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Abstract This paper considers computation of Fréchet and limiting normal cones to a finite
union of polyhedra. To this aim, we introduce a new concept of normally admissible strati-
fication which is convenient for calculations of such cones and provide its basic properties.
We further derive formulas for the above mentioned cones and compare our approach to
those already known in the literature. Finally, we apply this approach to a class of time
dependent problems and provide an illustration on a special structure arising in delamination
modeling.
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1 Introduction

In the past few decades, applied mathematicians have paid a lot of attention to optimization
and optimal control problems with various types of nonconvex constraints. In the varia-
tional geometry of nonconvex sets, the so-called tangent (Bouligand-Severi, contingent)
cone, regular (Fréchet) normal cone and limiting (Mordukhovich) normal cone play impor-
tant role in the study of optimization and optimal control, such as optimality conditions,
related constraint qualifications, stability analysis etc., see [25] for theory in finite dimen-
sions and [18, 19] for analysis in infinite-dimensional spaces. All cones mentioned above
enjoy calculus rules that may simplify their calculations. However, in many cases, calculus
provides only approximation (inclusion) which may not be useful for further analysis. Thus,
exact computation for even trivial nonconvex set may become a very technical and lengthy
procedure.

In this paper we focus on computation of normal cones to a finite–dimensional set �,
which is a union of finitely many (convex) polyhedra. By polyhedron we understand a finite
intersection of halfspaces, which is always closed and convex. Such sets naturally arise
whenever a parameterized generalized equation

0 ∈ F(u, x) + G(u, x) (1)

is considered with a continuously differentiable function F : Rd ×Rn → Rm, a polyhedral
multifunction G : Rd × Rn ⇒ Rm, a parameter or control variable u and a state variable x.
Defining the solution map S : Rd ⇒ Rn associated with (1) as

S(u) = {x| 0 ∈ F(u, x) + G(u, x)},
one may intend to compute a generalized derivative of the solution map S. This is often
connected with evaluation of some of the above mentioned cones to � := gph G. Since G

is a polyhedral multifunction, � is indeed a union of a finite number of polyhedra.
The computation of a generalized derivative is useful whenever we are interested in

performing stability and sensitivity analysis of S or whenever we intend to solve a hier-
archical problem constrained by system (1). This is the case of mathematical programs
with equilibrium constraints such as the so-called disjunctive programs [10]. The latter
class of (parameterized) programs includes, e.g., bilevel problems with linear constraints
on the lower level [6], mathematical programs with complementarity constraints [17, 21] or
mathematical programs with vanishing constraints [2].

Besides these particular applications, when we consider a polyhedral set C, the graph
of the normal cone mapping NC(·) in the sense of convex analysis also enjoys the same
polyhedral structure, as already observed in [23]. This is naturaly important in many aspects
of variational analysis.

There has already been some attempts to provide formulas for normal cones to such
sets �. In [7], the authors provide formula for the limiting normal cone to gph NC , with
C polyhedral, in terms of the so-called critical cones and their polars. This special case
of a union of polyhedra has also been studied in [13]. In [12], the formula for the fully
general case of a union of polyhedra has been provided utilizing the Motzkin’s Theorem of
the Alternative. There, the authors already build upon the well-known fact that the tangent
and normal cones are constant on relative interior of a face of a polyhedral set, result that
goes back to Robinson [23]. Additionally to simplified formulas for several special cases, a
formula for normal cone to a particular case of a union of non-polyhedral sets is provided
in [12]. In all the above mentioned papers, however, the resulting formulas are non-trivial
with highly growing complexity with respect to the number of faces.
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In this paper, we describe an alternative procedure for computation of full graph of nor-
mal cone mappings to � along with normal cones at a specific point. For this, we introduce
the so-called normally admissible stratification of a union of polyhedra in order to general-
ize the observation of constant-valuedness of tangent and normal cone mappings on certain
subsets of a polyhedra. Our results can be considered as a natural generalization of [5]
where formulas for tangent and normal cones were derived for a special case of a union of
polyhedra with each polyhedral set being a subset of {R,R+,R−, {0}}n. We obtain formu-
las which hold as equalities without any constraint qualification. This seems to be natural
for the considered polyhedral setting. However, to the best of our knowledge, such a result
cannot be achieved by applying general calculus rules without any additional information.

The article is organized as follows. In Section 2 we provide the definition of a normally
admissible stratification of � and show that such stratification always exists. Further, we
derive formulas for graphs of regular and limiting normal cones to �. In Section 3 we
compare our procedure to those of Dontchev and Rockafellar [7] and Henrion and Outrata
[12]. Finally, in Section 4 we consider an application arising in discretized time-dependent
problems [1, 4]. We provide a theoretical background, specifying the form of normally
admissible stratifications in this particular class of problems, and illustrate the benefits of
our procedure on a special case arising in delamination modeling [26].

Our notation is basically standard. We use R+,R−,R++ and R−− to denote nonneg-
ative, nonpositive, positive and negative real numbers, respectively. For a set �, cl � and
rint � denote its closure and relative interior, respectively, where relative interior is defined
as interior with respect to the smallest affine subspace which contains �. We say that � is
relatively open if � = rint �. For a cone A, A∗ stands for its negative polar cone, span A

and con A refer to the linear and convex conic hull of A, respectively. By x
�−→ x̄ we mean

that x → x̄ with x ∈ �. For scalar product of x and y we use both x�y and 〈x, y〉.
For the readers’ convenience we now state the definitions of several basic notions from

modern variational analysis. For a set-valued mapping M : Rn ⇒ Rm and some x̄ we define
Painlevé-Kuratowski upper (outer) limit by

Limsup
x→x̄

M(x) := {y ∈ Rm | ∃xk → x̄, ∃yk → y with yk ∈ M(xk)}.

This concept allows us to define the tangent (contingent, Bouligand-Severi) cone to � ⊂ Rn

at x̄ as

T�(x̄) := Limsup

x
�−→x̄

� − x̄

t
.

For a set � at x̄ ∈ � we define the regular (Fréchet) normal cone N̂�(x̄) and limiting
(Mordukhovich) normal cone N�(x̄) to � as

N̂�(x̄) :=
⎧⎨
⎩x∗ ∈ Rn

∣∣∣∣∣∣ limsup

x
�−→x̄

〈x∗, x − x̄〉
‖ x − x̄ ‖ ≤ 0

⎫⎬
⎭ = (T�(x̄))∗ ,

N�(x̄) := Limsup

x
�−→x̄

N̂�(x).

For a convex set �, both normal cones N̂� and N� amount to the normal cone of convex
analysis which is usually denoted by N�. Here, however, in order to stress out the possible
generalization of some formulas developed in this manuscript to nonconvex sets, we use N̂�

even for convex sets �.
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For a polyhedral set C and some x̄ ∈ C and ȳ ∈ NC(x̄), the critical cone to C at x̄ for ȳ

is defined as

KC(x̄, ȳ) := {w ∈ TC(x̄)| w�ȳ = 0}.

2 Main result

The main goal of this section is to compute N̂� and N� , where � ⊂ Rn is a finite union of
polyhedral sets �r for r = 1, . . . , R, that is

� =
R⋃

r=1

�r. (2)

In order to compute these normal cones, we will first introduce a convenient partition of
� which satisfies certain suitable conditions. Next, we show existence of such partition.
Finally, we derive formulas for both Fréchet and limiting normal cones to �.

Definition 1 We say that {�s | s = 1, . . . , S} forms a partition of � if �s are nonempty and
pairwise disjoint for all s = 1, . . . , S and ∪S

s=1�s = �.

The following definition of normally admissible stratification is based on the strata the-
ory [11, 22] which was developed for general manifolds. In the polyhedral case, we may
add additional assumptions such as that stratas �s are relatively open. Note that condition
(3) is well–known as the so–called frontier condition. Similar partition was proposed in [27]
under the term polyhedral subdivision with all the partition elements being closed polyhedra
of the same dimension as �.

Definition 2 We say that {�s | s = 1, . . . , S} forms a normally admissible stratification of
� if it is a partition of � with �s , s = 1, . . . , S relatively open, convex and cl �s polyhedral
such that the following property holds true for all i, s = 1, . . . , S

�s ∩ cl �i �= ∅ =⇒ �s ⊂ cl �i. (3)

The term normally admissible stratification is coined in order to reflect the forthcoming
Theorem 1 saying that normal cones are constant with respect to this stratification in a
particular sense. Next, for a normally admissible stratification of � denoted by {�s | s =
1, . . . , S} we define two index sets which are extensively used throughout the manuscript

I (s) := {i ∈ {1, . . . , S}| �s ∩ cl �i �= ∅}, (4a)

Ĩ (s) := {i ∈ I (s)| �j ∈ I (s) : cl �i � cl �j } ⊂ I (s). (4b)

Clearly, I (s) has a close connection with (3) and Ĩ (s) is composed of such indices of I (s)

that correspond to maximal elements of {cl �i | i ∈ I (s)} in the sense of subsets. We will
often work with the following alternative representations of Ĩ (s)

Ĩ (s) = {i ∈ I (s)| ∀j ∈ I (s) : cl �i ⊂ cl �j =⇒ i = j} (4c)

= {i ∈ I (s)| j ∈ I (s) ∩ I (i) =⇒ i = j}. (4d)

For a normally admissible stratification, formula (4b) is equivalent to (4c) due to [24,
Theorem 6.3]. The equivalence of (4c) and (4d) follows from the fact that j ∈ I (i) is
equivalent to �i ⊂ cl �j .
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Next, we provide a constructive proof of existence of a normally admissible stratification
to �.

Lemma 1 Let � ⊂ Rn be a finite union of polyhedral sets. Then there exists a normally
admissible stratification of �.

Proof Consider � in the form (2) with �r defined as

�r = {x| 〈cr
t , x〉 ≤ br

t , t = 1, . . . , T (r)}.
We now relabel all cr

t to cu, u = 1, . . . , U with U = ∑R
r=1 T (r) and similarly for bu. For

I, J ⊂ {1, . . . , U} define the following sets

�I,J :=
⎧⎨
⎩x

∣∣∣∣∣∣
〈cu, x〉 < bu for u ∈ I

〈cu, x〉 > bu for u ∈ J

〈cu, x〉 = bu for u ∈ {1, . . . , U} \ (I ∪ J )

⎫⎬
⎭ , (5)

� := {
(I, J )

∣∣ �I,J �= ∅, �I,J ⊂ �
}
. (6)

We claim that {�I,J | (I, J ) ∈ �} is a normally admissible stratification of �.
First, we show that {�I,J | (I, J ) ∈ �} is a partition of �. Indeed, if we restrict ourselves

to (I, J ) ∈ �, then �I,J are nonempty and pairwise disjoint by construction. Moreover,
since �I,J ⊂ �, we have ⋃

(I,J )∈�

�I,J ⊂ �.

To show that the equality holds in the previous relation, choose any x ∈ �. By construction
of sets �I,J , there exists exactly one couple (I, J ) such that x ∈ �I,J . To show that (I, J ) ∈
�, it remains to realize that

�I,J ⊂
⋂

{r| x∈�r }
�r ⊂ �.

Hence, we have shown that {�I,J | (I, J ) ∈ �} is indeed a partition of �.
To prove that {�I,J | (I, J ) ∈ �} is a normally admissible stratification of �, recall that

for all (I, J ) ∈ � we have �I,J nonempty, which allows us to apply Lemma A1 to obtain
that �I,J is relatively open and

cl �I,J =
⎧⎨
⎩x

∣∣∣∣∣∣
〈cu, x〉 ≤ bu for u ∈ I

〈cu, x〉 ≥ bu for u ∈ J

〈cu, x〉 = bu for u ∈ {1, . . . , U} \ (I ∪ J )

⎫⎬
⎭ .

Clearly, �I,J is convex and cl �I,J polyhedral. Thus, it remains to show that property (3)
holds. Assume that there is some x ∈ �I1,J1 ∩ cl �I2,J2 . This immediately means I1 ⊂ I2
and J1 ⊂ J2. But this implies that �I1,J1 ⊂ cl �I2,J2 , which concludes the proof.

Next we show a simple example with several possible partitions of a given set, where
only some are normally admissible stratifications.

Example 1 Consider the following union of two polyhedral sets � = (
R×{0})∪({0}×R+

)
.

One possible partition of � to relatively open sets is � = �1 ∪ �2 with

�1 = R × {0}, �2 = {0} × R++.

Since (0, 0) ∈ �1 ∩cl �2, we have I (1) = {1, 2}. However, as (1, 0) ∈ �1 and (1, 0) /∈ cl �2
condition (3) is not satisfied for s = 1 and i = 2 and hence this partition is not normally
admissible stratification. This situation is depicted on the left–hand side of Fig. 1.
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Fig. 1 Possible partitions of the set from Example 1. The left partition is not normally admissible while the
right one is normally admissible

To remedy the situation, one may consider the following partition � = ⋃4
s=1 �̃s with

�̃1 = R−− × {0}, �̃2 = {0} × {0}, �̃3 = R++ × {0}, �̃4 = {0} × R++,

see the right–hand side of Fig. 1. It is simple to verify that this is indeed a normally
admissible stratification of �.

Now we present the main motivation for considering normally admissible stratification
which states that the tangent and normal cone mappings are constant with respect to a
particular component of this stratification.

Theorem 1 Consider a finite union of polyhedral sets � and its normally admissible strat-
ification {�s | s = 1, . . . , S}. Then for any s ∈ {1, . . . , S}, i ∈ I (s) and x, y ∈ �s we
have

Tcl �i
(x) = Tcl �i

(y) and N̂cl �i
(x) = N̂cl �i

(y). (7)

Proof From [24, Theorem 18.2] we know that �s is contained in a relatively open face of
cl �i , and so the statement follows from [9, Chapter 1, Lemma 4.11].

From Theorem 1 we know that for any s and i ∈ I (s), tangent cone Tcl �i
(x) does not

depend on a choice of x ∈ �s . To simplify notation, we denote this constant value by

Tcl �i
(�s) := Tcl �i

(x0) for arbitrary x0 ∈ �s.

In a similar way, we will use notation N̂cl �i
(�s) and Ncl �i

(�s). In the sequel it will become
clear that formula (7) is the cornerstone of this paper.

In the following example we present a set and its several possible partitions. The first
partition satisfies formula (7) even though one of its components is nonconvex, meaning
that this partition is not normally admissible stratification. For the other two partitions con-
sidered, we show that neither condition (3) nor convexity can be dropped from Definition 2
in order to satisfy Theorem 1.

Example 2 Consider � = �1 ∪ �2 to be union of �1 = [0, 3] × [0, 1] and �2 = [0, 2] ×
[1, 2]. Then, one of the possible partitions of �, elements of which are relatively open and
satisfy condition (3), contains a nonconvex plane segment

�1 =
(
(0, 3) × (0, 1)

)
∪

(
(0, 2) × (0, 2)

)
,

six points and six line segments, see the left–hand side of Fig. 2. Since cl �1 is nonconvex,
this partition is not normally admissible stratification. However, it is not difficult to verify
that the statement of Theorem 1 holds true. To show an example, consider s = 1. Clearly,
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Fig. 2 Possible partitions of the set from Example 2. The figure on the left–hand side shows the need of
convexity. The figure on the right–hand side shows a partition satisfying the result of Theorem 1 but not
being normally admissible. Note that the rectangles are considered as one set

I (1) = {1} and for all x ∈ �1 we observe that Tcl �1(x) = R2 and thus Tcl �i
(�1) is indeed

well-defined for all i ∈ I (1).
It is simple to find a normally admissible stratification of �. For example, it may consists

of two rectangles, eight line segments and seven points as depicted on the right–hand side
of Fig. 2. Now we illustrate the role of condition (3) in Theorem 1. Consider any partition
of � containing the following sets

�̃1 = (0, 3) × {1}, �̃2 = (0, 2) × (1, 2).

Since (1, 1) ∈ �̃1 ∩ cl �̃2, we have 2 ∈ I (1). However, it is clear that �̃1 �⊂ cl �̃2 and thus
(3) is violated. Moreover, we have

Tcl �̃2
((2, 1)) = R− × R+,

Tcl �̃2
((1, 1)) = R × R+,

even though (2, 1) ∈ �̃1 and (1, 1) ∈ �̃1. Thus, formula (7) does not hold for s = 1 and
i = 2.

Next, consider a partition of � with

�̂1 = [(0, 2) × {1}] ∪ [(2, 3) × {1}],
�̂2 = [(0, 3) × (0, 1)] ∪ [(0, 2) × (1, 2)],

and seven points and six line segments, see the left–hand side of Fig. 2. Then all the condi-
tions for normally admissible stratification with the exception of convexity of �̂1 and �̂2 and
the polyhedrality of cl �̂2 are satisfied but Theorem 1 does not hold true. Finally, observe
that indeed �̂1 ⊂ cl �̂2.

We are now ready to provide the main result of this section which concerns the
computation of normal cones to finite union of polyhedra.

Theorem 2 Let � be a finite union of polyhedral sets and {�s | s = 1, . . . , S} be its normally
admissible stratification. Then for any x ∈ �s we have N̂�(x) = N̂�(�s) and further

N̂�(�s) =
⋂

i∈I (s)

N̂cl �i
(�s) =

⋂
i∈Ĩ (s)

N̂cl �i
(�s). (8)
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Moreover, for graphs of Fréchet and limiting normal cones we have the following formulas

gph N̂� =
S⋃

s=1

(
�s × N̂�(�s)

)
, (9)

gph N� =
S⋃

s=1

(
cl �s × N̂�(�s)

)
. (10)

Proof Fix any x ∈ �s . Then by simple calculus we obtain

T�(x) = T⋃
i∈I (s) cl �i

(x) =
⋃

i∈I (s)

Tcl �i
(x),

N̂�(x) =
⋂

i∈I (s)

N̂cl �i
(x).

With regards to Theorem 1 we obtain the first equality in (8). The second equality in (8)
follows from the fact that �s ⊂ cl �i ⊂ cl �j implies N̂cl �i

(�s) ⊃ N̂cl �j
(�s).

Formula (9) is a direct consequence of (8). Since gph N� is a closure of gph N̂� by
definition, equation (10) follows as well.

In some situations, computation of normal cone N�(x̄) only at one particular point x̄ ∈ �

is required instead of computation of the whole graph of the normal cone mapping. The
following corollary concerns such a case.

Corollary 1 Under assumptions of Theorem 2, for any x̄ ∈ � denote by s̄ the index of the
unique component �s̄ such that x̄ ∈ �s̄ . Then

N̂�(x̄) = N̂�(�s̄) =
⋂

i∈I (s̄)

N̂cl �i
(�s̄) =

⋂
i∈Ĩ (s̄)

N̂cl �i
(�s̄), (11)

N�(x̄) =
⋃

s∈I (s̄)

N̂�(�s) =
⋃

s∈I (s̄)

⋂
i∈I (s)

N̂cl �i
(�s) =

⋃
s∈I (s̄)

⋂
i∈Ĩ (s)

N̂cl �i
(�s). (12)

Remark 1 Relations similar to (11) and (12), see (13) and (14) below, can be obtained by
simpler means. We present them to show the possible advantages of our approach. First,
defining J (x) := {s| x ∈ cl �s} we observe that J (x) = I (t) where t is the unique index
such that x ∈ �t . Indeed, if s ∈ J (x), then x ∈ cl �s , which together with assumed x ∈ �t

implies x ∈ �t ∩ cl �s and thus s ∈ I (t). On the other hand, if s ∈ I (t), then as the
considered partition is normally admissible stratification, we have x ∈ �t ⊂ cl �s and thus
s ∈ J (x), which implies the desired equality. Formula (11) may then be derived in the
following way

N̂�(x̄) = (T⋃
i∈J (x̄) cl �i

(x̄))∗ =
⎛
⎝ ⋃

i∈J (x̄)

Tcl �i
(x̄)

⎞
⎠

∗
=

⋂
i∈J (x̄)

N̂cl �i
(x̄) =

⋂
i∈I (s̄)

N̂cl �i
(x̄),

(13)
Similarly, for a sufficiently small neighborhood X of x̄, one may obtain formula for the
limiting normal cone directly from (13) as

N�(x̄) =
⋃
x∈X

⋂
i∈J (x)

N̂cl �i
(x). (14)
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Although it is obvious that the union with respect to x ∈ X will reduce to a union with
respect to a finite number of elements, it is not entirely clear how to obtain this reduction
without the concept of a normally admissible stratification.

We conclude this section with a note that the computation of normal cones can be per-
formed repeatedly, by which we mean that formula (10) provides a good background for
computation of gph Ngph N� .

Remark 2 Consider a normally admissible stratification {�s | s = 1, . . . , S} of �. It follows
from Lemma A3 that {�t | s ∈ I (t)} is a normally admissible stratification of cl �s for any s.

Moreover, it is possible to show that

{�s × Dst | s = 1, . . . , S, t = 1, . . . , T (s)}
is a normally admissible stratification of gph N� , where {Dst | t = 1, . . . , T (s)} are suit-
able normally admissible stratifications of N�(�s) for s = 1, . . . , S. However, since the
construction of Dst is not entirely simple and it is not used later in the text, we omit it here.

3 Relation to known results

This section revisits some notable results of other authors on computation of the limiting
normal cone to a union of polyhedral sets and exploits the relationship between their results
and those presented in the previous section. We firstly recall the result of Dontchev and
Rockafellar in [7], where formula for the limiting normal cone to a special case of a union
of polyhedral sets was given in terms of critical cones and then show that formulas from
Corollary 1 coincide with those of Dontchev and Rockafellar. Secondly, we summarize the
results of Henrion and Outrata in [12] who also considered a general union of polyhedral
sets. Direct comparison yields that the explicit formula derived by Henrion and Outrata can
be considered as a special case of our approach. We omit a detailed comparison with results
of Červinka, Outrata and Pištěk in [5] due to the fact that their results are a special case of
Theorem 2.

3.1 Normal cones to graph of a normal cone to a polyhedral set

To our knowledge, the first attempt to provide explicit formulas for computation of the
limiting normal cone to a union of polyhedral sets can be found in [7]. It concerns a rather
special case where � = gph NC ⊂ R2n with C ⊂ Rn being polyhedral. Due to polyhedrality
of C, � is indeed a union of finitely many polyhedral sets. Interestingly, the formula for
N�(x̄, ȳ) was not given in [7] as a separate result but as a part of a proof of another result.
We state it in the following proposition. Recall that KC(x, y) denotes the critical cone to C

at x for y.

Proposition 1 ([7], part of the proof of Theorem 2) Consider a polyhedral set C and some
x̄ ∈ C and ȳ ∈ NC(x̄). Then

N̂gph NC
(x̄, ȳ) = KC(x̄, ȳ)∗ × KC(x̄, ȳ),

Ngph NC
(x̄, ȳ) =

⋃
(x,y)∈U

KC(x, y)∗ × KC(x, y), (15)

for some sufficiently small neighborhood U of (x̄, ȳ).
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The original proof of Proposition 1 by Dontchev and Rockafellar is based on the appli-
cation of the so-called Reduction Lemma, cf. [8, Lemma 2E.4]. To illuminate the relation
between Proposition 1 and Corollary 1, we provide an alternative proof exploiting the prop-
erties of relatively open faces forming a partition of a polyhedral set, see [24, Theorem
18.2]. To this end, we recall the definition of faces of a convex set, see [16].

Definition 3 A subset F of a convex set P is called a face of P provided the following
implication holds true: if x1 and x2 belong to P and λx1+(1−λ)x2 ∈ F for some λ ∈ (0, 1),
then x1 and x2 belong to F as well. We say that F̃ is a relatively open face of P if there
exists a face F of P such that F̃ = rint F .

Consider all nonempty faces of a polyhedral set C and let us denote them C̃s with
s = 1, . . . , S. We shall call Cs := rint C̃s relatively open faces of C. By virtue of
Lemma A4 we obtain that {Cs | s = 1, . . . , S} form a normally admissible stratification
of C. Thus, Theorem 1 implies that NC(x) has the same value for all x ∈ Cs . Follow-
ing the notation developed in previous sections, let us denote it by NC(Cs). Since NC(Cs)

is also a polyhedral set, we can as well find its relatively open faces Dst . Again, let
{Dst | t = 1, . . . , T (s)} form a normally admissible stratification of NC(Cs). This results in
the following representation of �:

� := gph NC =
S⋃

s=1

T (s)⋃
t=1

Cs × Dst .

It follows from Lemma A4 that {Cs×Dst | s = 1, . . . , S, t = 1, . . . , T (s)} forms a normally
admissible stratification of �.

As a consequence, for a given pair x̄ ∈ C and ȳ ∈ NC(x̄) there is a unique couple of
indices (s̄, t̄ ) such that (x̄, ȳ) ∈ Cs̄ ×Ds̄t̄ . By application of Corollary 1 to (x̄, ȳ) ∈ gph NC ,
we immediately obtain

N̂gph NC
(x̄, ȳ) =

⋂
(i,j)∈I (s̄,t̄)

Ncl(Ci×Dij )(Cs̄ × Ds̄t̄ ),

Ngph NC
(x̄, ȳ) =

⋃
(s,t)∈I (s̄,t̄)

⋂
(i,j)∈I (s,t)

Ncl(Ci×Dij )(Cs × Dst ).
(16)

Since � is the union of finitely many polyhedral sets, only finitely many cones can be
manifested as N̂�(x, y) at points (x, y) ∈ � near (x̄, ȳ). It is not difficult to see that each
of such cones corresponds to N̂�(Cs,Dst ) with (s, t) ∈ I (s̄, t̄). Invoking Remark 1, this
establishes the correspondence of union in (16) with union in (15). In order to show the
equivalence of (15) and (16), consider a fixed pair of indices (s, t) ∈ I (s̄, t̄ ) and let us
simplify the intersection in (16). By elementary operations and [25, Proposition 6.41] we
obtain

⋂
(i,j)∈I (s,t)

Ncl(Ci×Dij )(Cs × Dst ) =
⋂

{(i,j)| Cs⊂cl Ci, Dst⊂cl Dij }

[
Ncl Ci

(Cs) × Ncl Dij
(Dst )

]
.

(17)
Note that for any i there exists an index l ∈ {1, . . . , T (i)} such that cl Dil = NC(Ci).
This means that for every j ∈ {1, . . . , T (i)} such that Dst ⊂ cl Dij we have cl Dij ⊂
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cl Dil = NC(Ci). This, in turn, implies that Ncl Dij
(Dst ) ⊃ NNC(Ci)(Dst ). In particular, we

have ⋂
(i,j)∈I (s,t)

Ncl(Ci×Dij )(Cs × Dst ) =
⋂

{i| Cs⊂cl Ci, Dst⊂NC(Ci)}

[
Ncl Ci

(Cs) × NNC(Ci)(Dst )
]

=
⎡
⎣ ⋂

{i| Cs⊂cl Ci, Dst⊂NC(Ci)}
Ncl Ci

(Cs)

⎤
⎦ ą

⎡
⎣ ⋂

{i| Cs⊂cl Ci, Dst⊂NC(Ci)}
NNC(Ci)(Dst )

⎤
⎦ .(18)

It suffices to show that both parts of the Cartesian product in (15) correspond to those of
(18). To verify that, we present the following two lemmas. Note that a result similar to the
first lemma was proved in [15, Theorem 5.2].

Lemma 2 For any x ∈ Cs and y ∈ Dst the following equality holds

K(x, y) =
⋂

{i| Cs⊂cl Ci, Dst⊂NC(Ci)}
NNC(Ci)(Dst ). (19)

Proof In order to verify (19), note first that for any i such that Cs ⊂ cl Ci and Dst ⊂
NC(Ci) we have NC(Ci) ⊂ NC(Cs). This, in turn, yields NNC(Ci)(Dst ) ⊃ NNC(Cs)(Dst ).
This implies that ⋂

{i| Cs⊂cl Ci, Dst⊂NC(Ci)}
NNC(Ci)(Dst ) = NNC(Cs)(Dst ). (20)

Since the set NC(Cs) is a cone, from Theorem 1 and [25, Example 11.4 (b)] we obtain

NNC(Cs)(Dst ) = NNC(x)(y) =
{
u ∈ (NC(x))∗

∣∣∣ u�y = 0
}

= K(x, y), (21)

which concludes the proof.

Lemma 3 For any x ∈ Cs and y ∈ Dst the following equality holds

K(x, y)∗ =
⋂

{i| Cs⊂cl Ci, Dst⊂NC(Ci)}
Ncl Ci

(Cs). (22)

Proof Recall first that due to [16, relation (42)] one has TP (x0) = con(P − x0) for any
polyhedral set P and any x0 ∈ P . This, by virtue of Theorem 1 implies

TC(Cs) = con(C − cl Cs). (23)

Similarly, from the definition of normal cone and Theorem 1 one has

Ncl Ci
(Cs) = {y| y�(cl Ci − cl Cs) ≤ 0} = (con(cl Ci − cl Cs))

∗.

Since the equality of two sets implies equality of their polars, to prove the desired equality
(22) it is enough to show that

K(x, y) =
⋃

{i| Cs⊂cl Ci, Dst⊂NC(Ci)}
con(cl Ci − cl Cs).

Suppose that u ∈ con(cl Ci − cl Cs) for some i such that Cs ⊂ cl Ci, Dst ⊂ NC(Ci).
To show that u ∈ K(x, y) we need to prove that u ∈ TC(Cs) and that y�u = 0. The
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first relation follows immediately from (23) and the second one from the following chain of
implications

y ∈ Dst ⊂ NC(Cs) =⇒ y�(C − cl Cs) ≤ 0
y ∈ Dst ⊂ NC(Ci) =⇒ y�(C − cl Ci) ≤ 0

=⇒ y�(cl Cs − cl Ci) ≤ 0.

To show the opposite inclusion, we obtain first from [16, Lemma 4] and [16, relation
(44)] that there exists an index i such that Cs ⊂ cl Ci and such that

K(x, y) = Tcl Ci
(Cs) = con(cl Ci − cl Cs). (24)

To finish the proof, it remains to show that Dst ⊂ NC(Ci). From (24) we immediately
obtain y�(cl Ci − cl Cs) = 0. Due to Theorem 1, K(x, y) does not depend on the particular
choice of y ∈ Dst and thus we obtain D�

st (cl Ci − cl Cs) = 0. As already stated above,
Dst ⊂ NC(Cs) implies D�

st (C − cl Cs) ≤ 0. Together, this shows that D�
st (C − cl Ci) ≤ 0,

which in turn implies Dst ⊂ NC(Ci). This concludes the proof.

Summarizing this special case, the relatively open faces of polyhedral sets appear to be a
suitable choice for normally admissible stratifications. In such a case one can enjoy special
properties of faces of polyhedral sets and relations to tangent an critical cones.

In the following subsection, we revisit another previously developed representation of
normal cones for the general case considered in Section 2.

3.2 Relation to a union of polyhedral sets

In [12], the authors studied the case of a union of general polyhedral sets. Apart from pro-
viding explicit formulas for values of limiting normal cone at a point, the authors in [12]
also focused on several special cases of polyhedral sets, such as finite union of halfspaces
and finite union of orthants. In this subsection, we briefly summarize their main result
concerning the case of a union of R polyhedral sets, for details see [12, Section 6].

Consider � as in (2). For x ∈ � denote the set of active components by

I(x) = {r ∈ {1, . . . , R}| x ∈ �r }.
Fix any x̄ ∈ � and let us denote by �r the polyhedral cones �r := T�r (x̄). Then for
� := ⋃

r∈I(x̄) �r one has

N�(x̄) = N�(0).

Now, for all r ∈ I(x), consider the explicit description of the polyhedral cones �r

�r = {
x

∣∣ 〈
cr
t , x

〉 ≤ 0, t = 1, . . . , T (r)
}

.

Note that we will work with tangent and normal cones to �r at 0 and that all constraints are
active at this point. For I ⊂ I(x̄) define the following index set

JI =
{ Ś

r∈I{1, . . . , T (r)} if I �= ∅,

{∅} if I = ∅,

which adopts the convention that J∅ contains one element, an empty (zero-dimensional)
vector.

For any integer vectors Ic = (in1 , . . . , inL
) and J = (Jn1 , . . . , JnL

) ∈ JIc put

�J
I

=
{

x

∣∣∣∣∣
〈cr

t , x〉 ≤ 0, t = 1, . . . , T (r), r ∈ I〈
cr
Jr

, x
〉
> 0, r ∈ Ic

}
.
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Then

N�(x̄) =
⋃

∅�=I⊂I(x̄)

⋃
J∈JIc

⋃
x∈�J

I

⋂
k∈I

N̂�k
(x), (25)

and for each x ∈ �J
I

and r ∈ I there exist exactly one subsets Jx,r ⊂ {1, . . . , T (r)} such
that

〈cr
t , x〉 = 0 ∀t ∈ Jx,r , r ∈ I,

〈cr
t , x〉 < 0 ∀t ∈ {1, . . . , T (r)} \ Jx,r , r ∈ I,

〈cr
Jr

, x〉 > 0 ∀r ∈ Ic.

(26)

For such x and fixed k we have N̂�k
(x) = con{ck

t | t ∈ Jx,k}. For any subset J =
Ś

r∈I Jr ⊂ JI, put

R
J ,J
I

:= con{{cr
Jr

| r ∈ Ic} ∪ {−cr
t | r ∈ I, t ∈ {1, . . . , nr } \ Jr }},

SJ
I

:= span{cr
t | r ∈ I, t ∈ Jr },

and

AJ
I

:= {J ⊂ JI| RJ ,J
I

∩ SJ
I

= {0}}. (27)

Applying Motzkin’s Theorem, solvability of systems of conditions (26) can be represented
by elements of AJ

I
.

Proposition 2 Under the notation above, the limiting normal cone to a finite union of
polyhedral sets calculates as

N�(x̄) =
⋃

∅�=I⊂I(x̄)

⋃
J∈JIc

⋃
J∈AJ

I

⋂
k∈I

con{ck
j | j ∈ Jk}. (28)

We will now compare the results of Proposition 2 to our results in Theorem 2. From
direct comparison of sets defined by conditions (26) with sets �I,J defined in (5), it follows
that elements of AJ

I
, which represent only the nonempty sets given by conditions (26),

correspond to relatively open sets that form one particular normally admissible stratification
of �. In fact, this is exactly the partition constructed in the proof of Lemma 1. Thus, it is not
difficult to see that

⋂
k∈I con{ck

j |j ∈ Jk} in (28) corresponds to
⋂

i∈Ĩ (s)
N̂cl �i

(�s) in (12)
via (8). Similarly

⋃
∅�=I⊂I(x̄)

⋃
J∈JIc

⋃
J∈AJ

I

in (28) corresponds to
⋃

i∈I (s̄) in (12).
Taking into account that there might exist other normally admissible stratifications of �

with less components, we have managed to generalize the approach from [12] by consider-
ing a larger family of possible partitions instead of the particular one considered in [12]. On
top of that, we are able to provide the corresponding result for the whole graph of N� .

By means of the following example we show the differences in both approaches. These
differences will become even clearer in Section 4 where we present an example in which a
suitable choice of a normally admissible stratification plays a crucial role.

Example 3 Consider � ⊂ R2 to be a union of R different rays emanating from a common
point x̄ ∈ R2. One can easily find a normally admissible stratification of � which consists
of R +1 sets. For such a normally admissible stratification, the application of Corollary 1 is
straightforward and the number of elements in union (12) grows linearly in R. On the other
hand, it is clear that direct application of Proposition 2 results in exponential growth of the
number of elements in union (28).
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4 Application to time dependent problems

In this section we will investigate a special structure of set �, which may arise during a
discretization of time dependent problems [1, 4]. To give a short introduction, consider the
following differential inclusion with given initial condition

ẋ(t) ∈ �(t, x(t)), t ∈ [0, T ] a.e.

x(0) = x0,
(29)

where [0, T ] is time interval, x : [0, T ] → RK is the state variable, � : [0, T ]×RK ⇒ RK

is a multifunction and x0 ∈ RK is an initial point.
After performing a discretization of (29), we may obtain the following set of discretized

feasible solutions to problem (29)

� :=
{
x ∈ RKN

∣∣ xn ∈ �n(xn−1), n = 1, . . . , N
}

. (30)

Here, we consider x = (x1, . . . , xN) ∈ RKN to be the discretization of the state variable x(·)
and for notational simplicity, we identify the initial point x0 from (29) with x0 from (30).
Moreover, K ∈ N is the dimension of the state variable xn and N ∈ N denotes the number
of time discretization steps. Finally, �n : RK ⇒ RK for n = 1, . . . , N are multifunctions.

The main goal of this section is to use particular structure of � defined by (30) and
simplify the formula for gph N� from Theorem 2. To be able to do so, we will need the
following assumption

�n is a polyhedral multifunction for n = 1, . . . , N, (31)

where a polyhedral multifunction is a multifunction which graph is a finite union of
polyhedral sets. We recall that there is a unique correspondence between multifunctions
S : Rp ⇒ Rq and sets A ⊂ Rp+q via graph operator

A = gph S := {
(x, y) ∈ Rp × Rq | y ∈ S(x)

}
.

Moreover, in this section, we will often work with a closure of multifunction S : Rp ⇒ Rq ,
which is denoted by cl S : Rp ⇒ Rq and defined via its graph by gph cl S = cl gph S.

4.1 Theoretical background

In this subsection, we will provide a theoretical background for computation of gph N�

where � is given by (30). In particular, we will express normally admissible stratification of
� in terms of normally admissible stratifications of gph �n and based on these partitions,
we will provide a formula for computation of a normal cone to � based on normal cones to
elements of partitions of gph �n.

Observe that under assumption (31), application of Lemma 1 yields a normally admis-
sible stratification {An

i ⊂ R2K | i = 1, . . . , M(n)} of gph �n for all n = 1, . . . , N .
Due to unique correspondence between multifunctions and their graphs, this is equiva-
lent to existence of multifunctions �n

i : RK ⇒ RK with gph �n
i = An

i such that
{gph �n

i | i = 1, . . . , M(n)} is a normally admissible stratification of gph �n. Further, for
s ∈ {1, . . . ,M(n)} we denote by In(s) ⊂ {1, . . . , M(n)} and Ĩ n(s) ⊂ In(s) index sets (4)
associated with this stratification.

Now, we consider the following sets

�i := �i1...iN :=
{
x ∈ RKN

∣∣ xn ∈ �n
in

(xn−1), n = 1, . . . , N
}

(32)
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for i := (i1, . . . , iN ) with in ∈ {1, . . . , M(n)}. Defining

� :=
{

i ∈
N

ą

n=1

{1, . . . ,M(n)}
∣∣∣∣∣ �i �= ∅

}
, (33)

we show that {�i | i ∈ �} forms a normally admissible stratification of �. To this end we
develop a series of lemmas which allow us to express properties of � in terms of properties
of �n.

Lemma 4 For i ∈ � we have

cl �i =
{
x ∈ RKN

∣∣ xn ∈ (cl �n
in

)(xn−1), n = 1, . . . , N
}

. (34)

Proof Denote the right–hand side of (34) by G. Directly from the definition of closure of
a multifunction we have cl �i ⊂ G. To prove the opposite inclusion, consider some x ∈ G.
Since i ∈ �, there exists some y ∈ �i , which means that y0 = x0 and (yn−1, yn) ∈ gph �n

in
for n = 1, . . . , N . Since gph �n

in
is convex and relatively open due to definition of normally

admissible stratification, by virtue of Lemma A2 we obtain for k ∈ N and n = 1 . . . , N the
following formula(

1

k
yn−1 +

(
1 − 1

k

)
xn−1,

1

k
yn +

(
1 − 1

k

)
xn

)
∈ gph �n

in
.

Defining zk
n := 1

k
yn +

(
1 − 1

k

)
xn and zk := (zk

1, . . . , z
k
N ) we have zk ∈ �i and zk → x,

which finishes the proof.

Lemma 5 For s ∈ � and index sets I (s) and Ĩ (s) defined by (4), it holds that

I (s) = {
i ∈ �

∣∣ in ∈ In(sn), n = 1, . . . , N
}
, (35a)

Ĩ (s) = {
i ∈ I (s)

∣∣ ∀j ∈ I (s) : jn ∈ In(in), n = 1, . . . , N =⇒ i = j
}
, (35b)

where index sets In(sn) are associated to a normally admissible stratifications of gph �n

for n = 1, . . . , N . Moreover, for any i ∈ I (s) condition (3) holds true.

Proof First, take any i ∈ I (s). From the definition of I (s) this is equivalent to �s ∩
cl �i �= ∅, which implies i ∈ �. For contradiction assume that there is some n such that
in /∈ In(sn). This means that gph �n

sn
∩ gph cl �n

in
= ∅. Using Lemma 4 this further implies

that �s ∩ cl �i = ∅, which concludes the contradiction.
Now, take any i ∈ � such that in ∈ In(sn) for all n = 1, . . . , N . Due to definition of

In(s) this implies gph �n
sn

∩ gph cl �n
in

�= ∅ for all n. By condition (3) for stratification of
gph �n this implies gph �n

sn
⊂ gph cl �n

in
for all n. Invoking Lemma 4, we have �s ⊂ cl �i .

Firstly, this implies that �s ∩ cl �i = �s �= ∅ proving (35a), and secondly it also means that
property (3) holds true as well.

Formula (35b) then follows directly from (35a) and (4d).

Lemma 6 {�i | i ∈ �} forms a normally admissible stratification of �.

Proof Observe first that due to definition of � we have � = ∪i∈��i and that all �i are
nonempty. Since {gph �n

j | j ∈ {1, . . . , M(n)}} is a normally admissible stratification of
gph �n, it follows that �i are pairwise disjoint. Hence we have shown that {�i | i ∈ �} is
indeed a partition of �.



222 L. Adam et al.

To prove that this partition is a normally admissible stratification of �, it remains to show
that �i are relatively open and convex, cl �i are polyhedral and that property (3) holds.
Since �i can be written as an intersection of N relatively open convex sets, it is relatively
open and convex as well. Similarly, as cl �i is an intersection of N polyhedral sets due to
Lemma 4, it is polyhedral. Finally, condition (3) follows directly from Lemma 5 and so the
proof has been finished.

The following theorem proposes a convenient formula for computation of N̂cl �i
(�s).

This formula is presented purely in terms of individual �n and not the original �. The
consequences of this theorem will be later seen in Section 4.2.

Theorem 3 Assume that � is defined via (30) and that assumption (31) is satisfied. Assume
moreover that {gph �n

i | i = 1, . . . , M(n)} forms a normally admissible stratification of
gph �n for all n = 1, . . . , N . Then for any s ∈ � and i ∈ I (s) we have

N̂cl �i
(�s) =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

p1 + q1
...

pN + qN

⎞
⎟⎠ ∈ RKN

∣∣∣∣∣∣∣
(

pn−1
qn

)
∈ N̂cl gph �n

in
(gph �n

sn
), n = 1, . . . , N

pN = 0

⎫⎪⎬
⎪⎭ .

Proof The set cl �i can be by virtue of Lemma 4 written as multivalued inverse F−1(�i),
where

F(x) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
x1

x1
x2
...

xN−1
xN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �i :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cl gph �1
i1

cl gph �2
i2

...

cl gph �N
iN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, consider some x̄ ∈ �s ⊂ cl �i and define x̄0 = x0. Since F is affine linear function
and �i is a polyhedral set, multifunction Si(p) := {x|p + F(x) ∈ �i} is calm at (0, x̄).
Then [14, Proposition 3.4] implies that Ncl �i

(x̄) ⊂ (∇F(x̄))� N�i
(F (x̄)). But since �i is

convex, it is regular, and thus [25, Theorem 6.14] implies that

N̂cl �i
(x̄) = (∇F(x̄))�N̂�i

(F (x̄)), (36)

Plugging in the original data, we observe that x∗ ∈ N̂cl �i
(x̄) if and only if for every n =

1, . . . , N there exist some multipliers pn−1, qn ∈ RK with(
pn−1
qn

)
∈ N̂cl gph �n

in
(x̄n−1, x̄n), n = 1, . . . , N,

such that equations x∗
n = pn+qn hold for n = 1, . . . , N with pN := 0. But this is equivalent

to the stated result by virtue of Lemma 5, Lemma 6 and Theorem 1.

The previous result may be used directly to calculate gph N̂� and gph N� , and N̂�(x̄) for
x̄ ∈ �, using Theorem 2 and Corollary 1, respectively. We note that I (s) can be computed
in a convenient way due to Lemma 5.

Remark 3 Even though we were able to express I (s) in terms of In(sn) in Lemma 5 and
similarly N̂cl �i

in terms of N̂cl gph �n
in

in Theorem 3, we are convinced that it is not possible
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to derive a similar formula for N̂� . In this remark we show that the following intuitive
formula

N̂�(�s) =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

p1 + q1
...

pN + qN

⎞
⎟⎠ ∈ RKN

∣∣∣∣∣∣∣
(

pn−1
qn

)
∈ N̂gph �n(gph �n

sn
), n = 1, . . . , N

pN = 0

⎫⎪⎬
⎪⎭ (37)

does not hold true. This is closely connected with violation of the so–called intersection
property [10, Definition 9] for (36), which says that⋂

i∈I (s)

(∇F(x̄))�N̂�i
(F (x̄)) = (∇F(x̄))�

⋂
i∈I (s)

N̂�i
(F (x̄)).

Indeed, consider the following example with N = 2, K = 2,

gph �1 = [
R × R × {0} × R−−

] ⋃
[R × R × {0} × {0}]

⋃ {
(a, b, c, d) ∈ R

4 | c ∈ R−−, d = −c
}

,

gph �2 = [
R−− × {0} × R × R

] ⋃
[{0} × {0} × R × R]

⋃ {
(a, b, c, d) ∈ R

4 | a ∈ R++, b = −a
}

and initial point x0 = (0, 0). Then one observes that � = {0} × {0} × R × R and thus for
any x̄ ∈ � we have N�(x̄) = R × R × {0} × {0}. On the other hand, the right–hand side of
formula (37) results in R+ × R+ × {0} × {0} and thus (37) does not hold true.

4.2 Example

Consider set

� :=
{
(y, z) ∈ RN × RN

∣∣ zn ∈ N[0,yn−1](yn), n = 1, . . . , N
}

(38)

with y0 = 1. Such set arises in delamination modeling [26] where variable yn ∈ [0, 1] sig-
nifies the delamination level of an adhesive. Specifically, yn = 1 corresponds to a situation
where the adhesive is not damaged while yn = 0 corresponds to a complete delamina-
tion. Due to the definition of normal cone, we see that (38) contains a hidden constraint
0 ≤ yn ≤ yn−1, meaning that a glue cannot heal back to its original state y0. When con-
sidering optimal control or parameter identification in such model, it is advantageous to
compute gph N� , see [3].

We are not able to use the standard results of variational analysis to compute N�(ȳ, z̄).
Since the set [0, yn−1] depends on y, we would have to introduce first additional variables.
For example, it is possible to rewrite

zn ∈ N[0,yn−1](yn)

into the following system

zn = z+
n + z−

n ,

z+
n ∈ N(−∞,0](yn − yn−1),

z−
n ∈ N[0,∞)(yn).

However, Mangasarian–Fromovitz constraint qualification is not satisfied for this case if
ȳn−1 = ȳn = 0, and thus results such [25, Theorem 6.14] or [20] cannot be used. Consid-
ering this reformulation, it would be possible to use calculus rules with calmness constraint
qualification [14] leading only to an inclusion instead of equality.

For these reasons, we will compute gph N� with � defined in (38) using Theorem 2
and Theorem 3. We consider x = (y, z) and rewrite zn ∈ N[0,yn−1](yn) equivalently as
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Fig. 3 Partition of gph �n from (39)

(yn, zn) ∈ �n(yn−1, zn−1) = ⋃8
j=1 �n

j (yn−1, zn−1) with initial condition (y0, z0) = (1, 0)

and �n
i , i = 1, . . . , 8, being defined via respective graphs as follows

gph �n
1 =

{
(ỹ, z̃, y, z) ∈ R4 | ỹ ∈ R++, z̃ ∈ R, y = ỹ, z ∈ R++

}
,

gph �n
2 =

{
(ỹ, z̃, y, 0) ∈ R4 | ỹ ∈ R++, z̃ ∈ R, y = ỹ

}
,

gph �n
3 =

{
(ỹ, z̃, y, 0) ∈ R4 | ỹ ∈ R++, z̃ ∈ R, y ∈ (0, ỹ)

}
,

gph �n
4 = R++ × R × {0} × {0},

gph �n
5 = R++ × R × {0} × R−−,

gph �n
6 = {0} × R × {0} × R−−,

gph �n
7 = {0} × R × {0} × {0},

gph �n
8 = {0} × R × {0} × R++.

(39)

Then, {gph �n
j | j = 1, . . . , 8} forms a normally admissible stratification of gph �n for all

n = 1, . . . , N , see Fig. 3.
Next, directly from (4), we obtain for all n = 1, . . . , N

In(1) = {1}
, I n(2) = {1, 2, 3},
I n(3) = {3},
I n(4) = {3, 4, 5},

I n(5) = {5},
I n(6) = {5, 6},
I n(7) = {1, . . . , 8},
I n(8) = {1, 8}.

(40)

To construct normally admissible stratification of �, we need to characterize � given by
(33).

Lemma 7 Setting i0 = 1, it holds that

�=
{

(i1, . . . , iN ) ∈ {1, . . . , 8}N
∣∣∣∣∣ in−1 ∈ {1, 2, 3} =⇒ in ∈ {1, 2, 3, 4, 5}

in−1 ∈ {4, 5, 6, 7, 8} =⇒ in ∈ {6, 7, 8}

}
. (41)

Proof Denote the right–hand side of (41) by A. If i ∈ �, then there exists some (y, z) ∈ �i .
If in−1 ∈ {1, 2, 3}, then we have yn−1 > 0, which immediately implies in ∈ {1, 2, 3, 4, 5}.
If in−1 ∈ {4, 5, 6, 7, 8}, then yn = 0 and thus in ∈ {6, 7, 8}. Hence � ⊂ A.
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To finish the proof, consider now any i ∈ A and define y coordinatewise as follows

yn =
⎧⎨
⎩

yn−1 if in ∈ {1, 2},
1
2yn−1 if in = 3,

0 if in ∈ {4, 5, 6, 7, 8},
with y0 = 1. Then it is not difficult to find z such that (y, z) ∈ �i , and thus i ∈ �, which
completes the proof.

Now we have enough information to compute gph N� using Theorem 3. For simplicity,
we will compute N�(ȳ, z̄) for two given points (ȳ, z̄). The first one is rather simple and
will be computed thoroughly, while for the second one we show only the first stage of the
computation.

Example 4 Consider � defined in (38) with N = 5, ȳ = (1, 0.5, 0, 0, 0) and z̄ =
(1, 0, 0, 1, −1). First, we realize that s̄ = (1, 3, 4, 8, 6), where s̄ ∈ � is the unique index
such that (ȳ, z̄) ∈ �s̄ . Employing (40), we realize that

I 1(s̄1) = {1}, I 2(s̄2) = {3}, I 3(s̄3) = {3, 4, 5}, I 4(s̄4) = {1, 8} and I 5(s̄5) = {5, 6}.
Then, denoting i = (1, 3, 3, 1, 5), j = (1, 3, 4, 8, 6) and k = (1, 3, 5, 8, 6), Lemma 5
together with formula (41) yields

I (s̄) = {i, j, k},
I (i) = Ĩ (i) = {i},
I (j) = {i, j, k}, Ĩ (j) = {i, k},
I (k) = Ĩ (k) = {k}.

Thus, invoking formula (12) we have

N�(ȳ, z̄) = N̂cl �i
(�i) ∪

[
N̂cl �i

(�j ) ∩ N̂cl �k
(�j )

]
∪ N̂cl �k

(�k).

Each of the regular normal cones in this formula can be computed via application of
Theorem 3 with the use of the following regular normal cones, n = 1, . . . , 5,

N̂cl gph �n
1
(gph �n

1) =
{
(α̃, 0, α, 0) ∈ R4 | α̃ ∈ R, α = −α̃

}
,

N̂cl gph �n
3
(gph �n

3) = {0} × {0} × {0} × R,

N̂cl gph �n
3
(gph �n

4) = {0} × {0} × R− × R,

N̂cl gph �n
5
(gph �n

4) = {0} × {0} × R × R+,

N̂cl gph �n
5
(gph �n

5) = {0} × {0} × R × {0},
N̂cl gph �n

5
(gph �n

6) = R− × {0} × R × {0},
N̂cl gph �n

6
(gph �n

6) = R × {0} × R × {0},
N̂cl gph �n

1
(gph �n

8) =
{
(α̃, 0, α, 0) ∈ R4 | α̃ ∈ R, α ≤ −α̃

}
,

N̂cl gph �n
8
(gph �n

8) = R × {0} × R × {0}.
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This results in

N�(ȳ, z̄) = ∪t∈R

⎡
⎢⎢⎢⎣
R × {0}
{0} × R
{t} × R
{−t} × {0}
R × {0}

⎤
⎥⎥⎥⎦

⋃
⎡
⎢⎢⎢⎣∪s∈R

⎡
⎢⎢⎢⎣
R × {0}
{0} × R
(−∞, s] × R
(−∞, −s] × {0}
R × {0}

⎤
⎥⎥⎥⎦

⋂
⎡
⎢⎢⎢⎣
R × {0}
{0} × R
R × R+
R × {0}
R × {0}

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

⋃
⎡
⎢⎢⎢⎣
R × {0}
{0} × R
R × {0}
R × {0}
R × {0}

⎤
⎥⎥⎥⎦

= ∪t∈R

⎡
⎢⎢⎢⎣
R × {0}
{0} × R
{t} × R
{−t} × {0}
R × {0}

⎤
⎥⎥⎥⎦

⋃
∪s∈R

⎡
⎢⎢⎢⎣
R × {0}
{0} × R
(−∞, s] × R+
(−∞, −s] × {0}
R × {0}

⎤
⎥⎥⎥⎦

⋃
⎡
⎢⎢⎢⎣
R × {0}
{0} × R
R × {0}
R × {0}
R × {0}

⎤
⎥⎥⎥⎦ . (42)

Example 5 In the setting of Example 4 we consider ȳ = (1, 0.5, 0, 0, 0) and z̄ =
(1, 0, 0, 0, 1). Then we have s̄ = (1, 3, 4, 7, 8) and

I (s̄) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i ∈ {1, . . . , 8}N

∣∣∣∣∣∣∣∣∣∣

i1 = 1, i2 = 3, i3 ∈ {3, 4, 5}
i3 = 3 =⇒ i4 ∈ {1, 2, 3, 4, 5}
i3 ∈ {4, 5} =⇒ i4 ∈ {4, 5, 6, 7, 8}
i4 ∈ {1, 2, 3} =⇒ i5 = 1
i4 ∈ {4, 5, 6, 7, 8} =⇒ i5 = 8

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

It is not difficult to verify that I (s̄) contains 15 elements and hence we will have to consider
a union with respect to 15 elements in (12). Then it would be necessary to compute Ĩ (s) for
every s ∈ I (s̄) using Lemma 5, which would, however, in most cases amount to only one
or two elements.

Finally, in the light of Example 4 and especially Example 5 we present another compar-
ison of our approach with the theory developed in [12]; a comparison which was already
slightly touched in Example 3.

Remark 4 Consider set � defined in (38) and let us show that even though the approach
developed in this paper is not simple, it could be more applicable than the approach devel-
oped in [12]. There it is necessary to compute T�(ȳ, z̄) first, which, due to our best
knowledge, cannot be tackled by standard calculus rules because of the same reasons as
described earlier in this subsection. Even though it is possible to derive formula for T�(ȳ, z̄)

directly from the definition, it is not a simple task.
Consider now the same point (ȳ, z̄) as in Example 4. With the notation of Section 3.2 it

is possible to show that |I(x̄, ȳ)| = 2 with

�1 =
⋃

t∈R+

⎡
⎢⎢⎢⎢⎣

{0} × R
R × {0}
{t} × {0}
{t} × R
{0} × R

⎤
⎥⎥⎥⎥⎦ , �2 =

⎡
⎢⎢⎢⎢⎣

{0} × R
R × {0}
{0} × R−
{0} × R
{0} × R

⎤
⎥⎥⎥⎥⎦ .

Now, we show that a direct application of Proposition 2 can be rather cumbersome. It is
clear that the first union in (28) will be performed with respect to three elements. Since each
�i can be described as an intersection of 11 halfspaces, the any fixed I for expressing the
second and third union in (28), one has to check 121 combinations of sets R

J ,J
I

and SJ
I

,
leading together to necessity of solving 363 systems of linear (27). The number is so high
because the majority of this systems will have some solution apart from 0 and thus the set
AJ
I

will contain lesser number of elements. Note that in Example 4 we need to compute
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only union of 3 elements. The situation would become more difficult, or possibly intractable
should we consider (ȳ, z̄) as in Example 5.

Another approach to compute the desired normal cone is to realize that �1 and �2 differ
only at components y3, z3 and y4, and so we obtain from [12, Proposition 3.1] that

N�(x̄, ȳ) = R × {0} × {0} × R × � × {0} × R × {0},
where

� = bd �∗
1

⋃
(�∗

1 ∩ �∗
2)

⋃
bd �∗

2, (43)

�1 = {(y3, 0, y4)| y3 ∈ R+, y4 = y3} ,

�2 = {0} × R− × {0}.
After computing the polars to �1 and �2, it becomes clear that the three elements of unions
in (42) and (43) do correspond.

Finally, we would like to point out that non-regular points (such as ȳn = ȳn−1 > 0 and
z̄n > 0) fit well into our approach, while in [12] these points considerably increase the
number of halfplanes defining �i .

5 Conclusion

In this paper, we have proposed a new approach for computation of Fréchet and limiting nor-
mal cones to a set which can be expressed as a finite union of convex polyhedra. Moreover,
we have compared our results to several selected known results, and applied the proposed
approach to the case of time dependent problems.

We believe that, based on Remark 2, our approach can be used to derive stability con-
ditions for general bilevel programs where the constraints on the lower level amount to a
polyhedral set. In this way, results of [5] dealing with MPCCs might be generalized. This,
however, goes beyond the scope of this paper.

Appendix A: Auxiliary lemmas

Lemma A1 Consider continuous functions gi : Rn → R, i = 1, . . . , I and affine linear
hj : Rn → R, j = 1, . . . , J and define the following set

A = {x| gi(x) < 0, hj (x) = 0, i = 1, . . . , I, j = 1, . . . , J }.
Then A is relatively open. Moreover, if gi are convex for all i = 1, . . . , I and A is nonempty,
then

cl A = {x| gi(x) ≤ 0, hj (x) = 0, i = 1, . . . , I, j = 1, . . . , J }. (44)

Proof Since gi are continuous, A1 := {x| gi(x) < 0, i = 1, . . . , I } is an open set. As hj

are affine linear, we know that A2 := {x|hj (x) = 0, j = 1, . . . , J } is an affine subspace.
Thus, A = A1 ∩ A2 is relatively open.

To prove the second result, denote the right–hand side of (44) by B. Clearly, we have
cl A ⊂ B without any additional assumptions. To show the opposite inclusion, consider any
x ∈ B. Since A is nonempty, there exists x̄ such that gi(x̄) < 0 and hj (x̄) = 0. Due to
the assumptions, we know that xn := (1 − 1

n
)x + 1

n
x̄ ∈ A and xn → x, which finishes the

proof.
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Lemma A2 Assume that A ⊂ Rn is convex and relatively open and consider some x ∈ A

and y ∈ cl A. Then for all λ ∈ (0, 1) we have λx + (1 − λ)y ∈ A.

Proof The statement is a direct consequence of [24, Theorem 6.1].

Lemma A3 Consider a normally admissible stratification {�s | s = 1, . . . , S} of � and
some S ⊂ {1, . . . , S}. Then ⋂

s∈S
cl �s =

⋃
{t |S⊂I (t)}

�t . (45)

Proof Assume that x ∈ cl �s for all s ∈ S . Then there exists some t such that x ∈ �t . But
this means that x ∈ �t ∩ cl �s for all s ∈ S and thus s ∈ I (t) for all s ∈ S , meaning that
S ⊂ I (t).

On the other hand, consider any t such that S ⊂ I (t). Then for any s ∈ S , we have
s ∈ S ⊂ I (t), and thus �t ⊂ cl �s , which finishes the proof.

Lemma A4 For a polyhedral set C consider its all nonempty relatively open faces Cs with
s = 1, . . . , S. Then {Cs | s = 1, . . . , S} forms a normally admissible stratification of C.

Proof Since all properties of Definition 2 apart from formula (3) obviously hold, it remains
to verify this formula. Consider thus some Cs and Ci such that Cs ∩ cl Ci �= ∅. Since we
can write

C = {x| 〈ct , x〉 ≤ bt , t = 1, . . . , T },
Cs = {x| 〈ct , x〉 < bt , t ∈ T11, 〈ct , x〉 = bt , t ∈ T12},

cl Ci = {x| 〈ct , x〉 ≤ bt , t ∈ T21, 〈ct , x〉 = bt , t ∈ T22},
where Tj1 ∩ Tj2 = ∅ and Tj1 ∪ Tj2 = {1, . . . , T } for j = 1, 2 and since there is some
x ∈ Cs ∩ cl Ci , we have T11 ⊂ T21 and thus Cs ⊂ cl Ci , which finishes the proof.
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