i ∈ {1, . . . , s} there exist δ > 0 and ϑ > 0 such that fi(zi) > ϑ

for zi ∈ ZFi , |zi − kFi(αi)| < 2δ. (fi denotes the probability density
corresponding to Fi, i = 1, . . . , s.)

Theorem 1. [3] Let PF ∈M1
1(IRs), X be a compact set. If the assumptions A.0,

A.1, A.2 and A.3 are fulfilled, then

P{ω||ϕ(FN , X)− ϕ(F,X)| −−−−→
N→∞

0} = 1,

According to Theorem 1, we can see that ϕ(FN , X) is a a consistent estimate of
ϕ(F,X) in the case of “underlying” distribution F with finite first moments (under
some additional assumptions). It means that these estimates are also consistent in
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the case of the heavy–tailed distributions (including stable distributions) as long
as first absolute moments exist.

Theorem 2. [3] Let it hold, for a certain r > 2, that EFi |ξi|r < +∞, i =
1, . . . , s. Let, moreover, the constant γ fulfil the inequalities 0 < γ < 1/2− 1/r. If
Assumptions A.2 and A.3 are fulfilled, and PF ∈M1

1(IRs), t > 0, then

(12) P{ω|Nγ
s∑
i=1

+∞∫
−∞

|Fi(zi)− FNi (zi)|dzi > t} −−−−→
N→∞

0.

If, moreover, X is a compact set and Assumptions A.0 and A.1 are fulfilled, then
also

(13) P
{
ω|Nγ |ϕ(F, X)− ϕ(FN , X)| > t

}
−−−−→
N→∞

0.

It follows from Theorem 2 that the rate of convergence γ (in the case of “determin-
istic” constraint sets) depends on the existence of finite moments. The following
weaker assertion (covering stable distributions with ν ∈ (1, 2)) is valid.

Theorem 3. [6] Let Assumptions A.0, A.1, A.2 and A.3 be fulfilled, PF ∈
M1

1(IRs), M > 0, and X be a compact set. Let the one-dimensional components
ξi, i = 1, . . . , s of the random vector ξ have stable distribution functions Fi with
the indices of stability tails parameter νi ∈ (1, 2) fulfilling the relations

sup
t>0

tνi P{ω| |ξi| > t} <∞, i = 1, . . . , s,

then
(14)

lim
M→∞

sup
N

P{ω| N

N1/ν
|ϕ(FN , X)−ϕ(F,X)| > M} = 0 with ν = min(ν1, . . . , νs).

3. Empirical estimates

In this section we deal with the empirical estimates in the case of the problems
with constraint sets defined by relations (2) and (3).

3.1. Probability Constraints

Theorem 4. [7] Let Assumptions A.2, A.3 and A.4 be fulfilled, α = (α1, . . . , αs),
αi ∈ (0, 1), i = 1, . . . , s, t > 0, and XF = XF (α) be defined by the relation (2). If

1. X̄(v) (defined by relation (9)) is a nonempty set for every v ∈ ZF and,

moreover, there exists a constant Ĉ > 0 such that

∆n[X̄(v(1)), X̄(v(2))] ≤ Ĉ‖v(1)− v(2)‖s2 for v(1), v(2) ∈ ZF ,

2. there exists γ ∈ (0, 1/2) such that

(15) P
{
ω|Nγ |ϕ(F,XF )− ϕ(FN , XF )| > t

}
−−−−→
N→∞

0,
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3. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L′ not
depending on z ∈ ZF ,

then

P
{
ω|Nγ | inf

XF (α)
EF g0(x, ξ)− inf

XFN (α)
EFN g0(x, ξ)| > t

}
−−−−→
N→∞

0.

Here ∆n[·, ·] denotes the Hausdorff distance of subsets IRn; for the definition of
the Hausdorff distance see, e.g., [14]; and ‖ ·‖s2 denotes the Euclidean norm in IRs.

Remarks.

1. Assumption 3 of Theorem 4 can be replaced by the assumption:
X is a nonempty, convex and bounded set, g0(x, z) is a convex function

on X and there exist M > 0, ε > 0 such that |g0(x, z)| ≤ M for x ∈
X(ε), z ∈ ZF .

2. If the assumptions of Theorem 4 are fulfilled and, moreover, there exists a
function ĝ0(:= ĝ0(x)) defined on X such that g0(x, z) := ĝ0(x), x ∈ X, z ∈
ZF , then the assertions of Theorem 4 are valid with γ ∈ (0, 1/2).

Assertion 2 in Remarks above follows from Proposition 3.5 and Lemma 3.13 [7],
see also [4]. According to this assertion (when the objective function in Problem
(1) does not depend on the probability measure), the convergence rate (under
the corresponding assumptions) γ does not depend on the tails distribution, and
γ ∈ (0, 1/2) holds.

3.2. Second Order Stochastic Dominance Constraints

Let there exists the finite EF g(x, ξ), EFY (ξ) for x ∈ X. First we define the sets
Xε, ε ∈ IR1 by

(16) Xε
F = {x ∈ X|EF (u− g(x, ξ))+ − EF (u− Y (ξ))+ ≤ ε, u ∈ IR1}.

Theorem 5. Let PF ∈ M1
1 (IRs), t > 0, X be a compact set, and Assumptions

A.0, A.1, A.2 and A.3 be fulfilled. If

1. • g(x, z) is a Lipschitz function of z ∈ ZF with the Lipschitz constant
not depending on x ∈ X,
• g0(x, z) is a Lipschitz function on X with the Lipschitz constant L′

not depending on z ∈ ZF ,
2. there exists ε0 > 0 such that Xε

F are nonempty compact sets for every

ε ∈ [−ε0, ε0], and, moreover, there exists a constant Ĉ > 0 such that

∆n[Xε
F , X

ε′

F ] ≤ Ĉ|ε− ε′| for ε, ε′ ∈ [−ε0, ε0],

3. for r > 2 it holds that EFi |ξi|r < +∞, i = 1, . . . , s and a constant γ fulfills
the inequality

0 < γ < 1/2− 1/r,

then

(17) P{ω|Nγ |ϕ(F,X0
F )− ϕ(FN , X0

FN )| > t} −−−−−→
N→+∞

0.
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Proof. Setting G = FN in relation (5), we obtain
(18)
|ϕ(F,X0

F )−ϕ(FN , X0
FN )| ≤ |ϕ(F,X0

F )−ϕ(FN , X0
F )|+|ϕ(FN , X0

F )−ϕ(FN , X0
FN )|.

According to Assumption 2, X0
F is a nonempty compact set. Consequently it

follows from Theorem 2 that

(19) P{ω|Nγ |ϕ(F,X0
F )− ϕ(FN , X0

F )| > t} −−−−−→
N→+∞

0.

It follows from Lemma 2 that
(20)

X
δ−ε(N)

FN
⊂ Xδ

F ⊂ X
δ+ε(N)

FN
with ε(N) = 2Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)−FNi (zi)|dzi, δ ≥ 0.

Since the Hausdorff distance is a metric in the space of compact subsets in IRn

(see, e.g., [16]) we have that

(21) ∆[X0
F , X

0
FN ] ≤ ∆[X0

F , X
−ε(N)
F ] + ∆[X

−ε(N)
F , X0

FN ].

According to (20) we can obtain that

(22) X
−ε(N)
F ⊂ X0

FN ⊂ X
ε(N)
F

and, consequently, according to the definition of the Hausdorff distance, Assump-
tion 2 and the relation (21) we can successively obtain that

(23)

∆[X
−ε(N)
F , X0

FN ] ≤ ∆[X
−ε(N)
F , X

ε(N)
F ] ≤ C ′′

ε(N),

∆[X0
F , X

0
FN ] ≤ D̄ε(N) for ε(N) < ε0 and certain D̄, C

′′
> 0.

Furthermore, since it follows from Assumption 1 that EFN g0(x, ξ) is a Lipschitz
function of x ∈ X with the Lipschitz constant not depending on ξ1, . . . , ξN , and
therefore also on ω ∈ Ω. Consequently, employing a slightly modified assertion of
Proposition 1 [4] and Assumption 2 we obtain
(24)
|ϕ(FN , X0

F )− ϕ(FN , X0
FN )| ≤ Dε(N) for ε(N) < ε0 and a certain D > 0

and according to Theorem 2 also

p{ω|Nγ |ϕ(FN , X0
F )− ϕ(FN , X0

FN )| > t} −→N−→∞ 0.

Now the assertion of Theorem 5 follows from the last relation, and relations (18)
and (19).

It follows from the assumptions of Theorem 5 that, for relation (17) to be valid,
it is necessary that r > 2 holds. It means that a moment of random vector ξ has
to be finite for r > 2. Evidently, stable distributions, with the exception of normal
ones, do not fulfil this condition. A rather weaker assertion is valid if only finite
first moments exists and are finite.
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Theorem 6. Let PF ∈M1
1 (IRs), and X be a compact set. Let moreover Assump-

tions A.0, A.1, A.2 and A.3 be fulfilled. If

1. • g(x, z) is a Lipschitz function of z ∈ ZF with the Lipschitz constant
not depending on x ∈ X,
• g0(x, z) is a Lipschitz function on X with the Lipschitz constant L′

not depending on z ∈ ZF ,
2. there exists ε0 > 0 such that Xε

F are nonempty compact sets for every

ε ∈ [−ε0, ε0], and, moreover, there exists a constant Ĉ > 0 such that

∆n[Xε
F , X

ε′

F ] ≤ Ĉ|ε− ε′| for ε, ε′ ∈ [−ε0, ε0],

then

(25) P{ω| |ϕ(F,X0
F )− ϕ(FN , X0

FN )| −→N−→∞ 0} = 1.

Proof. Following the proof of Theorem 5 we can see that relation (24) can be

written in the form

|ϕ(FN , X0
FN )− ϕ(FN , X0

F )| ≤ Dε(N) for some D > 0

and ε(N) = 2Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)− FNi (zi)|dzi < ε0.

Simultaneously it follows from Proposition 1 that successively

|EF g0(x ξ)− EFN g0(x, ξ)| ≤ L
s∑
i=1

+∞∫
−∞
|Fi(zi)− FNi (zi)|dzi for x ∈ X,

|ϕ(F,X0
F )− (FN , X0

F )| ≤ L
s∑
i=1

+∞∫
−∞
|Fi(zi)− FNi (zi)|dzi.

Consequently, we obtain

|ϕ(F, X0
F )− ϕ(FN , X0

FN | ≤ D∗
s∑
i=1

+∞∫
−∞
|Fi(zi)− FNi (zi)|dzi

for some D∗ > 0 and 2Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)− FNi (zi)|dzi < ε0.

Since it has been proven in [19] that

P{ω|
∞∫
−∞

|Fi(zi)− FNi (zi)|dzi −→N−→∞ 0} = 1 i = 1, . . . , s,

we can see that the assertion of Theorem 6 is valid.

In Section 3 we introduced rather “pleasant” properties of empirical estimates
in the case of the stochastic programming problems with individual probability
constraints and second order stochastic dominance constraints. While it seems
that in the case of the probability constraints no special problems arise dependent
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on the type of the tails, the situation can be much worse in the case of stochastic
dominance constraints. Evidently, a new very serious problem can arise in the case
if the “underlying” distribution has heavy tails. An especially horrible situation
can appear in the case of “underlying” stable distributions.

4. Analysis of Second Order Stochastic Dominance Constraints

Let the assumptions of Lemma 2 be fulfilled. Employing the first result of Lemma
2 we can see that Problem (1) with constraint set (3) can be rewritten in the form:
(26)

to find ϕ(F,XF ) = inf
{
EF g0(x, ξ)|x ∈ XF

}
,

where XF = {x ∈ X : EF (u− g(x, ξ))+ − EF (u− Y (ξ))+ ≤ 0, u ∈ IR1}.

4.1. Approximation

Problem (26) is a problem of infinitesimal programming. It follows from the anal-
ysis presented, e.g., in [1] or in [9] that the Slater’s condition is not fulfilled in
this case. Consequently, the authors suggest replacing Problem (26) with a rather
relaxed one here:
(27)

to find ϕ(F,XF ) = inf
{
EF g0(x, ξ)|x ∈ XF

}
,

where XF = {x ∈ X : EF (u− g(x, ξ))+ − EF (u− Y (ξ))+ ≤ 0, u ∈ [a, b]}

without a recommendation for how to choose constants a, b ∈ IR1.
Let us now analyze relations (26), (27) with respect to a choice of the parameters

a, b. Evidently in relation (27), the following events are neglected: Y (ξ) > b and
g(x, ξ) > b (for certain x ∈ X). It means that events with probability

P{ω|Y (ξ) > b
⋃

g(x, ξ) > b for certain x ∈ X}

are neglected.
Evidently, this probability is ”‘connected”’ (in many cases) with the quantiles
of Y (ξ), g(x, ξ) following the relations (10), (11). The next table presents the
quantiles corresponding to distributions with the densities of the following dis-
tributions: normal, Weibul, Pareto and lognormal, given by the corresponding
following densities.

1. n – Normal distribution
2. W – Weibull distribution with probability density

f(z) = c
ν ( z−z0ν )c−1 exp{−(z − z0)/ν)c for z > z0

0 for z ≤ z0

with ν = 1, z0 = 0, c = 0.
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3. P – Pareto distribution is given with probability density

f(z) = αCαz−α−1 for z ≥ C

0 for z < C

with C = 1, α = 2.
4. L – lognormal distribution with µ = 0, σ = 0.5, k1 = 0.

The values in the next table are calculated for mean value 2 and variance 4 and
corresponding distributions.

% 0.999999 0.99999 0.9999 0.999 0.99

p 0.0 – 179.07 0.0 – 68.99 0.0 – 26.58 0.0– 10.24 0.0 – 3.95

w 0.0– 27.63 0.0 – 23.03 0.0–1842 0.0 –13.82 0.0–9.21

l 0.0–1455.05 0.0–739.18 0.0–346.82 0.0–145.06 0.0–50.31

n -17.01–21.01 -15.06–19.06 -12.88–16.88 -10.36–14.36 -7.31–11.31

Table 1. Quantiles for normal, Weibull, Pareto and log-normal distributions..

It means that three of these distributions belong to the class of distributions
with heavy tails. However they do not belong to the class of stable distributions.
Of course the normal distribution belongs to the class of stable distributions,
however those with light tails.

Remark. Numerical results above have been obtained by K. Odintsov [11].

Table 2 presents a similar analysis for stable distributions. In this case the situation
is much more relevant. The dependence of the values of the quantiles on the
parameters values is crucial. Consequently, the wrong choice of the parameters
a, b can cause a very bad approximation of the optimal value and the optimal
solution.

In Table 2 we take four quantiles of the stable distribution S2(1, 0, 0) ∼
N(0,

√
2):

1. 95.00% quantile (q
95.00

),
2. 99.00% quantile (q

99.00
),

3. 99.50% quantile (q
99.50

),
4. 99.99% quantile (q99.99)



12 V. KAŇKOVÁ and V. OMELCHENKO

and calculate the value of distribution functions FSα(1,0,0)(·) in these points for
α = 1.05, 1.1, 1.15, ..., 1.95, 2. From Table 2, it follows that we have to take into
account the role of heavy tails.

4.2. Crossing

To investigate Problem (1) within the constraints set XF it is necessary to require
that the set XF be nonempty. Let us investigate this requirement in the case of XF

given by the relation (3) with g(x, ξ) =
s∑
i=1

xiξi; Y (ξ) =
s∑
i=1

1
sξi and ξi, i = 1, . . . s

independent Sν(σi, βi, µi), X = {x ∈ IRn :
n∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , n}. This

constraint set evidently has its origin in the “classical” problem portfolio selection
[18] : To find

(28)

xi ≥ 0, i = 1, . . . , s such that
s∑
i=1

xi ≤ 1

and simultaneously
s∑
i=1

EF ξixi is maximized,

where xi is a proportion of the unit wealth invested in the asset i and ξi the return
of the asset.

The distribution of Y (ξ), g(x, ξ), x ∈ X can be determined by Lemma 3. To
investigate the constraint sets XF we employ a simulation technique with
n = s = 2, ξ1 ∼ S1.5(0.5, 0, 6) and ξ2 ∼ S1.5(1, 0, 0) and their linear combination
ζ = aξ1 + (1 − a)ξ2 for a = 0.2, 0.5, 0.9. In this context, by crossing of two

variables U and Y , we mean that functions F
(2)
U (x) =

∫ x
−∞ FU (y)dy and F

(2)
Y (x) =∫ x

−∞ FY (y)dy cross. In Figure 1, the thick line which lies above all of the other
lines for x ≥ 0 corresponds to ξ1 and the line that lies above all of the lines for
x ≤ 2 corresponds to ξ2.
Let us consider cases where β is non zero:
ξ1 ∼ S1.5(1, 0.7, 0) and ξ2 ∼ S1.5(1, −0.8, 2). In Figure 1, we can see that ζ
crosses ξ1 and ξ2 for a = 0.2 and a = 0.5 and besides these ζ-s (two dashed lines,
Figure 1) cross each other. In figure 2, we consider portfolios of ξ1 ∼ S1.5(0.5, 0, 6)
and ξ2 ∼ S1.5(1, 0, 0) and the lower thick line corresponds to ξ1 and the upper
thick line corresponds to ξ2 and there are examples when the crossing does not
take place (dashed lines) for a = 0.5 and a = 0.9 however even for portfolio, i.e.
convex linear combinations of ξ1 and ξ2, of these random variables for a = 0.16
the crossing takes place.

Hence it follows that from these results that the stochastic dominance of the
first and second order can be violated in a portfolio selection.

5. Conclusion

The goal of this paper is to investigate stochastic programming problems with
probability and stochastic dominance constraints, mostly in the cases when the
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α FSα(1,0,0)(q95) FSα(1,0,0)(q99) FSα(1,0,0)(q99.5) FSα(1,0,0)(q99.99)
1.05 0.876452 0.912226 0.920843 0.953008
1.10 0.881909 0.918085 0.926646 0.957888
1.15 0.887148 0.923668 0.932149 0.962372
1.20 0.892181 0.928994 0.937373 0.966491
1.25 0.897015 0.934080 0.942336 0.970273
1.30 0.901660 0.938941 0.947056 0.973743
1.35 0.906122 0.943594 0.951548 0.976926
1.40 0.910409 0.948050 0.955829 0.979842
1.45 0.914525 0.952325 0.959913 0.982513
1.50 0.918477 0.956428 0.963812 0.984956
1.55 0.922267 0.960371 0.967540 0.987188
1.60 0.925903 0.964165 0.971108 0.989225
1.65 0.929387 0.967817 0.974526 0.991081
1.70 0.932727 0.971336 0.977805 0.992769
1.75 0.935925 0.974728 0.980953 0.994301
1.80 0.938988 0.978001 0.983979 0.995689
1.85 0.941922 0.981160 0.986891 0.996943
1.90 0.944732 0.984210 0.989694 0.998072
1.95 0.947422 0.987155 0.992395 0.999085
2.00 0.950000 0.990000 0.995000 0.999990

Table 2. The values of the stable distribution functions FSα(1,0,0)(·) in normal quantiles..

Figure 1. Example of crossing of portfolios with each other and both assets.

“underlying” distributions belong to the class of heavy–tailed distributions. While
some results for the case of the individual probability constraints are only recalled,
a great attention is paid to problems with stochastic dominance constraints. First,
a relationship between “theoretical” characteristics and those obtained on the basis
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Figure 2. Example of non-crossing of portfolios..

of the data are investigated. Consistency is proven (under the assumption of the
finite first moment) and furthermore the convergence rate in dependence on finite
moments is introduced. However the most attention is paid to the approach of
relaxation technique introduced in [1]. It is shown that the mentioned relaxation
has to be done (in the case of heavy–tailed distributions) very carefully. Moreover,
the paper reveals the difficulties in stochastic programming problems with first and
second order stochastic dominance constraints. A dangerous of crossing arises here
and it is rather imminent.
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7. V. Kaňková and M. Houda: Thin and heavy tails in stochastic programming. Kybernetika

(to appear).
8. L. B. Klebanov: Heavy Tailed Distributions. MATFYZPRESS, Prague 2003.



EMPIRICAL ESTIMATES IN STOCHASTIC PROGRAMS 15

9. Y. Liu and H. Xu: Stability and sensitivity analysis of stochastic programs with second order

dominance constraint. Journal of Finance, Stochastic Programming, E-print, series 2010.
10. M. M. Meerschaert and H.-P.Scheffler: Portfolio Modelling with Havy Tailed Random Vec-

tors. In: In: Handbook of Heavy Tailed Distributions in Finance (S. T. Rachev, ed.), Else-

vier, Amsterdam. 2
11. K. Odintsov: Decision Problems and Empirical Data; Applicationns to New Types of Prob-

lems (in Czech). Diploma Thesis, Faculty of Mathematics and Physics, Charles University

Prague, Prague 2012 Supervisor V Kaňková).
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