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Abstract. The article is devoted to second order optimality in Markov
decision processes. Attention is primarily focused on the reward variance for
discounted models and undiscounted transient models (i.e. where the spectral
radius of the transition probability matrix is less then unity). Considering the
second order optimality criteria means that in the class of policies maximizing
(or minimizing) total expected discounted reward (or undiscounted reward for
the transient model) we choose the policy minimizing the total variance. Ex-
plicit formulae for calculating the variances for transient and discounted models
are reported along with sketches of algorithmic procedures for finding second
order optimal policies.
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1 Introduction

The usual optimization criteria examined in the literature on stochastic dynamic programming, such as
a total discounted or mean (average) reward structures, may be quite insufficient to characterize the
problem from the point of a decision maker. To this end it may be preferable if not necessary to select
more sophisticated criteria that also reflect variability-risk features of the problem. Perhaps the best
known approaches stem from the classical work of Markowitz on mean variance selection rules, i.e. we
optimize the weighted sum of the expected total (or average) reward and its variance. In the present
paper we restrict attention on transient and discounted models with finite state space.

2 Notation and Preliminaries

In this note, we consider at discrete time points Markov decision process X = {Xn, n = 0, 1, . . .} with
finite state space I = {1, 2, . . . , N}, and compact set Ai = [0,Ki] of possible decisions (actions) in state
i ∈ I. Supposing that in state i ∈ I action a ∈ Ai is chosen, then state j is reached in the next transition
with a given probability pij(a) and one-stage transition reward rij will be accrued to such transition.

A (Markovian) policy controlling the decision process, π = (f0, f1, . . .), is identified by a sequence of
decision vectors {fn, n = 0, 1, . . .} where fn ∈ F ≡ A1× . . .×AN for every n = 0, 1, 2, . . ., and fn

i ∈ Ai is
the decision (or action) taken at the nth transition if the chain X is in state i. Let πm = (fm, fm+1, . . .),
hence π = (f0, f1, . . . , fm−1, πm), in particular π = (f0, π1). The symbol E π

i denotes the expectation if
X0 = i and policy π = (fn) is followed, in particular, E π

i (Xm = j) =
∑

ij∈I pi,i1(f
0
i ) . . . pim−1,j(f

m−1
m−1 );

P(Xm = j) is the probability that X is in state j at time m.

Policy π which selects at all times the same decision rule, i.e. π ∼ (f), is called stationary, hence
following policy π ∼ (f) X is a homogeneous Markov chain with transition probability matrix P (f) whose

ij-th element is pij(fi). Then r
(1)
i (fi) :=

∑
j∈I pij(fi)rij is the expected one-stage reward obtained in
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state i. Similarly, r(1)(f) is an N -column vector of one-stage rewards whose i-the elements equals r
(1)
i (fi).

Observe that E π
i (Xm = j) = [Pm(f)]ij ([A]ij denotes the ij-th element of the matrix A, A ≥ B, resp.

A > B iff for each i, j [A]ij ≥ [B]ij resp. [A]ij ≥ [B]ij and [A]ij > [B]ij for some i, j). The symbol I
denotes an identity matrix and e is reserved for a unit column vector.

Considering the standard probability matrix P (f) the spectral radius of P (f) is equal to one. Recall

that (the Cesaro limit of P (f)) P ∗(f) := lim
n→∞

1
n

∑n−1
k= P k(f) (with elements p∗ij(f)) exists, and if P (f) is

aperiodic then even P ∗(f) = lim
k→∞

P k(f) and the convergence is geometrical. The (row) vector g(1)(f) =

P ∗(f) r(1)(f) is the vector of average rewards, its ithe entry g
(1)
i (f) denotes the average reward if the

process starts in state i. Moreover, if P (f) is unichain, i.e. P (f) contains a single class of recurrent states,
then p∗ij(f) = p∗j (f), i.e. limiting distribution is independent of the starting state and g(1)(f) is a constant

vector with elements ḡ(1)(f). It is well-known (cf. e.g. [3]) that also Z(f) (fundamental matrix of P (f)),
and H(f) (the deviation matrix) exist, where Z(f) := [I − P (f) + P ∗(f)]−1,H(f) := Z(f) (I − P ∗(f)).

Transition probability matrix P̃ (f) is called transient if the spectral radius of P̃ (f) is less than
unity, i.e. it at least some row sums of P̃ (f) are less than one. Then limn→∞[P̃ (f)]n = 0, P̃ ∗(f) = 0
g(1)(f) = P̃ ∗(f) r(1)(f) = 0 and Z̃(f) = H̃(f) = [I − P̃ (f)]−1. Observe that if P (f) is stochastic and
α ∈ (0, 1) then P̃ (f) := αP (f) is transient, however, if P̃ (f) is transient it may happen that some row
sums may be even greater than unity.

3 Reward Variance for Finite and Infinite Time Horizon

Let ξn(π) =
∑n−1

k=0 rXk,Xk+1
resp. ξαn (π) =

∑n−1
k=0 α

krXk,Xk+1
with α ∈ (0, 1), be the stream of undis-

counted, resp. α-discounted rewards, received in the n next transitions of the considered Markov chain
X if policy π = (fn) is followed. Supposing that X0 = i, on taking expectation we get for the first and
second moments of ξn(π), resp. ξ

α
n (π),

v
(1)
i (π, n) := E π

i (ξn(π)) = E π
i

n−1∑
k=0

rXk,Xk+1
, v

(2)
i (π, n) := E π

i (ξn(π))
2 = E π

i (

n−1∑
k=0

rXk,Xk+1
)2, (1)

resp.

v
α(1)
i (π, n) := E π

i (ξ
α
n (π)) = E π

i

n−1∑
k=0

αkrXk,Xk+1
, v

α(2)
i (π, n) := E π

i (ξ
α
n (π))

2 = E π
i (

n−1∑
k=0

αkrXk,Xk+1
)2. (2)

It is well known from the literature (cf. e.g. [2],[3],[7]) that for the time horizon n tending to infinity

policies maximizing or minimizing the values v
(1)
i (π, n) and v

α(1)
i (π, n) can be found in the class of

stationary policies, i.e. there exist f̂ , f̂α, f̄ , f̄α ∈ F such that for all i ∈ I and any policy π = (fn)

v
(1)
i (f̂) := lim

n→∞
v
(1)
i (f̂ , n) ≥ lim sup

n→∞
v
(1)
i (π, n), lim

n→∞
v
(1)
i (f̄ , n) ≤ lim inf

n→∞
v
(1)
i (π, n), (3)

v
α(1)
i (f̂α) := lim

n→∞
v
α(1)
i (f̂α, n) ≥ lim sup

n→∞
v
α(1)
i (π, n), lim

n→∞
v
α(1)
i (f̄α, n) ≤ lim inf

n→∞
v
α(1)
i (π, n). (4)

3.1 Finite Time Horizon

If policy π ∼ (f) is stationary, the processX is time homogeneous and form < n we write for undiscounted
random reward ξn = ξm + ξn−m (here we delete the symbol π and tacitly assume that P(Xm = j) and
ξn−m starts in state j). Hence [ξn]

2 = [ξm]2 + [ξn−m]2 + 2 · ξm · ξn−m. Then for n > m we can conclude
that

E π
i [ξn] = E π

i [ξm] + E π
i

{∑
j∈I

P(Xm = j) · E π
j [ξn−m]

}
. (5)

E π
i [ξn]

2 = E π
i [ξm]2 + E π

i

{∑
j∈I

P(Xm = j) · E π
j [ξn−m]2

}
+ 2 · E π

i [ξm]
∑
j∈I

P(Xm = j) · E π
j [ξn−m]. (6)

In particular, from (3), (5) and (6) we conclude for m = 1

v
(1)
i (f, n+ 1) = r

(1)
i (fi) +

∑
j∈I

pij(fi) · v
(1)
j (f, n) (7)

v
α(2)
i (f, n+ 1) = r

(2)
i (fi) + 2 ·

∑
j∈I

pij(fi) · rij · v(1)j (f, n) +
∑
j∈I

pij(fi) v
(2)
j (f, n) (8)



where r
(1)
i (fi) :=

∑
j∈I pij(fi) rij , r

(2)
i (fi) :=

∑
j∈I pij(fi)[rij ]

2.

Since the variance σi(f, n) = v
(2)
i (f, n)− [v

(1)
i (f, n)]2 from (7),(8) we get

σi(f, n+ 1) = r
(2)
i (fi) +

∑
j∈I

pij(fi) · σj(f, n) + 2
∑
j∈I

pij(fi) · rij · v(1)j (f, n)

−[v
(1)
i (f, n+ 1)]2 +

∑
j∈I

pij(fi)[v
(1)
j (f, n)]2 (9)

=
∑
j∈I

pij(fi)[rij + v
(1)
j (f, n)]2 − [v

(1)
i (f, n+ 1)]2 +

∑
j∈I

pij(fi) · σj(f, n). (10)

Using matrix notations equations (7),(8) can be written as:

v(1)(f, n+ 1) = r(1)(f) + P (f) · v(1)(f, n) (11)

v(2)(f, n+ 1) = r(2)(f) + 2 · P (f) ◦R · v(1)(f, n) + P (f) · v(2)(f, n) (12)

where R = [rij ]i,j is an N ×N -matrix, and

r(2)(f) = [ r
(2)
i (fi)], v(2)(f, n) = [v

(2)
i (f, n)], v(1)(f, n) = [(v

(1)
i (f, n)] are column vectors.

The symbol ◦ is used for Hadamard (entrywise) product of matrices. Observe that
r(1)(f) = (P (f) ◦R) · e, r(2)(f) = [P (f) ◦ (R ◦R)] · e.

3.2 Transient Models

In this subsection we focus attention on transient models, i.e. we assume that the transition probability
matrix P̃ (f) with elements pij(fi) is substochastic and ρ(f), the spectral radius of P̃ (f), is less than

unity. Then P̃ ∗(f) = limn→∞[P̃ (f)]n = 0 and for the fundamental and deviation matrices we get
Z̃(f) = H̃(f) = [I − P̃ (f)]−1.

Then on iterating (11) we easily conclude that there exists v(1)(f) := lim
n→∞

v(1)(f, n) such that

v(1)(f) = r(1)(f) + P̃ (f) · v(1)(f) ⇐⇒ v(1)(f) = [I − P̃ (f)]−1r(1)(f). (13)

Similarly, from (12) (since the term 2 · P (f) ◦ R · v(1)(f, n) must be bounded) on letting n → ∞ we can
also verify existence v(2)(f) = lim

n→∞
v(2)(f, n) such that

v(2)(f) = r(2)(f) + 2 · P̃ (f) ◦R · v(1)(f) + P̃ (f) v(2)(f) (14)

hence
v(2)(f) = [I − P̃ (f)]−1

{
r(2)(f) + 2 · P̃ (f) ◦R · v(1)(f)

}
. (15)

On letting n → ∞ from (9), (10) we get for σi(f) := lim
n→∞

σi(f, n)

σi(f) = r
(2)
i (fi) +

∑
j∈I

p̃ij(fi) · σj(f) + 2
∑
j∈I

p̃ij(fi) · rij · v(1)j (f)

−[v
(1)
i (f)]2 +

∑
j∈I

p̃ij(fi)[v
(1)
j (f)]2 (16)

=
∑
j∈I

p̃ij(fi)[rij + v
(1)
j (f)]2 − [v

(1)
i (f)]2 +

∑
j∈I

p̃ij(fi) · σj(f). (17)

Hence in matrix notation

σ(f) = r(2)(f) + P̃ (f) · σ(f) + 2 · P̃ (f) ◦R · v(1)(f)− [v(1)(f)]2 + P̃ (f) · [v(1)(f)]2. (18)

After some algebra (18) can be also written as

σ(f) = [I − P̃ (f)]−1 · { r(2)(f) + 2 · P̃ (f) ◦R · vα(1)(f)− [v(1)(f)]2}. (19)

In particular, if P̃ (f) := αP (f) then (19) reads

σ(f) = [I − αP (f)]−1 · { r(2)(f) + 2 · αP (f) ◦R · v(1)(f)} − [v(1)(f)]2. (20)

where r(2)(f) = [P (f) ◦ (R ◦R)] · e.



3.3 Discounted Case

From (4) similarly to subsection 3.1 for n > m we can conclude that

E π
i [ξ

α
n ] = E π

i [ξ
α
m] + αmE π

i

{∑
j∈I

P(Xm = j) · E π
j [ξ

α
n−m]

}
. (21)

E π
i [ξ

α
n ]

2 = E π
i [ξ

α
m]2 + α2mE π

i

{∑
j∈I

P(Xm = j) · E π
j [ξ

α
n−m]2

}
+2 · αm · E π

i [ξ
α
m]

∑
j∈I

P(Xm = j) · E π
j [ξ

α
n−m]. (22)

In particular, from (2), (21) and (22) we conclude for m = 1

v
α(1)
i (f, n+ 1) = r

(1)
i (fi) + α

∑
j∈I

pij(fi) · v
α(1)
j (f, n) (23)

v
α(2)
i (f, n+ 1) = r

(2)
i (fi) + 2 · α ·

∑
j∈I

pij(fi) · rij · vα(1)j (f, n) + α2 ·
∑
j∈I

pij(fi) v
α(2)
j (f, n) (24)

and from (23),(24), for the variance σα
i (f, n) := v

α(2)
i (f, n)− [v

α(1)
i (f, n)]2 we get

σα
i (f, n+ 1) = r

(2)
i (fi) + α2

∑
j∈I

pij(fi) · σα
j (f, n) + 2 · α

∑
j∈I

pij(fi) · rij · vα(1)j (f, n)

−[v
α(1)
i (f, n+ 1)]2 + α2

∑
j∈I

pij(fi)[v
α(1)
j (f, n)]2 (25)

=
∑
j∈I

pij(fi)[rij + α · vα(1)j (f, n)]2 − [v
α(1)
i (f, n+ 1)]2 + α2

∑
j∈I

pij(fi) · σα
j (f, n). (26)

Using matrix notations equations (23), (24) can be written as:

vα(1)(f, n+ 1) = r(1)(f) + α · P (f) · vα(1)(f, n) (27)

vα(2)(f, n+ 1) = r(2)(f) + 2 · α · P (f) ◦R · vα(1)(f, n) + α2 · P (f) vα(2)(f, n) (28)

recall that R = [rij ]i,j is an N ×N -matrix, and ◦ is used for Hadamard (entrywise) product of matrices.

On iterating (27) we easily conclude that there exists vα(1)(f) := lim
n→∞

vα(1)(f, n) such that

vα(1)(f) = r(1)(f) + αP (f) · vα(1)(f) ⇐⇒ vα(1)(f) = [I − αP (f)]−1r(1)(f). (29)

Similarly to the transient case on letting n → ∞ for discounted models also exists
vα(2)(f) = lim

n→∞
vα(2)(f, n) and by (28)

vα(2)(f) = r(2)(f) + 2 · α · P (f) ◦R · vα(1)(f) + α2 · P (f) vα(2)(f), (30)

so
vα(2)(f) = [I − α2 · P (f)]−1

{
r(2)(f) + 2 · α · P (f) ◦R · vα(1)(f)

}
. (31)

On letting n → ∞ from (25), (26) we get for σα
i (f) := lim

n→∞
σα
i (f, n)

σα
i (f) = r

(2)
i (fi) + α2

∑
j∈I

pij(fi) · σα
j (f) + 2 · α

∑
j∈I

pij(fi) · rij · vα(1)j (f)

−[v
α(1)
i (f)]2 + α2

∑
j∈I

pij(fi)[v
α(1)
j (f)]2 (32)

=
∑
j∈I

pij(fi)[rij + α · vα(1)j (f)]2 − [v
α(1)
i (f)]2 + α2

∑
j∈I

pij(fi) · σα
j (f). (33)

Hence in matrix notation

σα(f) = r(2)(f)+α2 ·P (f) · σα(f)+ 2 ·α ·P (f) ◦R · vα(1)(f)− [vα(1)(f)]2 +α2 ·P (f) · [vα(1)(f)]2. (34)



After some algebra (34) can be also written as

σα(f) = [I − α2 · P (f)]−1 · { r(2)(f) + 2 · α · P (f) ◦R · vα(1)(f)} − [vα(1)(f)]2. (35)

where r(2)(f) = [P (f) ◦ (R ◦R)] · e.

(35) is similar to the formula for the variance of discounted rewards obtained by Sobel [6] by different
methods (see also [5]).

3.4 Comparison of Transient and Discounted Models

Let us consider transient model where the transient transition probability matrix P̃ (f) := αP (f), called
the α-transient model. Then by (20) the variance

σ(f) = [I − αP (f)]−1 · { r(2)(f) + 2 · αP (f) ◦R · vα(1)(f)} − [vα(1)(f)]2.

On the other hand for the α-discounted model we get by (35)

σα(f) = [I − α2 · P (f)]−1 · { r(2)(f) + 2 · α · P (f) ◦R · vα(1)(f)} − [vα(1)(f)]2.

Since [I − αP (f)]−1 > [I − α2P (f)]−1 from (15),(31) and from (19),(20) we immediately conclude that

vα(2)(f)− ṽα(2)(f) = {[I − αP (f)]−1 − [I − α2P (f)]−1} · { r(2)(f) + 2αP (f) ◦R · ṽα(1)(f)} > 0, (36)

σ̃α(f)− σα(f) = {[I − αP (f)]−1 − [I − α2P (f)]−1} · { r(2)(f) + 2αP (f) ◦R · ṽα1)(f) > 0. (37)

Observe that

[I − αP (f)]−1 − [I − α2P (f)]−1 =
∞∑
k=0

{(αP (f))k − (α2P (f))k} =
∞∑
k=0

{(1− αk)αk(P (f))k} > 0.

In words:

Total reward of α-transient Markov reward chain is greater the that of α-discounted Markov reward chain
(this fact was also mentioned in [1] and in [4] using approached different to ours).

4 Finding Optimal Policies

For finding second order optimal policies, at first it is necessary to construct the set of optimal transient or
optimal α-discounted policies. Recalling (3),(4) for the both optimality criteria mentioned above optimal

policies can be found in the class of stationary policies, i.e. there exists f̂ , f̂α ∈ F such that

v(1)(f̂) ≥ v(1)(π) resp. vα(1)(f̂) ≥ vα(1)(π) for every policy π = (fn). (38)

Let F (0) ⊂ F be the set of all transient optimal stationary policies, Fα(0) ⊂ F be the set of all α-
discounted optimal stationary policies.

Obviously, following policy f̂ ∈ F (0), resp. f̂ ∈ Fα(0), the corresponding action f̂i ∈ A(0)
i ⊂ Ai,

resp. f̂α
i ∈ Aα(0)

i ⊂ Ai. For finding the sets F (0), Fα(0) of optimal policies well-known policy iteration
algorithms, value iteration algorithms or modified value iteration algorithms can be used.

Assume that for f̂ (1), f̂ (2) ∈ F (0) resp. f̂α(1), f̂α(2) ∈ Fα(0)

v̂(1) := v(1)(f̂ (1)) = v(1)(f̂ (2)) resp. v̂α(1) := vα(1)(f̂α(1)) = vα(1)(f̂α(2)),

however for the corresponding variances σi(f̂
(1)) ̸= σi(f̂

(2)), σi(f̂
α) ̸= σi(f̂

α).

In what follows we show existence of f∗ ∈ F (0), fα∗ ∈ Fα(0), such that

σ(f∗) ≤ σ(π) resp. σα(f∗α) ≤ σα(π) (39)

for every policy π = (fn), fn ∈ F (0) resp. π = (fn), fn ∈ Fα(0).



To this end from (18), resp. from (34), we have for transient, resp. discounted, case

σ(f) = P̃ (f) ◦R ◦R · e+ 2 · P̃ (f) ◦R · v(1)(f)− [v(1)(f)]2 + P̃ (f) · [v(1)(f)]2 + P̃ (f) · σ(f), (40)

resp. for every f ∈ Fα(0)

σα(f) = P (f)◦R◦R·e+2·α·P (f)◦R·vα(1)(f)−[vα(1)(f)]2+α2 ·P (f)·[vα(1)(f)]2+α2 ·P (f)·σα(f). (41)

Now let h(f), hα(f) equal the first three terms on the RHS of (40) and (41), i.e.

h(f) := P̃ (f) ◦R ◦R · e+ 2 · P̃ (f) ◦R · v(1)(f)− [v(1)(f)]2 + P̃ (f) · [v(1)(f)]2,

hα(f) := P (f) ◦R ◦R · e+ 2 · α · P (f) ◦R · vα(1)(f)− [vα(1)(f)]2 + α2 · P (f) · [vα(1)(f)]2.

Observe that h(f), hα(f) well correspond to one-stage rewards in (13) and in (29).

On comparing (40) and (13), resp. (41) and (29), we can conclude that the minimal values σ(f∗),
resp. σα(f∗) with f ∈ F (0), resp. with f ∈ Fα(0), exist.

5 Conclusions

We have received formulas for the variance of total rewards for transient and discounted Markov reward
chains. This enables in the class of optimal policies select policies minimizing variance of total expected
reward.
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