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Abstract We propose a mean-risk decision model for a steel company facing
emission limits and trading with emission allowances. The model is calibrated
using data of a real-life steel company and is subsequently solved for five
different scenarios of demand and different levels of risk aversion. It is found
that while the limits are never reached, permit trading influences the decision
to a great extent, especially given extremely low or extremely high demand
when large amounts of permits need to be traded. We demonstrate that the risk
caused by emission trading may increase not only with an increasing demand
but also when the demand is low and a great amount of allowances must be
sold.

Keywords Stochastic programming · Risk management · Mean-risk
modeling · Emissions trading · Emissions management

1 Introduction

In recent years, industrial companies in the European Union are facing new
institutional constraints associated with policies aimed at reducing emissions
of greenhouse gases. The goal of the present paper is to study the influence of
these constraints on the production and profit of a steel company.

The regulations, imposed on companies emitting greenhouse gases within
the European Union, include not only constraints limiting their emissions but
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also an obligation to cover their emissions of carbon dioxide by emission per-
mits, a certain amount of which they obtain for free from the authorities while
the remaining (excess) ones have to be bought (can be sold) on a market.

The scientific community has already paid a certain amount of attention to
the influences of these constraints on decisions made by companies: Authors of
paper [6] design a single-period deterministic optimization problem of a general
industrial company in the situation at the very beginning of the EU emission
trading system (EU ETS); according to the authors, their paper was the first
basic attempt to assess the influence of European legislative environmental
factors on companies. In [11], a multi-stage stochastic programming problem
was formulated which maximized an energy-producing company’s profit while
taking its emission trading into account; however, the situation of such a com-
pany is different from a steel one in that it produces only a single product - the
power - and its decision variable is not production but composition of fuels. In
a more recent paper [12], environmental factors are incorporated into the pro-
duction function of an industrial company but no optimal policy is considered.
In [14], a single-stage news-vendor-like stochastic programming model with pe-
nalization is formulated; however, risk is not considered. Authors of paper [4]
propose a stochastic dynamic model designed for companies producing a ho-
mogeneous good (e.g. pulp, paper or cement industry) by either “common” or
green technology; however, the study is not focused on any specific emissions
trading system. Most recently, [13] formulates and solves a decision-making
problem of a steel company using real-life data but, again, without involving
risk.

In the present paper, we propose a single-stage mean-risk optimal produc-
tion model, calibrated to a situation of an anonymous real-life Czech steel
company facing emission limits and trading with emissions. Unlike all the ex-
isting papers, we take both EUA and CER allowances into account (see Section
2 for details). The prices of the allowances and the demands are stochastic with
parameters estimated from historical data.

In line with seminal paper [8], we use variance as the risk measure; even
though there exist many, perhaps more sophisticated, risk measures (see, e.g.,
[1]), the advantage of the variance is its additivity given independent variables,
allowing us to decompose the total risk faced by the company and mutually
compare its components, which is actually the main goal of our present paper.
Another advantage of variance in comparison with, e.g., VaR or CVaR, is its
robustness with respect to small changes of distributions and the fact that
the corresponding decision problem is always convex, hence easily solvable.
Moreover, despite its alleged obsolescence, variance risk criterion was recently
shown to be more or less compatible with recent approaches to risk man-
agement, namely with the second order stochastic dominance and prospect
stochastic dominance (see [5], [7], respectively).

In the empirical part of our paper, we consider a continuum of risk aversion
levels and five different scenarios of the mean demand. For each combination of
a risk aversion and a scenario, we analyze the impact of emission-related issues
on the decisions made by the company. Our results show that the dependence
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of the optimal behavior on the parameters is non-trivial: with increasing risk
aversion, for instance, the optimal production of individual products may be
either decreasing or increasing.

Further, we analyze the risk faced by the company, decomposing it into one
part caused by demand and another caused by the emission trading. While the
magnitude of the former is similar for all scenarios, the latter increases with
deviation of the necessary amount of allowances from the number of freely
obtained ones; therefore, the emission trading risk is the greatest for the most
“pessimistic” and the most “optimistic” scenarios of the demand.

We find that the dependence of the risks on the risk aversion level is not
trivial, either: while the behavior of the demand risk is such that we would
expect – it is decreasing with the increasing risk aversion – the form of the de-
pendence of the emission trading risk on the risk aversion level varies scenario
by scenario.

This paper is organized as follows. After this Introduction, a brief de-
scription of emission constraints under consideration is given in Section 2. In
Section 3, our optimization model is established. In Section 4, stochastic fac-
tors involved in the model are discussed and results of their estimation are
presented. The actual application of our model and its results are presented
in Section 5. In Section 6, the risk associated with the demand and the risk
stemming from the emission trading are discussed and compared. In Section
7, the paper is concluded and suggestions for further research are given. In the
Appendix, construction of the variance matrix of the demand for individual
products, a Lemma deriving moments of a bivariate log-normal distribution,
and a comparison between several models of stochastic factors are given.

2 Legislative Environmental Factors Influencing EU Steel
Companies

The European Union has established many environmental legislative con-
straints in order to reduce emissions produced. In the present paper, several
main mandatory regulations are taken into account, namely

– emission caps, i.e., limits setting maximum amounts of selected gas’ emis-
sions for one year

– emission limits, i.e., maximum amounts for half an hour (see [9] for details),
and

– obligation to cover CO2 emissions by allowances, i.e., permissions to emit
a particular amount of carbon dioxide.

There are two types of allowances which can be applied and traded by
European companies within the EU ETS system: the EUA (European Union
Allowance), certain amount of which each European steel company obtains
for free each year, and the CER (Certified Emission Reduction) allowances.
Allowances of both types are traded at several particular markets, either within
the secondary emission market or via emission auctions, see [3]. For both
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historical and institutional reasons, the CER permits are far less expensive
than the EUA ones; however, the EU restricts the share of the CERs covering
the emissions to be no greater than 10 percent of the total amount (see [2]).

3 The Decision Model

Before defining our model, let us make the following assumptions:

– there are n possible products, each of them potentially serving as material
for the production of another one;

– there are m greenhouse gases limited by caps and limits;
– there is only a single decision period, lasting one year;
– the decision is made at the beginning of the period (no ex-post corrections

are allowed);
– the production process is homogeneous during the entire period (the rates

of both the production and the emissions are the same at any given mo-
ment);

– the company generates its profit only by selling its products or by selling
unused emission allowances;

– the EUA and CER prices are stochastic;
– the company always exploits the possibility of using CER allowances to

cover the 10% limit; in particular, having obtained an amount of r free
EUA allowances and having emitted e tons of CO2, the company always
buys CER allowances to cover an amount of 0.1e of emissions (and sells
excess EUAs, if there are any);1

– margins for each product are constant in the entire period (selling prices
elastically respond to changes in unit variable costs);

– values of demands are stochastic;
– the production exceeding the demand cannot be sold (or, equivalently, may

be sold only for zero price).

Under these assumptions, the profit, up to eventual fixed costs, from final
production yyy ∈ Rn is given by

Vp(yyy) = cccT min(yyy,DDD)− dddTyyy

where ccc ∈ Rn is the vector of selling prices, ddd ∈ Rn is the vector of production
costs, and DDD ∈ Rn is the vector of (stochastic) demands.

The profit from emission trading, namely from buying the maximal allowed
amount of the CERs and subsequent buying/selling of missing/excess EUAs,
given primary production xxx ∈ Rn, is

Va(xxx) = −0.1eeeTxxxPCER + [(r + 0.1eeeTxxx)− eeeTxxx]PEUA

1 As the prices of CERs were persistently about five times smaller than those of CERs
during recent years, such a behavior would anyway emerge implicitly in our model with a
very high probability.
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where eee ∈ Rn is the vector of emissions amount per product, r is the amount
of free-allocated emission permits and PEUA, PCER are (stochastic) emission
permit prices (EUA type, CER type, respectively).

After a rearrangement, the total profit comes out as

V (xxx,yyy) = Vp(yyy)+Va(xxx) = mmmTyyy+
(
r − 0.9 · eeeTxxx

)
·PEUA−0.1·eeeTxxx·PCER−cccT [yyy −DDD]

+

where mmm = ccc− ddd is the margin and [·]+ denotes the positive part.
The (economic and environmental) constraints of the decision-making prob-

lem are
(E1) yyy = (I−A)xxx,

(E2) xxx ≤ vvv,
(L1) Hxxx ≤ sss,
(L2) Hxxx ≤ 17, 520 · lll,

where I ∈ Rn×n is the unit matrix, A ∈ Rn×n is the matrix of technical
coefficients of production, vvv ∈ Rn is the production capacity, H ∈ Rm×n is the
matrix of emission coefficients, sss ∈ Rm is a vector of emission caps, and lll ∈ Rm

is the vector of emission limits per half-hour (there are 17,520 half-hours per
year).

The mean-var optimization problem itself is then formulated as

maxxxx≥0,yyy≥0 EV (xxx,yyy)− λvarV (xxx,yyy) (1)

given (E1), (E2), (L1), (L2)

where λ ∈ R+ is the degree of risk aversion.2

There are the n = 5 raw products manufactured – namely raw iron, brams,
plates, profiles and cut shapes, all except the raw iron being sold – and there
are m = 3 greenhouse gases, namely CO, NOx, and airborne dust.

According to our agreement with the company, the particular values of the
model’s parameters are kept confidential.

As the most recent value of the dataset serving as a proxy for the demands
(see Subsection 4.2 for details) comes from 10/2012, we take this date as the
time of the decision.

4 Stochastic Factors

4.1 Prices of Allowances

Figure 1 shows the evolution of the EUA and CER prices between 1/2008 and
10/2012 (the allowance prices were obtained from the SendeCO2 stock ex-
change [sendeco2.com]). As the increments evidently scale with the absolute
prices, we decided to analyze log-returns

REUA
t = logPEUA

t − logPEUA
t−1 , RCER

t = logPCER
t − logPCER

t−1 ,

2 It would be possible to formulate the problem by means of only one vector of variables
instead of the pair xxx,yyy and substituting either sales (yyy) or production (xxx) according to (E1);
however, we decided to leave both vectors in the model for the sake of readability.
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Fig. 1 Prices of allowances.

Variable Mean Median Minimum Maximum

REUA −0.0150063 0.00706162 −0.294239 0.268549
RCER −0.0426674 −0.0419191 −0.590493 0.213908

Variable Std. Dev. Coeff.Var. Skewness Ex. kurtosis

REUA 0.130177 8.67480 −0.185831 −0.585533
RCER 0.146702 3.43827 −1.03966 2.10217

Table 1 Summary statistics of monthly log-returns of the allowances
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Fig. 2 Log-returns of allowances.

rather than absolute prices. The evolution of both returns series is shown in
Figure 2, a basic summary statistics may be found in Table 1.

We applied two standard techniques – ARMA(2,2) and GARCH(1,1) – to
the returns series. Even though the ARMA analysis of both series (with two
past values of the opposite variable as independent variables) showed some of
the coefficients as significant, a percentage of residual variance explained by
these models, which may also be understood as a percentage improvement of
the mean square error of predictions, came out very low (smaller than 6%);
therefore, and also because the results of the GARCH analysis were similarly
unconvincing, we decided to regard both REUA and RCER as mutually inde-
pendent i.i.d. series (for details, see Appendix C)).
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The Doornik-Hansen test applied to REUA did not reject normality so we
might regard the year-ahead log-return

R̃EUA
T? =

12∑
i=1

REUA
T+i , T = 10/2012, T ? = T + 12,

as normal.

For RCER, the same test gave significant results; here, however, we relied
on the Central Limit Theorem guaranteeing that standardised sums of inde-
pendent variables are close to Gaussian, and took R̃CER

T? =
∑12

i=1R
CER
T+i as

normal, too.

Consequently, we took the conditional distributions of year-ahead prices

P x
T? = P x

T exp{R̃x
T+i}, x ∈ {EUA,CER},

given P x
T as (approximately) log-normal.

Assuming zero means of Rx (which is justified by their insignificant esti-
mates), this gives, by Lemma 1 (Appendix B),

E(P x
T? |ΩT ) = P x

T exp
{

6σ2
x

}
, (2)

var(P x
T? |ΩT ) = (P x

T )2(exp{12σ2
x} − 1) exp{12σ2

x}, (3)

and

cov(PCER
T? , PEUA

T? |ΩT )

= PEUA
T PCER

T (exp{12σEUAσCERcorr(RCER, REUA} − 1)

× exp{6(σ2
EUA + σ2

CER)}, (4)

where

σ2
x = var(Rx), x ∈ {EUA,CER},

and where ΩT stands for the history up to T .

By substituting the values from Tables 1 and 3 into (2)-(4) we estimated
the mean and the variance matrix of (PEUA

T? , PCER
T? )T as

[
224.648
34.861

]
CZK,

[
10, 889.431 1, 598.308
1, 598.308 335.331

]
, (5)

respectively.
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Fig. 3 Nationwide sales [in tons]

Variable Mean Median Minimum Maximum

SF 271,421. 274,609. 148,949. 357,424.
SL 123,163. 126,904. 34,552. 216,539.

Variable Std. Dev. C.V. Skewness Ex. kurtosis

SF 38,660.7 0.142438 −0.611492 0.382079
SL 36,266.3 0.294457 −0.0931467 −0.0989230

Table 2 Summary statistics of monthly nationwide sales

4.2 Overall Demands

Generally, steel products can be divided into two groups – flat ones (plates and
products made of plates) and long ones (tubes, pipes, profiles, etc.). Out of
the four final products of the modeled company, the plates and the cut shapes
belong to the flat category, while the profiles and the brams are considered
long ones.

As no historical data of demands for the individual products were available
to us, we based our estimate of future individual demands on the history of
aggregate nationwide sales of flat and long products, denoted by SF , SL (due
to the recent decline in the metallurgical production, we might expect that the
industry was always able to satisfy all the demand, so the demand was always
equal to the sales).

Figure 3 shows the evolution of SF and SL between 1/2000-10/2012, the
corresponding summary statistics are given in Table 2.

Similarly to the price returns, we tried to fit SF and SL by ARMA(2,2)
and GARCH(1,1), both with two lags of the opposite series S as independent
variables. Here, both the GARCH and ARMA models gave significant results;
however, only ARMA models exhibited a considerable prediction power (the
variance reduction for SL was 27%, see Appendix C); therefore we decided
to model the time series of sales equations resulted from re-estimating of the
ARMA models after removing their insignificant coefficients:

SF
t = 0.67 · SF

t−1 + ηt, SL
t = 0.86 · SF

t−1 + 0.33 · SL
t−1 + 0.12 · SL

t−2 + εt,
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where ηt is an MA(2) process with coefficients 0.27 and −0.33 and εt is an
MA(2) process with coefficients 0.00 and −0.59. Forecasts, given by this mod-
els, are

E(SF
T? |ΩT ) = 268, 439 var(SF

T? |ΩT ) = 38, 7422

E(SL
T? |ΩT ) = 106, 900 var(SL

T? |ΩT ) = 28, 8712.

As the Doornik-Hansen normality tests applied to the residuals of the models
gave strongly insignificant results, we further presumed the forecast to be
bivariate normal with corr(SF

T? , SL
T? |ΩT ) estimated by a sample correlation

between SF and SL being equal to 0.52.3

4.3 Individual Demands

As a natural prediction of the year-ahead demands for the individual products
towards the examined company, denoted by

DDDT? = (D1, D2, D3, D4)T .

we took the present sales of the company:

µµµD = (20, 510, 90, 28)T . (6)

Due to the absence of historical values of DDD, however, we could not estimate
its variance matrix directly; instead, we constructed it out of (estimated) mo-
ments of (SF

T? , SL
T?) under the simplifying assumption of an equal (unknown)

correlations between the components

corr(Di, Dj) ≡ ρ, i 6= j (7)

with the resulting vector of standard deviations and the correlation

σσσD = (3.02, 53.27, 25.45, 7.97)T , ρ = 0.051 (8)

(from which the variance matrix of DDD might be constructed thanks to (7)).
For details of the constructon of the variance matrix, see Appendix A.

Further, as the distribution of DDD is close to normal (see Appendix A), we
further assumed DDD to be Gaussian with moments (6) and (8).

4.4 Dependence between Prices and Demands

As it is evident from the estimated correlation matrix of (SF , SL, REUA, RCER),
shown in Table 3, no relation between (vectors of) prices and demands could
be provd; therefore, we took (SF , SL) independent of (REUA, RCER) and,
consequently, DDDT? independent of (PEUA

T? , PCER
T? ).

3 We could estimate the conditional correlation by using an unconditional one as the
forecast value is 12 lags ahead, i.e., with a small influence of the historical values.
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SF SL REUA RCER

1.00 0.53??? 0.22 0.12 SF

1.00 0.04 0.07 SL

1.00 0.67??? REUA

1.00 RCER

Table 3 Correlation matrix of prices and sales (??? denotes 1‰significance level)

4.5 The Value Function

Given models from Sections 4.1 - 4.5, the mean and the variance of the value
function are

EV (xxx,yyy) = mmmTyyy+
(
r − 0.9 · eeeTxxx

)
·EPEUA

T? −0.1·eeeTxxx·E
(
PCER
T?

)
−cccTE [yyy −DDD]

+
,

(9)

var(V (xxx,yyy)) =
[(
r − 0.9 · eeeTxxx

)2 · var
[
PEUA
T?

]
+
(
0.1 · eeeTxxx

)2 · var
(
PCER
T?

)
+
(
0.1 · eeeTxxx

) (
r − 0.9 · eeeTxxx

)
cov(PCER

T? , PEUA
T? ) + cccT var((yyy −DDD)

+
)ccc
]
, (10)

respectively, with EPEUA
T? , EPCER

T? , var
(
PEUA
T?

)
, var

(
PCER
T?

)
and cov(PCER

T? , PEUA
T? )

taken from (5) and E((yyy −DDD)
+

) and var((yyy −DDD)
+

) evaluated by Monte Carlo
estimates computed by means of 60,000 realizations of DDD.

Remark. For the time series analysis, Gretl software package was used; to
generate the Monte Carlo sample mentioned above, the MASS package of R

was employed. The corresponding scripts, together with a spreadsheet for
calculating moments of DDD, may be downloaded from https://github.com/

cyberklezmer/modsc15.

5 Solution of the Problem

In order to analyze the situation under various circumstances, we considered
five possible mean vectors of the demand while keeping the remaining parame-
ters of the stochastic factors unchanged; in particular, we considered scenarios
of the form

Sk : EDDDT? = (kF · 20, kF · 510, kL · 90, kL · 28), 1 ≤ k ≤ 5,

(compare with (6)) with the following coefficients of the individual scenarios:

S1 : kF =
mint(S

F
t )

ŜF
= 0.55, kL =

mint(S
L
t )

ŜL
= 0.32,

S2 : kF =
1

2

(
1 +

mint(S
F
t )

ŜF

)
= 0.78, kL =

1

2

(
1 +

mint(S
L
t )

ŜL

)
= 0.66,

S3 : kF = 1, kL = 1, (the true state)

https://github.com/cyberklezmer/modsc15
https://github.com/cyberklezmer/modsc15
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S4 : kF =
1

2

(
1 +

maxt(S
F
t )

ŜF

)
= 1.17, kL =

1

2

(
1 +

maxt(S
L
t )

ŜL

)
= 1.51

S5 : kF =
maxt(S

F
t )

ŜF
= 1.33, kL =

maxt(S
L
t )

ŜL
= 2.03;

here, ŜF = E(SF
T? |ΩT ), ŜL = E(SL

T? |ΩT ), σF = std(SF
T? |ΩT ), σL = std(SL

T? |ΩT ),
Further, we considered values from an interval, i.e.,

λ ∈ L, L = [5× 10−6; 5× 10−4],

which is a subset of interval [1× 10−6; 5× 10−3] recommended by [10].4

In order to gain perspective, we solved the model for S3 without involving
the risk, i.e., with λ = 0, first. Consequently, the problem was evaluated for
each scenario S1, . . . ,S5 and for each λ from L with step 5× 10−6.

In all these cases, the optimization problem was solved by MS Excel 2013,
which we regarded as sufficient for dealing with problem (1) which is convex
and hence solvable even by an average-quality solver. To automate the process
of repeated computations, a Visual Basic macro has been created.

The results for S3 and λ = 0 are shown in Table 4. Here, the company
would be losing 110.4 million CZK (including costs of 3.67 million CZK spent
for extra allowances), which is due to low values of demand.5 It may be also
observed that the influence of the emissions trading on the company is weak.
The reason for the latter is that none of the limits is reached and little trading
has to be done (the amount of CO2 produced is close to the amount of freely
allocated permits).

Table 5 compares results of all the considered scenarios with λ = 0.

Iron Brams Plates 3 Profiles Cut shapes
Production [tons] 328,712 439,481 519,375 82,641 25,470

Sales [tons] 0 11,027 481,323 82,641 25,470
Production capacity used [%] 48 49 69 69 85

Table 4 Results of the model without risk in Scenario 3 - production portfolio

Scen. 1 Scen. 2 Scen. 3 Scen. 4 Scen. 5
Total profit [1000 CZK] -592,935 -350,866 -110,381 77,018 229,300

Total margin [1000 CZK] 465,951 708,020 948,505 1,135,904 1,388,186
Profit by permits [1000 CZK] 14,867 5,587 3,661 10,930 14,786
Slack/surplus of EUA’s [pcs] 15,092 6,840 -3,469 -11,574 -15,860

Table 5 Results of the model without risk for all scenarios - financial measures

4 We did not consider the whole recommended interval because the results, given the
excluded values, differed from the rest only negligibly according to our preliminary compu-
tations.

5 The present low demand is a persisting consequence of the economic crisis and company
production would be unsustainable under these conditions over a longer term.
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Fig. 4 Results under changing λ ((a) Total utility, (b) Total risk, (c) Mean value of the
objective function, (d) Amount of allowances purchased/sold)

The results given a positive risk aversion are displayed graphically by Fig.
4 showing the overall utility, the risk, the mean value and total amount of
allowances purchased given individual scenarios and values of λ. Fig. 5 displays
the proportions of production capacity exploited given different scenarios and
λ’s and Fig. 6 shows the dependence of sales on λ. Mostly, production decreases
with the increasing risk aversion, with the exception of brams given S5 till
λ
.
= 0.0007, when the graph is slightly increasing. As to the sales, an interesting

situation happens given S5: here, with an increasing risk aversion, the brams
sales suddenly stop, which is because it simultaneously serves as raw material
for making another product, which may be sold with a smaller risk.

In all the cases considered, neither emission limits nor emission caps were
reached; even for Scenario 5, the space given by caps and limits was not used by
more than 70%. So, the emissions trading is the only influential environmental
factor for companies similar to this one, given the present low demand.

The production constraints were mostly not reached, either; the only ex-
ceptions are the profiles given S5 (for all λ) and the cut shapes in the cases of
S4 and S5 (for low values of λ).
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Fig. 5 Production capacity usage with changing λ

6 Analysis of Risks

The values of the total risk for all scenarios and λ’s under consideration are
shown in Fig. 4b, the components of risk – namely the risk associated with the
demand and the risk originated from the emission trading – are depicted in
Fig. 7 (the values of risk are shown in a log scale). Note that the risk might be
unambiguously decomposed thanks to the independence of the demand and
the prices of the allowances.

While the risk caused by the demand takes similar values for all the scenar-
ios (which is mainly due to the fact that we assume the same variance given
all the scenarios), the dependence of the emissions trading risk on scenarios
and lambdas is more complex: in particular, there is no common pattern of
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Fig. 6 Amount of sales with changing λ
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Fig. 7 Variance given by demand and emissions trading

the dependence. Quite naturally, the least trading risk is achieved given S3,
which is because the necessary amount of the permits is close to the amount
allocated for free.

Given S4 and S5, the company does not have enough permits and must pur-
chase the missing ones at the market, which subsequently increases the risk.
However, with the increasing risk aversion coefficient, decreasing the amount
of production causes a reduction of the amount of CO2 released, which con-
sequently decreases the need for additional allowances and, consequently, the
corresponding risk.
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Given S1 and S2, when the company does not use all of the permits it has
obtained for free, the risk is increasing too but the increase is now caused by
selling additional permits. If the company wanted to reduce the risk related
to emissions trading here, it would have to reduce the unused amount of al-
lowances by increasing production (which is exactly the opposite of the cases
discussed above).

The shape of the graph describing the risk given S3 is also worthy of inter-
est: here, the value λ=̇0.00003 can be considered as a break point for the risk
related to emissions trading. For lower risk aversions, the company has a lack
of allowances, and the emission risk curve is decreasing and vice versa.

In Fig. 8, the risk caused by demand and that caused by trading are com-
pared. It may be seen here that risk caused by emissions trading can exceed
the risk caused by demand when λ is sufficiently high.

Fig. 9 shows efficient frontiers for all scenarios. The “shorter” shape given
S5, when the highest values of the demand are reached, may be explained by
the (already mentioned) fact that, starting from a certain value of λ, one of
the products (brams) is not sold at all (it is produced only as a raw material
for other products) which leads to a substantial risk decrease.

7 Conclusions

In this paper, a mean-variance profit-maximization model for companies under
emission control was proposed. Even though the model was designed specifi-
cally for steel companies and calibrated to the situation of a particular one,
it might be, after minor revision, applied to any, possibly non-steel, industrial
company.

It was shown that the constraints stemming from the carbon regulation
may have substantial effects on the decisions of such a company, so incorpo-
rating these constraints into decision-making models is highly beneficial.

In the particular situation of the modeled company, the emission limits
have not been reached and the emissions trading did not have dramatic effects,
which is because the Czech steel sector currently suffers from low demand.
However, under different scenarios of demand, when the number of allowances
needed differs positively or negatively from the amount allocated for free, the
effects of emission trading increase, bringing a new source of risk.

Of course, there are many ways in which to go further in this research:
The first enhancement that suggests itself could be to model the decision-
making by a two-stage stochastic programming incorporating a compensation
for unsold production. A further generalization involving a multi-stage decision
making would help to incorporate inter-temporal effects, which are currently
neglected. It would also be worth using risk measures other than the variance;
out of various options, a (nested) CVaR seems to be the most reasonable choice
because it may be easily incorporated into the (convex) decision problem.
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(b) Scenario 2
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(c) Scenario 3
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(d) Scenario 4
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Fig. 8 Risk caused by demand and by emission trading with changing λ for particular
scenarios
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Fig. 9 Efficient frontier (dependence between risk and mean value)
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Appendix

A Model for Demands

The goal of the present Section is to deduce a variance matrix of demands (D1, D2, D3, D4)
from their expectations and a variance matrix of (SF , SL).

To this end, assume that there are N potential customers where N is Poisson with
parameter κ. Once during each time period (year in our case), each customer decides which
amountsQQQ = (Q1, Q2, Q3, Q4) ∈ [0,∞)4 of the products 1, 2, 3, 4 he buys and, subsequently,
which of these products he buys at the company of our interest.

As we do not have information about overall demand for individual products, we have
to make simplifying assumptions, namely that the ratios of expectations and roots of second
moments of Q’s are the same within the same category, i.e.,

EQ1/
√

EQ2
1 = EQ2/

√
EQ2

2, EQ3/
√

EQ2
3 = EQ4/

√
EQ2

4. (11)

Further, we assume that whenever a customer decides to buy a non-zero amount of two
products from the same category, he will buy it at the same company; to formalize this, de-
note JF and JL zero-one variables indicating whether the customer decided to buy products
from category F , L, respectively, at our company, and assume JF and JL to be mutually
independent, independent of QQQ.

Then, given that the demands of individual customers are i.i.d. with the same distribu-
tion as QQQ, the distributions of SF and SL are Compound Poisson with embedded variables

KF := (Q1 +Q2), KL := (Q3 +Q4),

respectively, both with intensity κ; consequently, according to the well-known formulas for
moments of the Compound Poisson distribution,

ESF = κEKF , ESL = κEKL,

varSF = κE(KF )2, varSL = κE(KL)2,

and, by the Law of Total Covariance,

cov(SF , SL) = Ecov(SF , SL|N) + cov(E(SF |N),E(SL|N))

= Ecov

(
N∑
i

KF
i ,

N∑
i

KL
i

∣∣∣∣∣N
)

+ cov(NEKF , NEKL)

= ENcov(KF ,KL) + var(N)E(KF )E(KL)

= κ[cov(KF ,KL) + E(KF )E(KL)] = κE(KFKL). (12)

Similarly, D1 and D2 are Compound Poisson with embedded variables JFQ1, JFQ2,
respectively, both with intensity κ , i.e.,

EDi = κE(JFQi) = pF κEQi, varDi = κE(JFQi)
2 = κE(JF )2E(Qi)

2 = pF κEQ2
i ,

i = 1, 2, (13)
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where pF = P[JF = 1]. Further, as D1 + D2 is Compound Poisson with intensity κ and
embedded variable JFKF , we have

E(D1 +D2) = pF κE(KF ) = pFESF (14)

var(D1 +D2) = pF κE(JFKF )2

= κE(JF )2E(KF )2 = pF var(SF ) =
E(D1) + E(D2)

ESF
var(SF ) (15)

(we have used (14) for the last equality) and, symmetrically,

EDi = pLκEQi, varDi = pLκEQ2
i , i = 3, 4, (16)

E(D3 +D4) = pLESL, var(D3 +D4) =
E(D3) + E(D4)

ESL
var(SL), (17)

where pL = P[JL = 1]. Moreover, similarly to (12),

cov(D1 +D2, D3 +D4)

= κE(JFKF JLKL) = κE(JF )E(JL)E(KFKL) = pF pLcov(SF , SL). (18)

Now, to construct the variance matrix of DDD under (7), it suffices to compute ρ and vi :=
var(Di), i = 1, . . . , 4, which we do in the following way: from (13) and (17), employing (11),
we get that

v1/v2 = (ED1/ED2)2, (19)

v3/v4 = (ED3/ED4)2, (20)

respectively, while from (15) and (17) it follows that

v1 + 2ρ
√
v1v2 + v2 =

E(D1) + E(D2)

ESF
var(SF ), (21)

v3 + 2ρ
√
v3v4 + v4 =

E(D3) + E(D4)

ESL
var(SL); (22)

finally, from (18), we get

ρ
2∑

i,j=1

√
vivj =

E(D1) + E(D2)

ESF
E(D3) + E(D4)

ESL
cov(SF , SL). (23)

As (19)-(23) is in fact a system of five equations with five variables ρ, v1, . . . , v4, we may
easily get the values of ρ, v1, . . . , v4 by a (numerical) solution.

Finally, as (Compound) Poisson variables may be approximated by normal ones provided
that their intensities are large enough, our construction may be used in the case when SF and
SL are normally distributed and, for the same reason, the resulting vector (Q1, Q2, Q3, Q4)
may be regarded as normal.

B Bivariate Log-Normal Distribution

Lemma 1 Let (X,Y ) be a bivariate normal random vector with zero mean, variances σ2
x,

σ2
y, respectively, and correlation ρ. Then

(i) both exp{X} and exp{Y } are log-normal with means exp

{
σ2
x
2

}
, exp

{
σ2
y

2

}
, respectively

and variances exp{σ2
x}(exp{σ2

x} − 1), exp{σ2
y}(exp{σ2

y} − 1) respectively.

(ii) cov(exp{X}, exp{Y }) = (exp {σxσyρ} − 1) exp

{
σ2
x+σ2

y

2

}
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Proof While (i) might be calculated using well-known formulas for moments of a log-normal
distribution, (ii) follows from the definition of covariance:

cov(exp{X}, exp{Y }) = E(exp{X} exp{Y })− E(exp{X})E(exp{Y })

= E(exp{X + Y })− E(exp{X})E(exp{Y }) = exp

{
σ2
x+y

2

}
− exp

{
σ2
x + σ2

y

2

}

where σ2
x+y = var(X + Y ) = σ2

x + 2σxσyρ+ σ2
y .

C Time Series Model Selection

The Table below shows a comparison of three time series models for each series we examined.
Here, “ARMA” means ARMAX(2,2,2) with two lags of the opposite variable as indepen-
dent variables (for REUA, the opposite variable is RCER, for SL, the opposite variable is
SF , etc.). “GARCH” means GARCHX(1,1,2) with two lags of the opposite variable. “IID”
means mutually independent, identically distributed series. Symbol R stands for a percent-
age improvement of the Mean Square Error of a particular model when compared with IID.
Bold typeface denotes the best (most favourable) values. All the evaluations were done after
removing insignificant coefficients from the model and a re-estimation.

Akaiake criterion MSE improvement
IID ARMA GARCH ARMA GARCH

REUA −50 −56 −57 0.06 0.06
RCER 59 52 −22 0.05 0.00
SF 3, 691 3, 655 3,631 0.13 0.07
SL 3, 671 3,534 3, 553 0.27 0.21
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