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Miloslav Vošvrda1, Jaroslav Schürrer2

Abstract. This paper introduces the relation of Heisenberg Principle of Un-
certainty to maximum Wavelet level of decomposition where the Wavelet coeffi-
cients typically provide sparse representation. In Quantum physics, Heisenberg
Principle of Uncertainty states that we cannot exactly know the position and
momentum of a particle simultaneously. In time frequency domain, Heisen-
berg Principle states that we cannot exactly know information about time and
frequency simultaneously. Time delta multiplied by frequency delta is greater
than some arbitrary constant. This restriction has different consequences in
Fourier transformation and Wavelet transformation, which is more suitable for
non-stationary times series analysis. Wavelets fits into this principle because
a basic Wavelet is characterized by short time and high frequency. However,
when the Wavelet is stretched then it has longer time anhd lower frequency.
This principle is inherent in the nature of things and has nothing to do with
numerical precision of the Wavelet analysis. First part of the paper summa-
rizes Heisenberg Principle of Uncertainty, Wavelet transformation and signal
energy. Second part presents Wavelet analysis of Apple Inc. stock daily closing
price showing energy redistribution depending on the Wavelet decomposition
level based on the choice of the Wavelet used for decomposition and the level
of decomposition.
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1 Heisenberg Principle of Uncertainity definition in time frequency domain

Theoretical part of this paper sumarises various definitions of Heisenberg Principle of Uncertainty from
literature in references and define basic signal properties and also Distrete Wavelet Transformation which
is used in numerical part. We start with definiton by Gabor atoms and their relation to Heisenberg
Uncertainty and continue with Windowed Fourier transformation to Continuous Wavelet transformation.

1.1 Gabor atoms

Heisenberg Uncertainty as a analogy was first time used in freqeuncy domain by Gabor during time
frequency dictionary definition constructed from waveforms of unit energy ||φγ || = 1. Following paragraph
is based on pioneer work of Mallat in Wavelet theory [1]. Lets start with definition of time localisation
u of φγ and spread of φγ around u.

u =

∫
t.|φγ(t)|2dt and σ2

t,γ =

∫
|t− u|2.|φγ(t)|2dt (1)
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For frequency localisation and spread we have similar equations

ξ = (2π)−1
∫
ω.|φ̂γ(ω)|

2
dω and σ2

ω,γ = (2π)−1
∫
|ω − ξ|2.|φ̂γ(ω)|

2
dω (2)

The Fourier Parseval formula shows dependency of 〈f, φγ〉 on the values of f(t) and f̂(ω). Rectangle
of size σt,γ × σω,γ is centerd at (u, ξ) for (t, ω).

〈f, φγ〉 =

∫ +∞

−∞
f(t).φ?γ(t)dt =

1

2π

∫ +∞

−∞
f̂(ω).φ̂?γ(ω)dω (3)

Heisenberg box represents Gabor atom φγ as is depicted on following figure 1. This box may be un-
derstand as ”quantum of information over an elementary resolution cell.”[1]. This rectangle has minimum
surface defined

σt,γ .σω,γ ≥
1

2
(4)

Figure 1 Heisenberg box of Gabor atom [1]

1.2 Windoved Fourier Transformation

Windoved Fourier Transformation uses time window g(t) which is translated in time and frequency and
has unit norm ||g|| = 1. Each dictionary atom gu,ξ is projected by Windowed Fourier Transformation see
Figure 2 (left side).

Sf(u, ξ) = 〈f, gu,ξ〉 =

∫ +∞

−∞
f(t).g(t− u).e−iξt (5)

Figure 2 Energy spread of two windowed Fourier Transformation (left) and two Wavelets (right) [1]



1.3 Continuous Wavelet Transformation

Wavelet dictionary is based on the mother Wavelet ψ which is scaled by parameter s and translated by
parameter u

ψu,s =
1√
s
.ψ
( t− u

s

)
dt (6)

and satisfying condition of zero mean

∫ +∞

−∞
ψ(t)dt = 0 (7)

The term 1√
s

ensures energy conservation during scale shift. Continuous Wavelet Transformation

projects function f at any scale and positon of mother Wavelet

Wf(u, s) = 〈f, ψu,s〉 =

∫ +∞

−∞
f(t).

1√
s
.ψ∗
( t− u

s

)
dt (8)

Wavelet atom has Heisenberg box with fixed area where parameter s varies as is depicted in Figure 2
(right side). Wavelets have time and frequency localisation in comparation with Fourier atoms. When
parameter s varies , the time and frequency changes, but area of box is still constant. For width window
we have good resolution in frequency an low in time and vice versa for narrow window good resoltion int
time and low in frequency.

2 Signals and their properties

Let f(x) be a function defined on the interval (−π, π) such that f2(x) has a finite integral on that interval.
If an, bn are the Fourier coefficients of the function f(x) than Bessel’s Inequality states

π
(

2a20 +

∞∑
n=1

(a2n + b2n)
)
≤
∫ π

−π
f2(x)dx (9)

The energy E of 2π periodic function f(x) is defined

E =
1

π

∫ π

−π
f2(x)dx (10)

and Bessel’s inequality can be than written in following form:

(
2a20 +

∞∑
n=1

(a2n + b2n)
)
≤ E (11)

where term (a2n+ b2n) represents energy. We define discrete signal as a sequence of numbers {x(n)}, n ∈ Z
satisfying following equation

∑
n∈Z
|x(n)| <∞ (12)

which states that signal has to be bounded. This condition is necessary prerequisite for Discrete Waveleet
Transform. We also define for discrete signal x(n) his energy E = x21 + x22 + ...+ x2n, n ∈ Z. If equation
(12) is satisfied we speak about signal with finite energy. This definiton is based on Bessel’s Inequality
and energy definition for periodic function.



2.1 Signal comparison

Root Means Square Error (RMS Error) between two signals x(n) and y(n) is defined as

RMSError =

√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

n
(13)

3 Discrete Wavelet Transformation - DWT

Wavelet function has two important parameters: scaling s and translation u and must satisfy admissibility
and regularity condition. Admissibility means that Wavelet has zero average in time domain (must be
oscillatory). Regularity requires smoothness and concentration in both time and frequency domains.
Discrete Wavelet Transformation uses scaling parameter as a power of two ([5])

s = 2−j (14)

and the time shift becames

u = k.2−j = k.s (15)

Substituting equations (14) and (15) into base function in (6) we get

ψu,s = ψ
( t− u

s

)
= ψ

( t− ku
s

)
= ψ(s−1t− k) = ψ(2j .t− k) (16)

Mother Wavelet at scale j and translation k is than defined as

ψj,k = 2j/2ψ(2j .t− k) (17)

and similarly scaling function at scale j and translation k is defined

φj,k(t) = 2j/2φ(2j .t− k) (18)

Scaling and mother function can be constructed as a liner combination of translations with the doubled
frequency of a base scaling function φ(2t) and base mother function ψ(2t) with equations

φ(t) =

+∞∑
k=−∞

√
2ho(k)φ(2t− k) ψ(t) =

+∞∑
k=−∞

√
2h1(k)φ(2t− k) (19)

where h0(k) and h1(k) are Wavelet filter coefficients. For scaling Haar Wavelet we have following coeffi-
cients h0(0) = h0(1) = 1/

√
2 and for Haar mother Wavelet we have h1(0) = 1/

√
2 and h1(1) = −1/

√
2.

Daubechies 4 filter coefficients are h0(0) = 0.4830, h0(1) = 0.8365, h0(2) = 0.2241, h0(3) = −0.1294
and Daubechies 4 Wavelet coefficients are h1(0) = −0.1294, h1(1) = −0.2241, h1(2) = 0.8365, h1(3) =
−0.4830.

We also notice that signal has to be bouded to perform DWT and that DWT ensures energy conser-
vation on the first level of decompostition. First level of DWT is performed by computing first trend and
first fluctuation coefficients from original signal. Second level DWT is performed by computing second
trend and second fluctuation for the first trend only and so on for other decomposition levels.



4 Numerical results

Numerical part demonstrate computation corollaries of Heisenberg’s Uncertainty Principle. As a data
source we use daily price for Apple Inc. (AAPL) for the last 15 years. This sample has 3813 data points
where each value represent value in USD and following graph shows stock price progress during evaluated
period. From picture it is clear that this signal has finite energy thus we can use DWT where coefficients
length depends on the input signal length and selected Wavelet filter.

Figure 3 AAPL price in USD from 3.1.2000 to 27.2.2015.

We use for the Wavelet analysis a single prototype function (wavelet), which can be thought of as a
bandpass filter. In the concrete filter coefficients for Haar are well known from theory and Daubechies 4
orthogonal wavelet with two vanishing moments with coefficients ”in [1], which include values for different
Wavelet filters”. We use own code programmed in Python, because implemented Wavelet Transformations
in various software packages use built in mechanism for energy preservation to get around consequences
of Heisenberg’s Uncertainty Principle. Verification can be done very easily. We select testing signal with
length sufficient at minimum to level 4 of decomposition and compute trend coefficients with selected
Wavelet package and with own program using filter described in section 3. Than we compare energy
of coefficients on particular levels of decompostion. If energy is not approximately same than Wavelet
package uses energy preservation algorithm.

Figure 4. depicts development of original AAPL price (top), Haar 1 and Haar 5 (bottom) trend
coefficients where we can see how trend looks like with increasing level of Wavelet level decomposition
thus coefficients reduction from 3813 to 119 (number of coefficients is on vertical axis).

Figure 4 AAPL price in USD, Haar 1 and Haar 5 trend coefficients

Following table sumarises energy preservation in dependence of the number of decomposition. We
note that maximum useful level of decomposition for the given input signal length and wavelet filter
length is 9. Theoretically there is maximum level of decomposisiton equal to 11 with Haar Wavelet, but
in this case energy of Wavelet trend coefficient drop to 20% of the original signal.



Level of decomposition Haar Daubechies 4

1 99.74 98.90

2 99.73 98.81

3 98.66 98.59

4 98.61 92.20

5 98.52 82.48

6 91.68 70.85

7 79.80 69.65

8 63.08 46.53

9 62.27 43.08

Table 1 Energy distribution on DWT decomposition level (trend coefficients)

Different values in table 1 have relation to various Wavelets families used during DWT and lenght of
Wavelet compat support. For demostrative purposes we include in 1 row with RMS error for inverse
DWT for Haar Wavelet.

5 Conclusion

In this paper we presented overview of Heisenbergs Uncertainty Principle and its relation to decomposition
level of Discrete Wavelet Transformation. Heisenbergs Uncertainty Principle can be understood as well
as a limitation of fixed amount energy localisation in small time interval. We cannot compact energy into
decrescent time intervals. Numerical part analysed real stock data for Apple Inc. showing how energy
percentage drop down for trend coefficients with increasing level of decomposition and different Wavelets
used for analysis. We also note the fact that available Wavelet packages include built in mechanism for
energy preservation and we expose simple algorithm how to check this fact.
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