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1. Introduction

This work is concerned with discrete-time Markov decision processes (MDPs) with denumer-
able state space and time-invariant transition mechanism. Within this context, the existence of
optimal stationary policies with respect to a strong sample-path average index is analyzed. This
problem has been studied in the literature, and the available results can be briefly described as fol-
lows: Conditions on the model are imposed such that the expected average cost optimality equation
has a solution, which generates an expected average optimal stationary policy f in the standard
way. Then it is proved that such a policy f is also sample-path average optimal. Roughly, the
requirements used to obtain such a conclusion involve, either a special structure on the cost func-
tion, or conditions on the transition law implying geometric ergodicity with respect to a (certain
weighted) norm. In this note the average reward criterion is studied, and the main difference with
respect to the available results is that neither a special structure on the reward function is imposed,
nor the stability assumptions used in this paper imply geometric ergodicity.

When the performance of a control strategy is measured by an expected average criterion,
the analysis of the model is based on the optimality equation, which can be solved under diverse
communication-stability conditions (Thomas 1980, Arapostathis et al. 1993) and, in some sense,
such conditions are also necessary (Cavazos-Cadena, 1988, 1989). Among the different require-
ments ensuring that the optimality equation has a solution rendering an expected average optimal
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by CONACYT (México) and ASCR (Czech Republic) under Grant No. 171396.

1



stationary policy f , the most general one is the so called Lyapunov function condition which, ex-
tending ideas by Foster (1953) on uncontrolled Markov chains, was formulated in Hordijk (1974).
In addition to standard continuity-compactness requirements,

• the basic structural assumption in this work is that the system has a Lyapunov function `.

On the other hand, an expected average criterion is quite appropriate if the controller repeats
the underlying random dynamical experiment many times under similar conditions, but not for
a single trial. As already stated, in this work the average index is studied from a sample-path
perspective, and the analysis involves the following idea:

A policy π∗ is average optimal in the sample-path sense if there exists a constant, say g∗, such
that under the action of π∗ and regardless the initial state, the average of the observed rewards
over a finite horizon t converges to g∗ as t → ∞ with probability 1, whereas under any other
policy, the superior limit of such averages is always bounded above by g∗ almost surely.

It was recently shown in Cavazos-Cadena et al. (2013) that, under the sole assumption that the
system admits a Lyapunov function, the existence of a sample-path average optimal stationary
policy can not be ensured. The main result of this note can be briefly described as follows:

• If the MDP admits a Lyapunov function ` and, regardless of the initial state and the policy
employed, the expected average reward corresponding to `2 is finite, then a stationary policy f
obtained from the optimality equation in the standard way is also sample-path average optimal.

The theory and applications of MDPs have been extensively studied; see, for instance, Hernández-
Lerma (1988), Puterman (1994), Sennott (1998), Bäuerle and Rieder (2010, 2011). Concerning
the idea of sample-path average optimality, it is known that if the optimality equation has a
bounded solution then the stationary policy f referred to above is optimal in the sample-path
sense (Arapostathis et al., 1993). On the other hand, for MDPs with denumerable state space and
endowed with the average cost criterion, in Borkar (1984, 1991) it was proved that, if the cost
function has a ‘penalized structure’, in the sense that it is sufficiently large outside a compact set,
then a sample-path average optimal stationary policy exists, a conclusion that has been extended
to models evolving on Borel spaces in Lasserre (1999) and Vega-Amaya (1999). Under geometric
ergodicity conditions, the existence of sample-path optimal stationary policies was established in
Hernández-Lerma et al. (1999) and in Zhu and Guo (2006) for models on Borel spaces, whereas
Hunt (2005) considered MDPs with denumerable state space and finite action sets; the sample-path
perspective in a continuous-time framework is used in Dai Pra et al. (1999).

The approach used below to establish the aforementioned result is based on (i) a dominated
convergence theorem for the average reward criterion, and (ii) a direct analysis of the trajectories
of the state-action process using Kolmogorov’s inequality and the first Borel-Cantelli lemma.

The organization of the subsequent material is as follows: In Section 2 the decision model is
presented and the superior and inferior limit expected average criteria, as well as the corresponding
optimality equation, are briefly discussed. Next, in Section 3 the idea of Lyapunov function
is introduced and some basic consequences of the existence of such a mapping are established,
whereas in Section 4 the main result on sample-path average optimal stationary policies is stated
as Theorem 4.1. From this point onwards, the remainder of the paper is dedicated to prove that
result, and the rather involved argument has been divided into four parts: Sections 5 and 6 concern
the necessary technical tools involving the expected average reward optimality equation, whereas
Section 7 presents a direct analysis of the trajectories of the state-action process. The final step is
established in Section 8, where the proof of the main result is presented.

Notation. Throughout the remainder N stands for the set of all nonnegative integers and, for a
topological space K, the class of all continuous functions defined on K and the Borel σ-field of K
are denoted by C (K) and B(K), respectively.

2. Decision Model
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Let M = (S,A, {A(x)}x∈S , R, P ) be the usual MDP, where the state space S is a denumerable
set endowed with the discrete topology and the action set A is a metric space. For each x ∈ S,
A(x) ⊂ A is the nonempty subset of admissible actions, and

R ∈ C (K) (2.1)

is the reward function, where K: = {(x, a) |x ∈ S, a ∈ A(x)} is the space of admissible pairs.
On the other hand, P = [px y(·)] is the controlled transition law on S given K, that is, for all
(x, a) ∈ K and y ∈ S, the relations px y(a) ≥ 0 and

∑
y∈S px y(a) = 1 are satisfied. This model

M is interpreted as follows: At each time t ∈ N the decision maker knows the previous states and
actions and observes the current state, say Xt = x ∈ S. Using that information, the controller
selects an action (control) At = a ∈ A(x) and two things happen: a reward R(x, a) is obtained by
the controller, and the system moves to a new state Xt+1 = y ∈ S with probability px y(a). In the
sequel several continuous reward functions will be considered, but all of the other components of
M will be fixed. The following condition will be enforced even without explicit reference.

Assumption 2.1. (i) For each x ∈ S, A(x) is a compact subset of A.

(ii) For every x, y ∈ S, the mapping a 7→ px y(a) is continuous in a ∈ A(x).

Policies. The set Ht of possible histories up to time t ∈ N is defined by H0: = S and Ht: = Kt×S
for t ≥ 1; a generic element of Ht is denoted by ht = (x0, a0, . . . , xi, ai, . . . , xt), where ai ∈ A(xi).
A policy π = {πt} is a special sequence of stochastic kernels: For each t ∈ N and ht ∈ Ht, πt(·|ht)
is a probability measure on B(A) satisfying (i) πt(A(xt)|ht) = 1, and (ii) for each B ∈ B(A),
the mapping ht 7→ πt(B|ht), ht ∈ Ht, is Borel-measurable. When the controller chooses actions
according to π, the control At applied at time t belongs to B ⊂ A with probability πt(B|ht),
where ht is the observed history of the process up to time t. The class of all policies is denoted
by P and, given the policy π being used for choosing actions and the initial state X0 = x, the
distribution of the state-action process {(Xt, At)} is uniquely determined (Puterman, 1994); such
a distribution and the corresponding expectation operator are denoted by Pπx and Eπx , respectively.
Next, define F: =

∏
x∈S A(x) and notice that F is a compact metric space, which consists of all

functions f :S → A such that f(x) ∈ A(x) for each x ∈ S. A policy π is Markovian if there exists a
sequence {ft} ⊂ F such that the probability measure πt(·|ht) is always concentrated at ft(xt), and
if ft ≡ f for every t, the Markovian policy π is referred to as stationary. The classes of stationary
and Markovian policies are naturally identified with F and M: =

∏∞
t=0 F, respectively, and with

these conventions F ⊂M ⊂ P.

Expected Average Criteria. Assume that R(Xt, At) has finite expectation with respect to
every distribution Pπx . In this context, the (long-run superior limit) average reward criterion
corresponding to π ∈ P at state x ∈ S is defined by

J(x, π) := lim sup
k→∞

1

k
Eπx

[
k−1∑
t=0

R(Xt, At)

]
, (2.2)

whereas the corresponding optimal value function is

J∗(x) := sup
π∈P

J(x, π), x ∈ S; (2.3)

a policy π∗ ∈ P is (limsup) expected average optimal if J(x, π∗) = J∗(x) for every x ∈ S. The
criterion (2.2) represents an optimistic perspective of the decision maker, since the performance
of a policy is evaluated by the largest among the limit points of the expected average rewards
in finite times. The pessimistic point of view is represented by the following index, assessing the
performance of a policy in terms of the smallest of such limit points:

J−(x, π) := lim inf
k→∞

1

k
Eπx

[
k−1∑
t=0

R(Xt, At)

]
(2.4)

3



is the (long-run) inferior limit average index associated to π ∈ P at state x, and

J∗−(x) := sup
π∈P

J−(x, π), x ∈ S (2.5)

is the corresponding optimal value function; from this specifications it follows that

J∗−(·) ≤ J∗(·). (2.6)

3. Lyapunov Functions

A fundamental instrument to analyze the above criteria is the following optimality equation:

g + h(x) = sup
a∈A(x)

R(x, a) +
∑
y∈S

px y(a)h(y)

 , x ∈ S, (3.1)

where g ∈ R and h ∈ C (S) is a given function. Assume that the pair (g, h(·)) ∈ R×C (S) satisfies
(3.1) and that the following properties are valid: For each x ∈ S and π ∈ P,

(i) Eπx [|h(Xn)|] <∞ or each n = 1, 2, 3, . . .;

(ii) Eπx [|h(Xn)|]/n→ 0 as n→∞, and

(iii) The mapping a 7→
∑
y∈S px y(a)h(y), a ∈ A(x) is continuous.

(3.2)

Under these requirements, using that the reward function R is continuous, it can be shown that
the following conclusions (a) and (b) hold (Cavazos-Cadena and Montes-de-Oca, 2012):

(a) The superior and inferior limit average criteria render the same optimal value function, and
the optimal average cost is equal to g:

J∗−(x) = J∗(x) = g, x ∈ S.

(b) There exists a stationary policy f ∈ F satisfying

g + h(x) = R(x, f(x)) +
∑
y∈S

px y(f(x))h(y), x ∈ S, (3.3)

and such a policy is optimal with respect to the limsup and liminf average reward criteria, that is,

J∗(x) = J(x; f) = g = J−(x; f) = J∗−(x), x ∈ S. (3.4)

The existence of a pair (g, h(·)) satisfying (3.1) as well as (3.2) requires some communication-
stability condition (see, for instance, Thomas 1980, or Cavazos-Cadena 1989, 1990), and a general
requirement in this direction is presented below. Throughout the remainder z ∈ S is a fixed state,
whereas T stands for the first return time to state z, i. e.,

T : = min{n > 0 |Xn = z} (3.5)

where, by convention, the minimum of the empty set is ∞. The following idea was introduced
in Hordijk (1974) and several alternative formulations were analyzed in Cavazos-Cadena and
Hernández-Lerma (1992).

Definition 3.1. Let D ∈ C (K) and `:S → [1,∞) be given functions. The mapping ` is a Lyapunov
function for D if the following conditions (i)–(iii) occur:

(i) 1 + |D(x, a)|+
∑
y 6=z px y(a)`(y) ≤ `(x) for all (x, a) ∈ K.
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(ii) For each x ∈ S, the mapping a 7→
∑
y px y(a)`(y) is continuous in a ∈ A(x).

(iii) For every f ∈ F and x ∈ S, the convergence lim
n→∞

Efx [`(Xn)I[T > n]] = 0 holds.

Using condition (i) in this definition it is not difficult to see that, regardless of the initial state,

the inequality Eπx

[∑T−1
t=0 [1 +D(Xt, At)]

]
≤ `(x) holds for every policy π; in particular,

Pπx [T <∞] = 1, x ∈ S, π ∈ P. (3.6)

As it is shown in the following result by Hordijk (1974), the existence of a Lyapunov function for
the reward function R has important implications for the analysis of the average criteria in (2.2)
and (2.4).

Lemma 3.1. Suppose that Assumption 2.1 holds, and that the reward function R ∈ C (K) has a
Lyapunov function `. In this context,

(i) There exists a unique pair (gR, hR(·)) ≡ (g, h(·)) ∈ R× C (S) such that

(a) h(z) = 0 and |h(·)| ≤ α`(·) for some constant α > 0, and

(b) The optimality equation (3.1) corresponding to R is satisfied by (g, h(·)).

(ii) The following conclusions are valid:

(a) |g| ≤ `(z), and |h(x)| ≤ (1 + `(z)) · `(x) for all x ∈ S,

(b) The three requirements in (3.2) are satisfied by hR ≡ h, so that g = J∗(·), and

(c) An optimal stationary policy exists:

There exists f ∈ F such that (3.3) holds, and such a policy satisfies (3.4), so that

(3.7)

lim
k→∞

1

k
Efx

[
k−1∑
t=0

R(Xt, At)

]
= g, x ∈ S, (3.8)

and

lim sup
k→∞

1

k
Eπx

[
k−1∑
t=0

R(Xt, At)

]
≤ g, x ∈ S, π ∈ P. (3.9)

(iii) The function h is given by the following expression:

h(x) = sup
π∈P

Eπx

[
T−1∑
t=0

(Rt − g)

]
= Efx

[
T−1∑
t=0

(Rt − g)

]
, x ∈ S. (3.10)

A proof this result can be essentially found in Hordijk (1974); also, see Cavazos-Cadena and
Fernández–Gaucherand (1995) for a proof of (3.10). The remainder of the paper is dedicated to
study the validity of sample-path versions of (3.8) and (3.9), which are obtained be replacing the
expected averages by observed averages along sample trajectories. The following simple properties
of Lyapunov functions will be useful.

Remark 3.1. Let D1, D2 ∈ C (K) be such that D1 and D2 have Lyapunov functions `1 and `2,
respectively. In this case (Cavazos-Cadena and Montes-de-Oca, 2012),

(i) If D ∈ C (K) satisfies that |D| ≤ |D1|, then `1 is a Lyapunov function for D;

(ii) For a0, a1 ∈ R, (max{|a0|, |a1|}+ 1)`1 is a Lyapunov function for a0 + a1D1 .

(iii) For a1, a2 ∈ R, the mapping max{|a1|, 1}|`1 + max{|a2|, 1}`2 is a Lyapunov function for
a1D1 + a2D2,
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To conclude this section, sufficient conditions are given to ensure that the functional part of
a solution of the optimality equation is bounded above or below.

Lemma 3.2. Under Assumption 2.1, assume that R ∈ C (K) has a Lyapunov function ` and let
(g, h(·)) be the solution of the optimality equation (3.1) as in Lemma 3.1(i).

(i) Suppose that there exists a finite set F ⊂ S such that

inf
a∈A(x)

R(x, a) ≥ g, x ∈ S \ F. (3.11)

In this case, there exists a constant b ∈ R such that h(·) ≥ b.

(ii) If for a finite set F ⊂ S the property

sup
a∈A(x)

R(x, a) ≤ g for all x ∈ S \ F

holds, then there exists a constant b ∈ R such that h(·) ≤ b.

Proof. Let F ⊂ S be a finite set such that (3.11) holds and, without loss of generality, assume
that z ∈ F . It will be proved that, for every x ∈ S,

h(x) ≥ b := −(1 + `(z)) max
y∈F

`(y), (3.12)

an inequality that, using the bound |h(·)| ≤ (1 + `(z))`(·) in part (a) of (3.7), is valid if x ∈ F . To
establish (3.12) when x is not element of F , let TF the time of the first visit to F , i. e.,

TF : = min{t ≥ 0 |Xt ∈ F},

where the minimum of the empty set is ∞; notice that the inclusion z ∈ F implies that

TF ≤ T (3.13)

(see (3.5)) and then, with probability 1, TF is finite regardless of the initial state and the policy
used to drive the system, by (3.6). Now, let f ∈ F be as in (3.3), select x ∈ S \ F and notice that
in this case P fx [TF > 0] = 1; since Xt /∈ F for t < TF , (3.11) yields that

R(Xt, At) ≥ g, 0 ≤ t < TF , P fx -a. s., (3.14)

so that

Efx

[
I[TF = T ]

T−1∑
t=0

[R(Xt, At)− g]

]
= Efx

[
I[TF = T ]

TF−1∑
t=0

[R(Xt, At)− g]

]
≥ 0. (3.15)

Now, let k be a positive integer and notice that

[TF = k < T ] ∈ Fk = σ(X0, A0, . . . , Xk−1, Ak−1, Xk);

thus, an application of the Markov property yields that

Efx

[
I[TF = k < T ]

T−1∑
t=0

[R(Xt, At)− g]

∣∣∣∣∣Fk

]

= I[TF = k < T ]

k−1∑
t=0

[R(Xt, f(Xt))− g] + I[TF = k < T ]EfXk

[
T−1∑
t=0

[R(Xt, At)− g]

]

≥ I[TF = k < T ]EfXk

[
T−1∑
t=0

[R(Xt, At)− g]

]
= I[TF = k < T ]h(Xk)
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where the inequality is due to (3.14), and the second equality in (3.10) was used in the last step.
Thus, since Xk ∈ F when TF = k, using the bound for h(·) in part (a) of (3.7), it follows that

Efx

[
I[TF = k < T ]

T−1∑
t=0

[R(Xt, At)− g]

∣∣∣∣∣Fk

]
≥ −I[TF = k < T ](1 + `(z)) max

y∈F
`(y),

and then, since k is arbitrary, this yields that

Efx

[
I[TF < T ]

T−1∑
t=0

[R(Xt, At)− g]

]
≥ −P fx [TF < T ](1 + `(z)) max

y∈F
`(y);

combining this inequality with (3.13) and (3.15), it follows that (3.12) is also valid when x ∈ S \F .
This completes the proof of part (i), while assertion (ii) can be obtained along similar lines. tu

4. Sample-Path Optimality

In this section the idea of (strong) sample-path average optimal policy is formally introduced, and
the main existence result of this note is stated.

Definition 4.1. A policy π∗ ∈ P is sample-path average optimal with optimal value g∗ ∈ R if the
following conditions (i) and (ii) hold:

(i) For each state x ∈ S

lim
n→∞

1

n

n−1∑
t=0

R(Xt, At) = g∗ Pπ
∗

x -a.s. ;

(ii) For every π ∈ P and x ∈ S

lim sup
n→∞

1

n

n−1∑
t=0

R(Xt, At) ≤ g∗ Pπx -a.s. .

The existence of sample-path optimal stationary policies will be derived under the following
condition.

Assumption 4.1. The reward function R ∈ C (K) has a Lyapunov function ` such that, under
the action of any policy and regardless of the initial state, the (superior limit) average reward
corresponding to `2 is finite, that is,

lim sup
n→∞

1

n+ 1
Eπx

[
n∑
k=0

`2(Xk)

]
<∞, x ∈ S, π ∈ P. (4.1)

Theorem 4.1. Suppose that Assumptions 2.1 and 4.1 hold, and let (g, h(·)) be the solution of the
optimality equation guaranteed by Lemma 3.1. In this case, if the stationary policy f satisfies
(3.3), then f is sample-path average optimal with optimal value g. More explicitly, for each x ∈ S
and π ∈ P,

lim
n→∞

1

n

n−1∑
t=0

R(Xt, At) = g P fx -a.s. (4.2)

and

lim sup
n→∞

1

n

n−1∑
t=0

R(Xt, At) ≤ g Pπx -a.s. . (4.3)
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Remark 4.1. (i) The above result is related to Theorem 4.1 in Cavazos-Cadena and Fernández-
Gaucherand (1995), where it was proved that the existence of a Lyapunov function for R implies,
without any additional requirement, that

lim inf
n→∞

1

n

n−1∑
t=0

R(Xt, At) ≤ g Pπx -a.s.

for each π ∈ P and x ∈ S, and that the equality holds with limit instead of inferior limit whenever
π = f ∈ F satisfies (3.3). In Theorem 4.1 above, the existence of a Lyapunov function for the
reward function R is complemented with the requirement (4.1), and in that context the conclusion
(4.3) is obtained, which is stronger than the one in the above display.

(ii) Theorem 4.1 above generalizes a result in Cavazos-Cadena and Montes-de-Oca (2012), where
the sample path average optimality of the policy f in (3.3) was obtained when the condition (4.1)
is replaced by the following requirement:

For some β > 2, the function `β has a Lyapunov function.

This condition ensures that the optimal reward function associated to `β is finite, and then, since
` ≥ 1 and β > 2, the (superior limit) optimal average index corresponding to `2 is finite; thus, the
above displayed requirement is stronger that (4.1) (costs, instead of rewards, were considered in
the aforementioned paper).

(iii) A class of queueing system satisfying the conditions in Theorem 4.1 can be constructed along
the lines in Cavazos-Cadena and Montes-de-Oca (2012).

The rather technical proof of Theorem 4.1 has been divided into four phases. The first two
steps, contained in Sections 5 and 6, involve the optimality equation (3.1). Next, the third phase
concerns a direct analysis of the sample trajectories of the state-action process {(Xt, At)} and is
given in Section 7, whereas the final step combines the tools in Sections 5-7 and is presented in
Section 8, just before the proof of the main result.

5. A Continuity Property

This section presents the first auxiliary result that will be used in the proof of Theorem 4.1. The
main objective is to establish a sort of dominated convergence theorem, which can be described
as follows: Suppose that a sequence {Dn} ⊂ C (K) is such that the functions Dn have a common
Lyapunov function (the dominance condition), and let {gDn

} be the corresponding sequence of
optimal average rewards. In this case, if the sequence {Dn} converges in an appropriate sense,
then {gDn} converges to the optimal average reward associated to the limit function.

Throughout the remainder of the paper {Sk} is a sequence of nonempty and finite subsets of
S such that

Sk ⊂ Sk+1, k = 1, 2, 3, . . . , and

∞⋃
k=1

Sk = S. (5.1)

Theorem 5.1. Let the sequence {Dn} ⊂ C (K) and D ∈ C (K) be such that the following conditions
(a) and (b) are satisfied:

(a) For each x ∈ S, limn→∞ supa∈A(x) |Dn(x, a)−D(x, a)| = 0.

(b) There exists `:S → [1,∞) such that, for every n ∈ N, ` is a Lyapunov function for Dn.

In this context

lim
n→∞

gDn
= gD, (5.2)
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where gDn and gD are the optimal average rewards corresponding to the functions Dn and D,
respectively.

Proof. Since ` is a Lyapunov function for each mapping Dn, from condition (a) it is not difficult to
see that ` is also a Lyapunov function for D. Now, let (gDn

, hDn
) ≡ (gn, hn(·)) be the unique pair

solving the optimality equation corresponding to the reward function Dn as described in Lemma
3.1, so that

gn + hn(x) = sup
a∈A(x)

Dn(x, a) +
∑
y∈S

px y(a)hn(y)

 , x ∈ S, (5.3)

as well as

|gn| ≤ `(z), hn(z) = 0, and |hn(x)| ∈ [0, (1 + `(z))`(x)], x ∈ S. (5.4)

To establish (5.2), let g ∈ [−`(z), `(z)] be an arbitrary limit point of the sequence {gn}, and select
an increasing sequence of positive integers {nk} such that

gnk
→ g as k →∞. (5.5)

Next, using the second inequality in (5.4), taking a subsequence (if necessary), without loss of
generality assume that

lim
k→∞

hnk
(x) = h(x) ∈ [−(1 + `(z))`(x), (1 + `(z))`(x)], x ∈ S, (5.6)

so that the pair (g, h) satisfies relations similar to those in (5.4). Now, let x ∈ S be arbitrary and
observe that

(i) For each integer k, the finiteness of Sk and Assumption 2.1 together yield that the mapping
a 7→

∑
y∈Sk

px y(a)`(y) is continuous in a ∈ A(x)

and, because of the positivity of `,

(ii)
∑
y∈Sk

px y(a)`(y)↗
∑
y∈S px y(a)`(y) as k ↗∞ for every a ∈ A(x).

Recalling
∑
y∈S px y(a)`(y) is a continuous function of a ∈ A(x), by Definition 3.1(ii), and that the

action set A(x) is compact, by Assumption 2.1, Dini’s theorem (Ash, 1972) yields that

sup
a∈A(x)

∣∣∣∣∣∣
∑
y∈Sk

px y(a)`(y)−
∑
y∈S

px y(a)`(y)

∣∣∣∣∣∣ = sup
a∈A(x)

∣∣∣∣∣∣
∑

y∈S\Sk

px y(a)`(y)

∣∣∣∣∣∣→ 0 as k →∞. (5.7)

Notice now that for every positive integers n and k

sup
a∈A(x)

∣∣∣∣∣∣
∑
y∈S

px y(a)hn(y)−
∑
y∈S

px y(a)h(y)

∣∣∣∣∣∣
≤ sup
a∈A(x)

∣∣∣∣∣∣
∑
y∈Sk

px y(a)(hn(y)− h(y))

∣∣∣∣∣∣+ sup
a∈A(x)

∣∣∣∣∣∣
∑

y∈S\Sk

px y(a)(hn(y)− h(y))

∣∣∣∣∣∣
≤
∑
y∈Sk

|hn(y)− h(y)|+ 2(1 + `(z)) sup
a∈A(x)

∣∣∣∣∣∣
∑

y∈S\Sk

px y(a)`(y)

∣∣∣∣∣∣ ,
where the inclusions in (5.4) and (5.6) were used to set the second inequality; since the set Sk is
finite, this last display and (5.6) lead to

lim sup
n→∞

sup
a∈A(x)

∣∣∣∣∣∣
∑
y∈S

px y(a)hn(y)−
∑
y∈S

px y(a)h(y)

∣∣∣∣∣∣ ≤ 2(1 + `(z)) sup
a∈A(x)

∣∣∣∣∣∣
∑

y∈S\Sk

px y(a)`(y)

∣∣∣∣∣∣ ,
9



and letting k increase to ∞, (5.7) implies that

sup
a∈A(x)

∣∣∣∣∣∣
∑
y∈S

px y(a)hn(y)−
∑
y∈S

px y(a)h(y)

∣∣∣∣∣∣→ 0 as n→∞. (5.8)

Next, observe that∣∣∣∣∣∣ sup
a∈A(x)

Dn(x, a) +
∑
y∈S

px y(a)hn(y)

− sup
a∈A(x)

D(x, a) +
∑
y∈S

px y(a)h(y)

∣∣∣∣∣∣
≤ sup
a∈A(x)

∣∣∣∣∣∣
Dn(x, a) +

∑
y∈S

px y(a)hn(y)

−
D(x, a) +

∑
y∈S

px y(a)h(y)

∣∣∣∣∣∣
≤ sup
a∈A(x)

|Dn(x, a)−D(x, a)|+ sup
a∈A(x)

∣∣∣∣∣∣
∑
y∈S

px y(a)hn(y)−
∑
y∈S

px y(a)h(y)

∣∣∣∣∣∣ ;
combining this fact with (5.8) and condition (a) in the statement of the theorem, it follows that

sup
a∈A(x)

Dn(x, a) +
∑
y∈S

px y(a)hn(y)

→ sup
a∈A(x)

D(x, a) +
∑
y∈S

px y(a)h(y)

 as n→∞,

and then, taking the limit as n goes to ∞ in both sides of (5.3), this last display, (5.5) and (5.6)
together imply that

g + h(x) = sup
a∈A(x)

D(x, a) +
∑
y∈S

px y(a)(y)

 , x ∈ S.

Therefore, by Lemma 3.1, g coincides with the optimal average cost gD corresponding to the reward
function D; the conclusion (5.2) follows since g is an arbitrary limit point of {gn} ≡ {gDn}. tu

6. The Discrepancy Function

This section contains the second auxiliary result that will be used to establish Theorem 4.1. The
main conclusions stated below involve the following idea.

Definition 6.1. Suppose that Assumption 2.1 holds and that R ∈ C (K) has a Lyapunov function `.
In this context, the discrepancy function ΦR:K→ R corresponding to R is defined by

ΦR(x, a): = g + h(x)−R(x, a)−
∑
y∈S

px y(a)h(y), (x, a) ∈ K, (6.1)

where
(g, h(·)) ≡ (gR, hR(·))

is the unique solution of the optimality equation corresponding to R as described in Lemma 3.1.

Recalling that the function h(·) satisfies the requirements in (3.2), the continuity of R yields
that ΦR ∈ C (K); also, observe that the optimality equation (3.1) implies that

ΦR(x, a) ≥ 0, (x, a) ∈ K,
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and that (6.1) can be equivalently written as

g + h(x) = R(x, a) + ΦR(x, a) +
∑
y∈S

px y(a)h(y), (x, a) ∈ K (6.2)

The simple properties below will be useful.

Lemma 6.1. The following assertions (i)–(iii) hold:

(i) The discrepancy function ΦR has a Lyapunov function ˜̀
0 satisfying ˜̀

0(·) ≤ c̃0`(·), where c̃0 =
2(1 + `(z)).

(ii) The mapping R+ ΦR has a Lyapunov function `0 satisfying

` ≤ `0 ≤ c0`, where c0 = 1 + 2(1 + `(z)). (6.3)

(iii) The solution of the optimality equation corresponding to R + ΦR as described in Lemma 3.1
is the pair (g, h(·)) ≡ (gR, hR(·)), the same solution of the optimality equation associated to R.

Proof. (i) Using the relations |g| ≤ `(z) and h(z) = 0 in parts (i) and (ii) of Lemma 3.1, from (6.2)
it follows that for every (x, a) ∈ K,

h(x) ≥ R(x, a) + ΦR(x, a)− `(z) +
∑

y∈S\{z}

px y(a)h(y).

On the other hand, since ` is a Lyapunov function for R, the inequality in Definition 3.1(i) yields
that

(1 + `(z))`(x) ≥ |R(x, a)|+ 1 + `(z) +
∑

y∈S\{z}

px y(a)(1 + `(z))`(y);

combining the two last displays it follows that

˜̀
0(x) ≥ ΦR(x, a) + 1 +

∑
y∈S\{z}

px y(a)˜̀
0(y), (x, a) ∈ K, (6.4)

where
˜̀
0(y): = h(y) + (1 + `(z))`(y), y ∈ S.

Observe now that the second inequality in part (a) of (3.7) yields that ˜̀
0(·) ≤ c̃0`(·) where c̃0 =

2(1 + `(z)), as well as ˜̀
0 ≥ 0; since ΦR is nonnegative, (6.4) immediately implies that ˜̀

0(x) ≥ 1,
and that ˜̀

0 satisfies the first property characterizing a Lyapunov function for ΦR; concerning the
verification of the second and third requirements in Definition 3.1 for the function ˜̀

0, via the
inequality ˜̀

0 ≤ c̃0`, they follow from the corresponding properties of `.

(ii) By Remark 3.1, the mapping `0 = ` + ˜̀
0 is a Lyapunov function for R + ΦR; the conclusion

follows since, using part (i), ` ≤ `0 ≤ `+ c̃0` = (1 + c̃0)`.

(iii) Notice that, by Lemma 3.1(i), the pair (g, h(·)) ≡ (gR, hR(·)) satisfies that

(a) h(z) = 0 and |h(·)| ≤ α`(·) ≤ α`0 for some constant α,

whereas (6.2) implies that

(b) g + h(x) = sup
a∈A(x)

R(x, a) + ΦR(x, a) +
∑
y∈S

px y(a)h(y)

 , x ∈ S

that is, the pair (g, h(·)) ≡ (gR, hR(·)) satisfies the optimality equation corresponding to R + ΦR;
the conclusion follows, since a pair (g, h(·)) satisfying the above properties (a) and (b) is uniquely
determined, by Lemma 3.1(i). tu
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Next, the finite sets Sk in (5.1) will be used to truncate the mapping R+ ΦR.

Definition 6.2. Let R ∈ C (K) be such that R has a Lyapunov function `, and let ΦR be the
discrepancy function introduced in Definition 6.1.

(i) For each positive integer k the mapping ∆k ∈ C (K) is given by

∆k(x, a): =

{
0, x ∈ Sk, a ∈ A(x)
|g|+ 1 + |R(x, a) + ΦR(x, a)|, x ∈ S \ Sk, a ∈ A(x).

(ii) For u = 1,−1 and k = 1, 2, 3, . . ., ∆k, u:K→ R is defined as follows:

∆k, u(x, a): = u[∆k(x, a) + Φ∆k
] +R(x, a) + ΦR(x, a), (x, a) ∈ K,

where Φ∆k
is the discrepancy function corresponding to ∆k.

Note that Lemma 6.1 and Remark 3.1 yield that ∆k admits a Lyapunov function, and then
the functions ∆k,u are well-defined The main result of this section is concerned with properties of
the solutions of the optimality equations corresponding to the functions ∆k and ∆k, u.

Theorem 6.1. Suppose that Assumption 2.1 holds, and that R ∈ C (K) has a Lyapunov function `.
In this context, the following assertions (i)-(iv) hold.

(i) There exists a mapping `∗:S → [1,∞) such that

` ≤ `∗(·) ≤ c∗`(·) (6.5)

for some c∗ > 0 and, for each positive integer k, `∗(·) is a Lyapunov function for ∆k.

(ii) If (gk, hk(·)) is the unique solution of the optimality equation corresponding to the reward
function ∆k as in Lemma 3.1, then

lim
k→∞

gk = 0, (6.6)

and there exists a positive integer N and constants bk ∈ R such that

hk(·) ≥ bk for k ≥ N . (6.7)

(iii) There exists ˜̀:S → [1,∞) such that ` ≤ ˜̀(·) ≤ c̃`(·) for some c̃ > 0 and, for each u = 1,−1
and k = 1, 2, 3, . . ., the mapping ˜̀(·) is a Lyapunov function for ∆k, u.

(iv) Let (gk u, hk u(·)) be the unique solution of the optimality equation corresponding to the reward
function ∆k, u as in Lemma 3.1. With this notation, the following assertions hold:

|hk u(·)| ≤ β`(·) for some constant β, (6.8)

and
(gk u, hk u(·)) = u · (gk, hk(·)) + (g, h(·)) u = −1, 1, k = 1, 2, 3, . . . , (6.9)

where (g, h(·)) is the solution of the optimality equation corresponding to R as in Lemma 3.1. Also,
there exists a positive integer N and constants bk, u ∈ R such that

If k ≥ N , then hk, u(·) ≥ bk, u if u = 1, and hk, u(·) ≤ bk, u if u = −1. (6.10)

Proof. (i) By Remark 3.1(i), if `0 is the Lyapunov function for R+ ΦR in Lemma 6.1(ii), then

`∗: = (|g|+ 2)`0
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is a Lyapunov function for |g| + 1 + |R + ΦR|; since |∆k| ≤ |g| + 1 + |R + ΦR|, Remark 3.1(i)
yields that `∗ is a Lyapunov function for every mapping ∆k, and the conclusion follows, since (6.3)
implies that ` ≤ `∗ ≤ c∗` where c∗ = c0(|g|+ 2).

(ii) Recalling that the sets Sk increase to the state space S, the definition of functions ∆k yields
that, for each x ∈ S, supa∈A(x) |∆k(x, a) − 0| → 0 as k → ∞; since `∗ is a Lyapunov function for
each mapping ∆k, Theorem 5.1 implies that limk→∞ gk = 0. Now select an integer N such that

|gk| ≤ |g|+ 1/2, k ≥ N, (6.11)

and notice that
inf

a∈A(x)
∆k(x, a) ≥ |g|+ 1 > gk, x ∈ S \ Sk, k ≥ N,

so that, since Sk is finite, an application of Lemma 3.2(i) yields that, for some constant bk,
hk(·) ≥ bk if k ≥ N .

(iii) Given a positive integer k notice that, using part (i), an application of Lemma 6.1(ii) to the
reward function ∆k yields that

• ∆k + Φ∆k
has a Lyapunov function `∗0 satisfying `∗(·) ≤ `∗0(·) ≤ (1 + 2(1 + `∗(z))`∗(·), and then

` ≤ `∗0(·) ≤ β`

for some positive constant β.

Combining this fact with Lemma 6.1(ii), it follows from Remark 3.1 that

• |∆k + Φ∆k
|+ |R+ ΦR| has the Lyapunov function ˜̀= `0 + `∗0 which satisfies

` ≤ ˜̀(·) ≤ c̃`

for some constant c̃ > 0. Observing that |∆k, u| ≤ |∆k + Φ∆k
|+ |R+ ΦR| for every positive integer

k and u = −1, 1, Remark 3.1(i) yields that ˜̀ is a Lyapunov function for each mapping ∆k, u.

(iv) The specification of the discrepancy function Φ∆k
corresponding to the reward function ∆k

yields that, for every positive integer k,

gk + hk(x) = ∆k(x, a) + Φ∆k
(x, a) +

∑
y∈S

px y(a)hk(y), (x, a) ∈ K, (6.12)

where
hk(z) = 0 and |hk(·)| ≤ α∗`∗(·) for some positive constant α∗. (6.13)

Combining (6.12) with (6.2) and Definition 6.2(ii), it follows that, for u = −1, 1 and k = 1, 2, 3, . . .,

ugk + g + uhk(x) + h(x) = ∆k, u(x, a) +
∑
y∈S

px y(a)[uhk(y) + h(y)], (x, a) ∈ K (6.14)

and then

ugk + g + uhk(x) + h(x) = sup
a∈A(x)

∆k, u(x, a) +
∑
y∈S

px y(a)[uhk(y) + h(y)]

 , x ∈ S.

Thus, the pair (ugk + g, uhk(·) +h(·)) satisfies the optimality equation corresponding to ∆k, u. On
the other hand, using that h(z) = 0 and |h(·)| ≤ α`(·) for some α > 0, via 6.13) it is not difficult
to see that |uhk(·) + h(·)| is bounded above by a multiple of ˜̀, the Lyapunov function of ∆k, u,
and then assertions (6.8) and (6.9) follow from Lemma 3.1(i). To conclude, note that Definition
6.2 yields that
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For x ∈ S \ Sk and a ∈ A(x),

∆k, 1(x, a) = ∆k(x, a) + Φ∆k
(x, a) +R(x, a) + ΦR(x, a)

= |g|+ 1 + |R(x, a) + ΦR(x, a)|+ Φ∆k
(x, a) +R(x, a) + ΦR(x, a) ≥ |g|+ 1

and

∆k,−1(x, a) = −[∆k(x, a) + Φ∆k
(x, a)] +R(x, a) + ΦR(x, a)

= −|g| − 1− |R(x, a) + ΦR(x, a)| − Φ∆k
(x, a) +R(x, a) + ΦR(x, a) ≤ −|g| − 1

Thus, selecting the positive integer N such that (6.11) holds, it follows that

inf
a∈A(x)

∆k, 1(x, a) ≥ |g|+ 1 ≥ g + gk = gk, 1, x ∈ S \ Sk, k ≥ N,

and
sup

a∈A(x)

∆k,−1(x, a) ≤ −|g| − 1 ≤ g + gk = gk,−1, x ∈ S \ Sk, k ≥ N ;

since Sk is finite, Lemma 3.2 yields that there exists constants bk, u such that (6.10) holds. tu

7. Innovations

The previous preliminaries are related with the optimality equation (3.1) and rely on the existence
of a Lyapunov function for the reward function R. In this section a result involving the behavior of
the trajectories of the state-action process {(Xt, At)} will be established. Throughout the following
h:S → R is a given function and it is supposed that

Eπx [(h(Xn))2] <∞, x ∈ S, π ∈ P, n = 1, 2, 3, . . . , (7.1)

whereas the sigma-field Fn is given by

Fn: = σ(Xt, At, 0 ≤ t ≤ n), n = 1, 2, 3, . . . . (7.2)

Definition 7.1. Let h:S → R be such that (7.1) holds. The sequence of {Yk, k ≥ 1} of innovations
associated to h is given by

Yn = h(Xn)−
∑
y∈S

pXn−1, y(An−1)h(y), n = 1, 2, 3, . . . .

Notice that this specification and (7.2) together yield that Yn is Fn-measurable, whereas an
application of the Markov property immediately implies that, for every x ∈ S and π ∈ P,

Yn = h(Xn)− Eπx [h(Xn) |Fn−1], Pπx a. s. . (7.3)

Therefore,

(a) Yn has null expectation with respect to Pπx , and

(b) Yn is uncorrelated with the σ-field Fn−1, that is,

Eπx [YnW ] = 0 if W is Fn−1-measurable and YnW is Pπx -integrable. (7.4)

Since ∞ > Eπx
[
h(Xn)2

]
≥ Eπx

[
Eπx [h(Xn)|Fn−1])2

]
, (7.3) implies that Eπx [Y 2

n ] < ∞ and then
YnE

π
x [h(Xn)|Fn−1] is integrable with respect to each measure Pπx , by the Cauchy-Schwarz in-

equality; thus, (7.4) leads to Eπx [YnE
π
x [h(Xn)|Fn−1]] = 0, and combining this relation with

h(Xn) = Yn + Eπx [h(Xn)|Fn−1] it follows that

Eπx
[
h(Xn)2

]
≥ Eπx

[
Y 2
n

]
+ Eπx

[
(Eπx [h(Xn)|Fn−1])

2
]
≥ Eπx [Y 2

n ]. (7.5)
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Now, let n and k be positive integers with n > k. In this case the above display and the Cauchy-
Schwarz inequality together imply that YnYk is always Pπx -integrable, whereas (7.2) and (7.3) yield
that Yk is Fn−1-measurable; therefore, by (7.4),

Eπx [YnYk] = 0, n 6= k, x ∈ S, π ∈ P,

an orthogonality property that leads to the following classical result by Kolmogorov.

Lemma 7.1. If n and k are two positive integers such that n > k, then for every α > 0

Pπx

[
max

r: k≤r≤n

∣∣∣∣∣
r∑
t=k

Yt

∣∣∣∣∣ ≥ α
]
≤ 1

α2

n∑
t=k

Eπx [Y 2
t ].

This conclusion is established as Theorem 22.4 in Billingsley (1995) for the case in which the
Yn’s are independent; however, the same arguments in that book show that the conclusion holds
in the context described above. The main result of this section provides sufficient conditions to
ensure that the sequence of innovations converges to zero in the Cèsaro sense.

Theorem 7.1. If

lim sup
k→∞

1

k
Eπx

[
k∑
t=1

h2(Xt)

]
<∞, x ∈ S, π ∈ P. (7.6)

then

lim
n→∞

1

n

n∑
k=1

Yk = 0 Pπx -a.s., x ∈ S, π ∈ P. (7.7)

Proof. Let x ∈ S and π ∈ P be arbitrary but fixed, and note that (7.6) yields that

b: = sup
k≥1

1

k
Eπx

[
k∑
t=1

h2(Xt)

]
<∞,

and then, by (7.5),

Eπx

[
n∑
t=1

Y 2
t

]
< nb, n = 1, 2, 3, . . . . (7.8)

This fact and Lemma 7.1 together lead to

Pπx

[
max

r: k≤r≤n

∣∣∣∣∣
r∑
t=k

Yt

∣∣∣∣∣ > δ

]
≤ nb

δ2
, δ > 0, n, k ∈ N \ {0}, n > k. (7.9)

Now, given ε > 0, notice that this relation with k = 1, n = m2 and δ = εm2 yields that

qm: = Pπx

m−2

∣∣∣∣∣∣
m2∑
t=1

Yt

∣∣∣∣∣∣ > ε

 ≤ Pπx
[

max
r: 1≤r≤m2

∣∣∣∣∣
r∑
t=1

Yt

∣∣∣∣∣ > m2ε

]
≤ m2b

ε2m4
,

and it follows that
∑∞
m=1 qm <∞, so that

Pπx

m−2

∣∣∣∣∣∣
m2∑
t=1

Yt

∣∣∣∣∣∣ > ε i. o.

 = 0,
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by the first Borel-Cantelli lemma; since ε > 0 is arbitrary, this implies that

lim
m→∞

1

m2

m2∑
t=1

Yt = 0 Pπx -a.s. . (7.10)

Next, let m be a positive integer and notice that max
j: 0≤j≤2m

∣∣∣∣∣∣(m2 + j)−1

m2+j∑
t=m2

Yt

∣∣∣∣∣∣ ≥ ε
 ⊂ [ max

r:m2≤r<(m+1)2

∣∣∣∣∣
r∑

t=m2

Yt

∣∣∣∣∣ ≥ m2ε

]

an inclusion that using (7.9) leads to

pm: = Pπx

 max
j: 0≤j≤2m

∣∣∣∣∣∣(m2 + j)−1

m2+j∑
t=m2

Yt

∣∣∣∣∣∣ ≥ ε
 ≤ Pπx

[
max

r:m2≤r<(m+1)2

∣∣∣∣∣
r∑

t=m2

Yt

∣∣∣∣∣ ≥ m2ε

]

≤ (m+ 1)2b

ε2m4
.

Therefore,
∑∞
m=1 pm <∞, and the first Borel-Cantelli lemma yields that

lim
m→∞

 max
j: 0≤j≤2m

∣∣∣∣∣∣(m2 + j)−1

m2+j∑
t=m2

Yt

∣∣∣∣∣∣
 = 0 Pπx -a.s.. (7.11)

To conclude, let n be a positive integer and let m be the integral part of
√
n, so that n = m2 + i

where 0 ≤ i ≤ 2m. Observe that for i > 0∣∣∣∣∣ 1n
n∑
t=1

Yt

∣∣∣∣∣ ≤ m2

n

∣∣∣∣∣∣ 1

m2

m2∑
t=1

Yt

∣∣∣∣∣∣+
1

m2 + i

∣∣∣∣∣∣
m2+i∑
t=m2+1

Yt

∣∣∣∣∣∣ ,
and then ∣∣∣∣∣ 1n

n∑
t=1

Yt

∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1

m2

m2∑
t=1

Yt

∣∣∣∣∣∣+ max
j: 0≤j≤2m

 1

m2 + j

∣∣∣∣∣∣
m2+j∑
t=m2+1

Yt

∣∣∣∣∣∣
 ,

an inequality that is also valid when i = 0, that is, if n = m2. After taking the limit as n goes to
∞ in both sides of this last display, (7.10) and (7.11) together imply that (7.7) holds. tu

8. Proof of Theorem 4.1

In this section a proof of Theorem 4.1 is finally presented. The argument relies on the auxiliary
tools in Sections 5–7 and, by convenience, the main part of the argument is stated separately in
the following result using the notation in Definition 6.1 and Theorem 6.1.

Theorem 8.1. Suppose that Assumption 2.1 and 4.1 hold, so that the reward function R has a
Lyapunov function ` satisfying (4.1). In this context, the following assertions (i) and (ii) hold.

(i) Let the positive integer N be as in (6.7). For every x ∈ S, π ∈ P and k > N ,

lim sup
n→∞

1

n

n−1∑
t=0

[∆k(Xt, At) + Φ∆k
(Xt, At)] ≤ gk, Pπx -a. s. .

(ii) For every initial state x ∈ S and π ∈ P,
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lim
n→∞

1

n

n−1∑
t=0

[R(Xt, At) + ΦR(Xt, At)] = g, Pπx -a. s. . (8.1)

Proof. (i) Observe that the definition of the discrepancy function associated to the reward function
∆k yields that

∆k(x, a) + Φ∆k
(x, a)− gk = hk(x)−

∑
y∈S

px y(a)hk(y), (x, a) ∈ K,

so that, for every positive integer t,

∆k(Xt−1, At−1) + Φ∆k
(Xt−1, At−1)− gk

= hk(Xt−1)−
∑
y∈S

pXt−1 y(At−1)hk(y)

= hk(Xt−1)− hk(Xt) + hk(Xt)−
∑
y∈S

pXt−1 y(At−1)hk(y)

= hk(Xt−1)− hk(Xt) + Yk, t,

where {Yk, n}n=1,2,3,... is the sequence of innovations associated to the function hk(·). Therefore,

1

n

n∑
t=1

[∆k(Xt−1, At−1) + Φ∆k
(Xt−1, At−1)]− gk =

hk(X0)− hk(Xn)

n
+

1

n

n∑
t=1

Yk, t

≤ hk(X0)− bk
n

+
1

n

n∑
t=1

Yk, t, k ≥ N,
(8.2)

where the inequality stems from (6.7). Now, recall that |hk(·)| is bounded above by a positive
multiple of the Lyapunov function `∗ for ∆k, and then (6.5) yields that |hk(·)| ≤ β`(·) for some
constant β. From this point, the property (4.1) implies that the condition (7.6) is satisfied by
hk(·), and an application of Theorem 7.1 yields that for every x ∈ S and π ∈ P

1

n

n∑
t=1

Yk, t → 0 Pπx -a. s.;

Taking the limit superior as n goes to ∞ in (8.2), this last display immediately implies that

lim sup
n→∞

1

n

n∑
t=1

[∆k(Xt−1, At−1) + Φ∆k
(Xt−1, At−1)] ≤ gk Pπx -a. s., x ∈ S, π ∈ P, k > N.

(ii) Combining (6.9) and (6.14), it follows that for every positive integer k and u = −1, 1,

gk, u + hk, u(x) + h(x) = ∆k, u(x, a) +
∑
y∈S

px y(a)hk, u(y), (x, a) ∈ K

and proceeding as in part (i), this equality leads to

1

n

n∑
t=1

∆k, u(Xt−1, At−1)− gk, u =
hk, u(X0)− hk, u(Xn)

n
− 1

n

n∑
t=1

Yk, u, t, (8.3)

where {Yk, u, t}t=1,2,3,... is the sequence of innovations corresponding to the function hk, u, which is

bounded above by a positive multiple of the Lyapunov function ˜̀ (see (6.8)), and then Theorem
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6.1(iii) implies that |hk, u(·)|| ≤ c`(·) for some constant c. Therefore, the property (4.1) of the
function ` implies that the condition (7.6) is satisfied by hk, u(·), and then an application of
Theorem 7.1 yields that for every x ∈ S and π ∈ P

1

n

n∑
t=1

Yk, u, t → 0 as n→∞ Pπx -a. s. . (8.4)

Now, let N be the positive integer in Theorem 6.1(iv) and notice that (6.10) and (8.3) together
imply that for every k ≥ N and n = 1, 2, 3, . . .,

1

n

n∑
t=1

∆k, 1(Xt−1, At−1)− gk, 1 ≤
hk, u(X0)− bk, 1

n
− 1

n

n∑
t=1

Yk, 1, t,

and
1

n

n∑
t=1

∆k,−1(Xt−1, At−1)− gk,−1 ≥
hk,−1(X0)− bk,−1

n
− 1

n

n∑
t=1

Yk,−1, t;

thus, via (8.4), it follows that for every x ∈ S and π ∈ P,

lim sup
n→∞

1

n

n∑
t=1

∆k, 1(Xt−1, At−1) ≤ gk, 1, Pπx -a. s., k > N,

and

lim inf
n→∞

1

n

n∑
t=1

∆k,−1(Xt−1, At−1) ≥ gk,−1, Pπx -a. s., k > N.

Next, have a glance to Definition 6.2 and observe that ∆k ≥ 0, and then, since a discrepancy
function is nonnegative,

∆k, 1 = ∆k + Φ∆k
+R+ ΦR ≥ R+ ΦR, and ∆k,−1 = −[∆k + Φ∆k

] +R+ ΦR ≤ R+ ΦR,

relations that combined with the two previous displays yield that, for every x ∈ S and π ∈ P and
k > N ,

lim sup
n→∞

1

n

n∑
t=1

[R(Xt−1, At−1) + ΦR(Xt−1, At−1)] ≤ gk, 1, Pπx -a. s.,

and

lim inf
n→∞

1

n

n∑
t=1

[R(Xt−1, At−1) + ΦR(Xt−1, At−1)] ≥ gk,−1, Pπx -a. s. .

Finally, using (6.6) and (6.9), notice that gk, u → g as k → ∞ for u = −1, 1, so that, after taking
limit as k goes to ∞, the above displays lead to

lim sup
n→∞

1

n

n∑
t=1

[R(Xt−1, At−1) + ΦR(Xt−1, At−1)] ≤ g Pπx -a. s., x ∈ S, π ∈ P,

and

lim inf
n→∞

1

n

n∑
t=1

[R(Xt−1, At−1) + ΦR(Xt−1, At−1)] ≥ g, Pπx -a. s. x ∈ S, π ∈ P,

establishing the desired conclusion. tu

Proof of Theorem 4.1. Since a discrepancy function is nonnegative, Theorem 8.1(ii) yields that
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lim sup
n→∞

1

n

n∑
t=1

R(Xt−1, At−1) ≤ g Pπx -a. s., x ∈ S, π ∈ P.

On the other hand, because the policy f ∈ F satisfies (3.3), from Definition 6.1 it follows that
Φ(x, f(x)) = 0 for every state x. Thus, using that At = f(Xt) when the system is running
under the policy f it follows that, for every initial state x and t ∈ N, the equality Φ(Xt, At) =
Φ(Xt, f(Xt)) = 0 holds with probability 1 with respect to P fx . Therefore, Theorem 8.1(ii) yields
that

lim
n→∞

1

n

n∑
t=1

R(Xt−1, At−1) = g P fx -a. s., x ∈ S;

thus, f is sample-path average optimal in the sense of Definition 4.1. tu

Remark 8.1. Determining the sample-path average optimal stationary policy f ∈ F in (3.3) requires
the knowledge of the the solution (g, h(·)) of the optimality equation (3.1). When such a solution
is not available, approximation schemes can be used to obtain a sequence {(gr, hr(·))}r=0,1,2,...

converging to (g, h(·)), as well as a sequence {fr}r=0,1,2,... ⊂ F with the following property:

lim
r→∞

ΦR(x, fr(x)) = 0, x ∈ S;

see, for instance, Montes-de-Oca and Hernández-Lerma (1996) and the references therein. Using
(8.1), it can be shown that the property in the above display implies that a Markov policy {ft} is
sample-path optimal in the sense of Definition 4.1 (Cavazos-Cadena and Montes-de-Oca, 2012).

Acknowledgement. The authors are grateful to the reviewer for the careful reading of the original
manuscript, constructive criticism and helpful suggestions to improve the paper.
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