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1 Introduction

This paper is a follow-up of [Jiroušek, 2011], where basic properties of com-
positional models, as one of the approaches to multidimensional probability
distributions representation and processing, were introduced. Similar to other
methods, such as Bayesian networks, the compositional models take advantage
of the properties of conditional independence to decrease the number of pa-
rameters necessary for their representation. In fact, each of the approaches
for multidimensional model representation has a way to specify the system of
conditional independence relationships valid for the considered probability dis-
tribution.

One of the first applications of graphs for this purpose appears in papers from
the field of genetics by [Wright, 1921]. However, it is known that not all systems
of conditional independence statements induced by a probability distribution
can be described by a single graph. It was shown by [Verma, 1987] that the
spectrum of probabilistic dependencies is in fact so rich that it cannot be cast
into any representation scheme that uses a polynomial amount of storage. Being
unable to provide a perfect mapping at a reasonable cost, one compromises the
requirement that a respective tool such as a graph represents each and every
dependency of a probability distribution, and allows some independencies to
escape the representation [Geiger and Pearl, 1988].

The compositional models that were introduced as an algebraic alternative
to graphical models do not use graphs to represent conditional independence
statements. Here, these statements are encoded in a sequence of distributions
to which an operator of composition – the key element of this theory – is applied
in order to assemble a multidimensional model from its low-dimensional parts.
More precisely, a sequence of sets of variables – which will be called a model
structure in this paper – plays the same role as a graph in the case of graphical
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modeling.
Recall that several ways to read conditional independence statements have

been designed in the area of graphical models. In the case of undirected graphs,
conditional independence relations can be uncovered using a graph separation
criterion. In the case of acyclic directed graphs, the so-called d-separation cri-
terion designed by Pearl is often used [Pearl, 1988]. An alternative test for
d-separation was devised in [Lauritzen, Dawid, Larsen, and Leimer, 1990]. It is
based on the notion of moralized ancestral graphs.

In Section 3.2 of this paper we show a way to read conditional independence
relations for compositional models. A related topic is the so-called equivalence
problem, i.e., the problem of recognizing whether two different structures in-
duce the same system of conditional independence statements. For Bayesian
networks the problem was solved by [Verma, Pearl, 1991]; two acyclic directed
graphs induce the same independence structure if they have the same adja-
cencies and immoralities (the latter are special induced subgraphs). Later, a
unique representation of a class of equivalent graphs was found, the so-called
essential graph [Andersson, Madigan, and Perlman, 1997]. In the present paper
both these problems are solved for the compositional models in Section 3.3.

Having two different structures inducing the same system of conditional
independence statements, it may be of special importance to have an easy way
to transform one structure into the other using some elementary operations.
This issue was treated in a case of directed graphs in [Chickering, 1995] by legal
arrow reversal. To solve this problem for compositional models, we introduce a
special system of operations in Section 4.

Section 5, incorporated into the text at the suggestion of the anonymous
reviewer, describes the relationship between the compositional and graphical
approaches to multidimensional probability distribution representation.

In the last two sections of this paper we show how the structural properties
are manifested in the properties of the multidimensional probability distribu-
tions represented in the form of compositional models.

2 Basic notions and notation

In this paper, we deal with a finite system of finite-valued variables {u, v, x, . . .},
sets of which will be denoted by upper-case Roman characters such asK,U, V,W ,
Z, with possible indices. Ordered sequences of variable sets will be denoted by
calligraphic characters like P = (U,W,Z, V ), P ′ = (K1,K2,K3,K4,K5), or,
P ′′ = (K1,K3,K5,K4,K2). Notice that here P ′ 6= P ′′ because P ′′ is a reorder-
ing of P ′. Symbol |P| denotes the number of sets in the sequence, i.e., for the
previously introduced sequences |P| = 4 and |P ′| = |P ′′| = 5.

Lower-case Greek characters will denote probability distributions, e.g., π(K)
will denote a probability distribution defined for variables from K. Its marginal
distribution for variables from U ⊂ K will be denoted by either simply π(U),
or π↓U . For U = ∅, π↓∅ = 1.
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2.1 Conditional independence

One of the most important notions of this paper, a concept of conditional inde-
pendence, generalizes the well-known independence of variables.

Definition 2.1. Consider a probability distribution π(K) and three disjoint
subsets U, V, Z ⊆ K such that both U, V 6= ∅. We say that groups of variables U
and V are conditionally independent given Z for probability distribution π (in
symbols U⊥⊥V |Z[π]) if

π↓U∪V ∪Zπ↓Z = π↓U∪Zπ↓V ∪Z .

In many basic books on probabilistic multidimensional models (e.g., [Cowell,
Dawid, Lauritzen, and Spiegelhalter, 1999, Pearl, 1988, Studený, 2005]), one
can find the following important properties of conditional independence that
are universal and common for different formalization:

symmetry U⊥⊥V |Z[π]⇔ V⊥⊥U |Z[π] (2.1)

decomposition U⊥⊥(V ∪W )|Z[π]⇒ U⊥⊥V |Z[π] (2.2)

weak union U⊥⊥(V ∪W )|Z[π]⇒ U⊥⊥W |(V ∪ Z)[π] (2.3)

contraction U⊥⊥W |(V ∪ Z)[π] & U⊥⊥V |Z[π]⇒ U⊥⊥(V ∪W )|Z[π](2.4)

where U, V,W , and Z denote disjoint subsets of variables. Ternary relations
that obey the four properties listed above are often called semigraphoids [Pearl,
Paz, 1987].

2.2 Compositional models

In [Jiroušek, 2011] we summarized results on probabilistic compositional models
whose systems of independence relations we are going to study in this paper. To
be able to introduce these models we have to recall the operator of composition
and a couple of its most important properties that were proved in [Jiroušek,
2011].

Definition 2.2. For two arbitrary distributions π1(K1) and π2(K2), for which1

π↓K1∩K2

1 � π↓K1∩K2

2 , their composition is given by the following formula2

(π1 B π2) =
π↓K1

1 π↓K2

2

π↓K1∩K2

2

.

In case π↓K1∩K2

1 6� π↓K1∩K2

2 the composition remains undefined.

1 π↓K1∩K2
1 � π↓K1∩K2

2 denotes that the distribution π↓K1∩K2
1 is absolutely continuous

with respect to distribution π↓K1∩K2
2 , which, in our finite setting, means that whenever

π↓K1∩K2
1 is positive then π↓K1∩K2

2 must also be positive.
2 In this paper 0·0

0
= 0.
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Lemma 2.3. Consider distributions π1(K1) and π2(K2). If π1 B π2 is defined,
it is a distribution for variables K1 ∪K2 and

(π1 B π2)↓K1 = π1.

Moreover, for any U such that K1 ∩K2 ⊆ U ⊆ K1 ∪K2

(π1 B π2)↓U = π↓K1∩U
1 B π↓K2∩U

2 .

Lemma 2.4. Let κ(K1 ∪K2) = π1(K1) B π2(K2) be defined. Then

(K1 \K2)⊥⊥(K2 \K1)|(K1 ∩K2)[κ].

From this point forward we will consider distributions π1(K1), . . . , πn(Kn).
To avoid too many parentheses, whenever we speak about π1 B π2 B . . . B πn,
we assume that the operators are realized from left to right, i.e.,

π1 B π2 B . . .B πn = (((π1 B π2) B π3) B . . .B πn−1) B πn, (2.5)

and that this expression is defined. In this way, Formula (2.5) represents a
multidimensional distribution of variables K1 ∪K2 ∪ . . . ∪Kn, and we call the
sequence π1(K1), π2(K2), . . . , πn(Kn) a generating sequence for distribution κ =
π1 B π2 B . . .B πn.

Based on the above convention we get the following assertion as a direct
corollary of Lemma 2.3.

Corollary 2.5. Consider a compositional model κ with a generating sequence
π1(K1), π2(K2), . . . , πn(Kn) (i.e., κ = π1 B π2 B . . . B πn). Then, for all
i = 1, . . . , n,

κ↓K1∪...∪Ki = π1 B . . .B πi.

3 Structures

Consider a compositional model defined by a generating sequence π1(K1), π2(K2),
. . . , πn(Kn). Then the sequence of sets P = (K1,K2, . . . ,Kn) is said to be its
structure, and we use the symbol Ki ∈ P to express the fact that Ki is a member
of this sequence. In what follows, the symbol K̂(P) will always denote the set
of all the variables appearing in structure P, i.e., for the considered structure
P = (K1,K2, . . . ,Kn), K̂(P) = K1 ∪K2 ∪ . . . ∪Kn.

In the following text, we are going to study what happens when we change
the ordering of the distributions in a generating sequence. Specifically, we want
to characterize the changes that have no impact on the generated multidimen-
sional distribution. It appears that it is sufficient to study elementary changes
when a set from the structure is moved to a new position (and all the other
sets in the structure are respectively shifted). Such a move when the k-th set
is placed into the l-th position will be denoted by (k y l), and if this move is
applied to structure P the resulting structure will be denoted by P(k y l). I.e.,
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for P = (U,W,Z, V ) the reordering P(1 y 3) = (W,Z,U, V ), and for P ′ =
(K1,K2,K3,K4,K5), its reordering P ′(5 y 4) = (K1,K2,K3,K5,K4), which
can be further reordered as, e.g., P ′(5 y 4)(2 y 5) = (K1,K3,K5,K4,K2).

With respect to its position in a structure, each set U ∈ P can be split
into two disjoint parts. We denote them R(P, U) and S(P, U), where R(P, U)
denotes the subset of those variables from U ∈ P, which are not in any set
preceding U in the sequence P. Conversely, S(P, U) denotes the subset of the
remaining variables from U which appear in at least one of the sets preceding
U in P.

For P = (K1, . . . ,Kn) it means that

R(P,K1) = K1 and R(P,Ki) = Ki \ (K1 ∪ . . . ∪Ki−1) ∀i = 2, . . . , n,

and

S(P,K1) = ∅ and S(P,Ki) = Ki ∩ (K1 ∪ . . . ∪Ki−1) ∀i = 2, . . . , n.

We say that a set Ki ∈ P is reducible in P if Ki = S(P,Ki) and irreducible
otherwise. In other words, the reducible set does not introduce any “new”
variable to the sequence, i.e., Ki ⊆ K1 ∪ . . . ∪Ki−1.

Consider the structure P = (K1, . . . ,K5) = ({u}, {u, v, w}, {u, v, x}, {w, y},
{u, y, z}) and its reordering P ′ = P(3 y 1). For the respective R and

R(P, ·) S(P, ·) R(P ′, ·) S(P ′, ·)
K1 = {u} {u} ∅ ∅ {u}
K2 = {u, v, w} {v, w} {u} {w} {u, v}
K3 = {u, v, x} {x} {u, v} {u, v, x} ∅
K4 = {w, y} {y} {w} {y} {w}
K5 = {u, y, z} {z} {u, y} {z} {u, y}

Tab. 1: R and S-parts of the structures P and P ′ = P(3 y 1).

S-parts, see Table 1. Notice that K1 is reducible in P ′ but not in P.

3.1 Persegrams

To visualize the structure of a compositional model (and its generating sequence)
we use a tool called a persegram. This visualization tool was originally designed
in [Jiroušek, 2008] in a slightly different way.

Definition 3.1. The persegram of a structure P = (K1, . . . ,Kn) is a table in

which rows correspond to variables from K̂(P) = K1 ∪ . . .∪Kn (in an arbitrary
order) and columns to sets K1, . . . ,Kn in the respective ordering. A position
in the table is marked if the respective set contains the corresponding variable.
Markers for the first occurrence of each variable (i.e., the leftmost markers in
rows) are box-markers, and for other occurrences there are bullets.
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K1 K2 K3 K4 K5

z

y

x

w

v

u

(a) P = (K1,K2,K3,K4,K5)

K3 K1 K2 K4 K5

z

y

x

w

v

u

(b) P(3 y 1) = (K3,K1,K2,K4,K5)

Fig. 1: Persegram of structure (K1, . . . ,K5) and its reordering

In Figure 1 we can see persegrams of structures P and P ′ = P(3 y 1) defined
in Example 3.

Notice the difference between these persegrams. By reordering the columns –
sets from the structure – several markers change their shapes. For example,
marker [K1, u] is a box-marker in P but a bullet in P ′. Conversely, [K3, u]
is a bullet in P but a box-marker in P ′.

Observe that there is one-to-one correspondence between bullets in the col-
umn of Ki and variables from S(·,Ki). Similarly, box-markers of Ki correspond
to R(·,Ki).

3.2 Structural independence

Considering a compositional model, i.e., a multidimensional distribution gener-
ated by a generating sequence, one can see that it is possible, using Lemma 2.4,
to deduce a number of conditional independence relations that must hold for
this distribution. It is not surprising. The same property holds for a Bayesian
network where one can read a system of necessary conditional independence
relations from the corresponding acyclic directed graph. To determine all the
independence relations induced by a structure of a generating sequence (we will
call them structural independencies) we use the above-defined persegram. Struc-
tural independencies are indicated by the absence of a trail connecting relevant
markers and avoiding others – see the following definition.

Definition 3.2. A sequence of markers m0, . . . ,mt in a persegram of a structure
P is called a Z-avoiding trail (Z ⊆ K̂(P)) that connects m0 and mt if it meets
the following five conditions:

1. neither m0 nor mt corresponds to a variable from Z

2. for each s = 1, . . . , t, the couple (ms−1,ms) is either in the same row (i.e.,
a horizontal connection) or in the same column (a vertical connection);
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3. each vertical connection must be adjacent to a box-marker (i.e., at least one
of the markers in the vertical connection is a box-marker) - the so-called
regular vertical connection;

4. no horizontal connection corresponds to a variable from Z;

5. vertical and horizontal connections regularly alternate with the following
possible exception:

at most, two vertical connections may be in direct succession if their
common adjacent marker is a box-marker of a variable from Z

If a Z-avoiding trail connects two markers corresponding to variables u and v,
we say that these variables are connected by a Z-avoiding trail. This situation
is denoted by u!Z v[P].

Similarly to a probability distribution π which induces a ternary relation on
disjoint sets of variables U⊥⊥V |Z[π], a persegram, or more precisely a structure
P = (K1, . . . ,Kn), also introduces a ternary relation on triples of variable sets.

Definition 3.3. Consider a structure P = (K1, . . . ,Kn) and three disjoint sets

U, V, Z ⊂ K̂(P) such that U, V 6= ∅. We say that sets of variables U and V
are conditionally independent given Z in P (in symbol U⊥⊥V |Z[P]), if for each
u ∈ U it holds that there does not exist v ∈ V such that u!Z v[P].

So, we have defined two types of (conditional) independence for groups of
variables: the independence induced by probability distributions and that in-
duced by structures. As already mentioned above, we will call the latter case
structural independence to distinguish between these two types.

When the independent sets are singletons, we speak about elementary rela-
tions and denote them in a simplified form u⊥⊥v|Z (instead of the more precise
notation {u}⊥⊥{v}|Z). It is important to realize that, for any structure P,
all of its structural independencies are uniquely determined by the system of
elementary relations u 6⊥⊥v|Z[P] in the following sense:

u⊥⊥v|Z[P] & u⊥⊥w|Z[P] =⇒ u⊥⊥{v, w}|Z[P], (3.1)

because structural elementary relations are deduced from the nonexistence of
a sequence of markers u !Z v[P]. This property, naturally, does not hold
for probabilistic independence, and therefore it is quite natural that rule (3.1),
which we will call an extension in the following text, cannot be deduced from
the semigraphoid rules (2.1) - (2.4).

To illustrate the notion of a Z-avoiding trail, consider structure P = (K1,K2,K3,K4,K5)
and its reordering P(3 y 1) – for the respective persegrams see Figure 2. In
both of these persegrams the same sequence of markers is traced out:

[K2, v], [K2, u], [K5, u], [K5, z], [K5, y].

Notice that in Figure 2a, this sequence of markers is a Z-avoiding trail for
each Z for which {z} ⊆ Z ⊆ {w, x, z}. For each such Z thus v !Z y[P].
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K1 K2 K3 K4 K5

z

y

x

w

v

u

(a) P : Z-avoiding trail,{z} ⊆ Z ⊆
{w, x, z}

K3 K1 K2 K4 K5

z

y

x

w

v

u

(b) P ′ : seq. of markers

Fig. 2: Sequence of markers in structure (K1, . . . ,K5) and its reordering

If we want to stress which markers are box-markers and empasize a type of
connection between the consecutive markers, we may also write this sequence
in the following form:

[K2, v] l [K2, u]• ←→ [K5, u]• l [K5, z] l [K5, y]•;

←→ denotes a horizontal connection and l vertical connection.

On the other hand, it is evident that the sequence of the same markers does
not represent a Z-avoiding trail in the persegram of P(3 y 1) (see Figure 2b).
This is because in this case the vertical connection [K2, v]• l [K2, u]• is
not regular in P(3 y 1). Nevertheless, one can see that v !Z y[P(3 y 1)],
too, because for all Z for which {z} ⊆ Z ⊆ {w, x, z},

[K3, v] l [K3, u] ←→ [K5, u]• l [K5, z] l [K5, y]•

is a Z-avoiding trail in the persegram in Figure 2b.

The following two theorems justify the concept of Z-avoiding trails as well
as the related notion of structural independence, and the notation used. The
first one says, among others, that the relation of structural independence meets
all the semigraphoid axioms. Note that the extension property has already been
mentioned above in formula (3.1).

Theorem 3.4. For any structure P = (K1, . . ., Kn) the corresponding ternary
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relation of structural independence has the following properties:

symmetry U⊥⊥V |Z[P]⇔ V⊥⊥U |Z[P] (3.2)

decomposition U⊥⊥(V ∪W )|Z[P]⇒ U⊥⊥V |Z[P] (3.3)

weak union U⊥⊥(V ∪W )|Z[P]⇒ U⊥⊥W |(V ∪ Z)[P] (3.4)

contraction U⊥⊥W |(V ∪ Z)[P] & U⊥⊥V |Z[P]⇒ U⊥⊥(V ∪W )|Z[P](3.5)

extension U⊥⊥V |Z[P] & U⊥⊥W |Z[P]⇒ U⊥⊥(V ∪W )|Z[P] (3.6)

intersection U⊥⊥W |(V ∪ Z)[P] & U⊥⊥V |(W ∪ Z)[P]

⇒ U⊥⊥(V ∪W )|Z[P],(3.7)

where U, V,W , and Z are disjoint subsets of K̂(P); U, V,W are nonempty.

Proof. Symmetry , decomposition and extension are trivial consequences of
the definition of structural independence. The remaining three properties will
be proved by contradiction.

Weak union. Assume U 6⊥⊥W |(V ∪Z)[P]. Due to the assumption U⊥⊥(V ∪
W )|Z[P] and from the decomposition rule we know that U⊥⊥W |Z[P]. It means
that there must exist a (V ∪ Z)-avoiding trail u !V ∪Z w for some u ∈ U and
w ∈ W such that it contains two vertical connections in direct succession with
a common adjacent box-marker for a variable from V . Considering the first
appearance of a marker corresponding to variable from V , denote it v, we in
fact constructed u !Z v, which contradicts U⊥⊥V |Z[P] that is a consequence
of the assumption.

Contraction. Assuming U⊥⊥V |Z[P] and U 6⊥⊥(V ∪ W )|Z[P] means that
there exists a Z-avoiding trail u !V w for some u ∈ U and w ∈ W . However,
similar to the previous step, since we assume that U⊥⊥W |(V ∪ Z)[P], the con-
sidered trail must contain two vertical connections in direct succession with a
common adjacent box-marker for a variable from V . This, again, suggests the
existence of a Z-avoiding trail connecting variable u with a variable from V ,
which contradicts to U⊥⊥V |Z[P].

Intersection. Let us assume the opposite. If U 6⊥⊥(V ∪W )|Z[P], then for a
certain u ∈ U there must exist v ∈ (V ∪W ) such that u !Z v. Consider the
shortest τ = u!Z v connecting u with a node from (V ∪W ). Without loss of
generality, we can assume that v ∈ V . Assumption of U⊥⊥V |(W ∪Z)[P] induces
that τ has a horizontal connection in a w ∈W . Therefore by cutting the rest of
τ off, one can create τ ′ = u!Z w that is shorter than τ and connects u with a
node from (V ∪W ), which is impossible, because we chose τ to be the shortest
connecting trail.

The next important theorem was originally proven in [Jiroušek, 2008]. Here
we present a new and more elegant (and hopefully also more transparent) proof
based on the ideas of [Verma, Pearl, 1990]. This theorem reveals the relation
between both types of conditional independence in sets of variables: structural
independence and probabilistic independence.
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Theorem 3.5. Consider a generating sequence π1, . . . , πn with structure P =
(K1, . . . ,Kn). Then for arbitrary three disjoint subsets U, V, Z ⊂ K̂(P) such
that U 6= ∅ and V 6= ∅ holds that

U⊥⊥V |Z[P] =⇒ U⊥⊥V |Z[π1 B . . .B πn]. (3.8)

Proof. The proof will be led by an induction on the number of sets in the struc-
ture. The assertion is obvious for |P| = 1 (there is no structural independence).
Suppose it holds for all structures of a length less than n and let us prove it for
P = (K1, . . ., Kn).

To simplify the readings, put R = R(P,Kn) and S = S(P,Kn). Note that
each set of U, V, Z can be expressed as a union of two disjoint parts Ū , V̄ , Z̄ ⊆
(K1∪. . .∪Kn−1) and RU , RV , RZ ⊆ R, respectively, i.e., Ū , V̄ , Z̄, R are disjoint.
Then U⊥⊥V |Z[P] can be equivalently written as

(Ū ∪RU )⊥⊥(V̄ ∪RV )|(Z̄ ∪RZ)[P]. (3.9)

The proof will be performed for several special cases characterized by which sets
from RU , RV , RZ are empty. Theoretically, we can distinguish eight situations.
However, using the symmetry (3.2) and the fact that RU and RV meeting
(3.9) cannot be nonempty simultaneously (all couples of variables from R can
be connected by a regular vertical connection) it is enough to investigate the
following four cases:

(i) RU , RV , RZ = ∅,

(ii) RU 6= ∅; RV , RZ = ∅,

(iii) RZ 6= ∅; RU , RV = ∅,

(iv) RU , RZ 6= ∅; RV = ∅.

Ad (i) So, we assume Ū⊥⊥V̄ |Z̄[P] where Ū , V̄ , Z̄ are three disjoint subsets of

K̂(P) disjoint with R (i.e. Ū , V̄ , Z̄ ⊂ (K1 ∪ . . .∪Kn−1)). Since each Z̄-avoiding
trail in a persegram of (K1, . . . ,Kn−1) is also a Z̄-avoiding trail in a persegram
of P = (K1, . . ., Kn−1,Kn), it is obvious that

Ū⊥⊥V̄ |Z̄[P] =⇒ Ū⊥⊥V̄ |Z̄[(K1, . . . ,Kn−1)].

Therefore, using the induction hypothesis we get Ū⊥⊥V̄ |Z̄[π1B. . .Bπn−1], which
implies Ū⊥⊥V̄ |Z̄[π1 B . . .B πn] since π1 B . . .B πn−1 is, due to Corollary 2.5, a
marginal of π1 B . . .B πn.

Ad (ii) In this case we assume that (Ū ∪RU )⊥⊥V̄ |Z̄[P], and Ū , V̄ , Z̄, R are
disjoint. Based on this, we will also show that

(Ū ∪RU ∪ (S \ Z̄))⊥⊥V̄ |Z̄[P]. (3.10)

Namely, the negation of (3.10) corresponds to the existence of a trail v !Z̄ s
for some v ∈ V̄ and s ∈ (S \ Z̄). Considering the shortest such trail (this means,
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among other things, that the connection to the marker corresponding to variable
s is vertical) we can see that it can be extended by two markers (connections)

←→ [Kn, s]
• l [Kn, r]

for any r ∈ RU , which contradicts the assumption (Ū ∪ RU )⊥⊥V̄ |Z̄[P]. This
means that relation (3.10) holds.

Applying decomposition property (3.3) to relation (3.10) we get

(Ū ∪ (S \ Z̄))⊥⊥V̄ |Z̄[P],

which satisfies the conditions of the previously proven case (i), namely, (Ū ∪
(S \ Z̄)), V̄ , Z̄ and R are disjoint, and therefore

(Ū ∪ (S \ Z̄))⊥⊥V̄ |Z̄[π1 B . . .B πn]. (3.11)

It is easy to also see that (V̄ ∩S) = ∅. Indeed, if not then v !Z r (consisting
of just one regular connection) for any v ∈ (V̄ ∩S) and any r ∈ RU contradicting

(Ū ∪RU )⊥⊥V̄ |Z̄[P]. Note that R⊥⊥(K̂(P) \Kn)|S[π1 B . . .B πn] by Lemma 2.4.
By the (multiple) application of decomposition (2.2) it follows that

RU⊥⊥(V̄ ∪ (Ū \ S) ∪ (Z̄ \ S))|S[π1 B . . .B πn],

which can be, using the weak union property (2.3), further rewritten into

RU⊥⊥V̄ |(Z̄ ∪ Ū ∪ (S \ Z̄))[π1 B . . .B πn]. (3.12)

Now, applying the contraction property (2.4), statements (3.11) and (3.12)
yield

(Ū ∪RU ∪ (S \ Z̄))⊥⊥V̄ |Z̄[π1 B . . .B πn], (3.13)

from which the desired conditional independence (Ū ∪RU )⊥⊥V̄ |Z̄[π1 B . . .B πn]
is obtained by using the decomposition property (2.2).

Ad (iii) Assume the independence statement in the form of

Ū⊥⊥V̄ |(Z̄ ∪RZ)[P], (3.14)

where, again, Ū , V̄ , Z̄, R are disjoint.
Now, let us show by contradiction that either Ū⊥⊥RZ |Z̄[P] or RZ⊥⊥V̄ |Z̄[P].

Assuming that neither of these two independence relations hold, there must exist
trails u !Z̄ r1[P] and r2 !Z̄ v[P] (consider the shortest possible) for some
u ∈ Ū , v ∈ V̄ , and r1, r2 ∈ RZ . Each variable from r ∈ R has only one marker
in the respective persegram, and therefore both trails contain only one marker
from R – the one at the end. It means that changing just the last marker in trail
u !Z̄ r1[P] one gets u !Z̄ r2[P], and by concatenating trails u !Z̄ r2[P]
and r2 !Z̄ v[P] one gets u !Z̄∪RZ

[P]v. Since the last trail contradicts our
assumption, we proved that really either Ū⊥⊥RZ |Z̄[P] or RZ⊥⊥V̄ |Z̄[P].

Without a loss of generality, assume that RZ⊥⊥V̄ |Z̄[P]. This independence
statement along with the relation (3.14) meets the assumption of the contraction
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property (3.5), which yields that (Ū ∪ RZ)⊥⊥V̄ |Z̄[P]. This structural indepen-
dence statement meets the assumptions already solved in the proof in case (ii).
It means that the corresponding probabilistic conditional independence

(Ū ∪RZ)⊥⊥V̄ |Z̄[π1 B . . .B πn]

must also hold true, from which the required probabilistic conditional indepen-
dence Ū⊥⊥V̄ |(RZ ∪ Z̄)[π1 B . . .B πn] can be obtained by the simple application
of the weak union rule (2.3).

Ad (iv): Now, we assume (Ū∪RU )⊥⊥V̄ |(Z̄∪RZ)[P] with disjoint Ū , V̄ , Z̄, R.
First, let us show by contradiction that RU⊥⊥V̄ |Z̄[P]. Assuming the opposite

there must exist a trail ru !Z̄ v[P] for some ru ∈ RU and v ∈ V̄ . In this trail,
there is no horizontal connection corresponding to r ∈ RZ since there is only
one marker for every r ∈ R in P. Therefore, this trail is also Z̄ ∪RZ-avoiding
trail. However, the existence of such a trail contradicts our assumption, which
completes this step of the proof.

Following the idea from the previous part of the proof, we know that any
trail r !Z̄ v[P] for some r ∈ R, v ∈ V̄ can be modified into ru !Z̄ v[P]
(for ru ∈ RU ) just by substituting the marker corresponding to r by the marker
corresponding to ru. Therefore we can see that the relation RU⊥⊥V̄ |Z̄[P] proven
in the preceding paragraph implies (RZ ∪ RU )⊥⊥V̄ |Z̄[P]. The last structural
independence statement can be treated in the same way as case (ii), which
means that the probabilistic independence statement

(RZ ∪RU )⊥⊥V̄ |Z̄[π1 B . . .B πn] (3.15)

also holds true.
On the other hand, Ū⊥⊥V̄ |(Z̄ ∪RZ ∪RU )[P] can be obtained from the given

independence statement using the weak union property (3.4) and it can be
treated in the same way as in case (iii). Hence

Ū⊥⊥V̄ |(Z̄ ∪RZ ∪RU )[π1 B . . .B πn]. (3.16)

Applying the contraction property (2.4) on (3.15) and (3.16), one gets

(Ū ∪RZ ∪RU )⊥⊥V̄ |Z̄[π1 B . . .B πn],

from which the desired statement can be obtained by application of the weak
union property (2.3).

3.3 Structural equivalence

An inherited part of the notion of structural independence is implied by its struc-
tural properties that uniquely determine the induced structural independence
relations. To illustrate such properties, let us summarize the most important
results from [Kratochv́ıl, 2011, 2013]. Two structures P and P ′ will be said to
be equivalent if they induce the same structural independence relations, i.e., if

U⊥⊥V |Z[P] ⇐⇒ U⊥⊥V |Z[P ′]
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for all disjoint sets of variables.
Naturally, a trivial necessary condition for two structures P and P ′ to be

equivalent is that they are defined over the same set of variables: K̂(P) = K̂(P ′).

3.3.1 Non-trivial sets

A necessary and sufficient condition for structures to be equivalent is closely
connected with the notion of a non-trivial set.

Definition 3.6. We say that U is non-trivial with respect to P if there exists
Ki ∈ P such that U ⊆ Ki and U ∩ R(P,Ki) 6= ∅. The collection of all sets U
that are non-trivial with respect to a structure P is denoted by N (P).

The notion of non-trivial sets was introduced in [Kratochv́ıl, 2011] where it
was identified as a property invariable within a class of equivalent structures.
Later, in [Kratochv́ıl, 2013], it was proven that correspondence of these sets is
not only necessary but also sufficient to guarantee the equivalence of two given
structures.

Theorem 3.7. Structures P and P ′ are equivalent iff N (P) = N (P ′).

Consider two structures P1 and P2 whose persegrams are shown in Fig-
ure 3, where all the respective non-trivial sets are highlighted. Considering
Theorem 3.7, the respective structures are not equivalent because

N (P1) = {{u}, {v}, {w}, {u,w}, {v, w}, {u, v, w}}
6= N (P2) = {{u}, {v}, {w}, {u,w}, {v, w}} .

U1 U2 U3

u

v

w

(a) P1

U4 U5

u

v

w

(b) P2

Fig. 3: Non-trivial sets in different structures

Remark 3.8. Note that there is a close connection between non-trivial sets
of cardinality 2 and regular vertical connections; similarly, there is a close con-
nection between non-trivial sets of cardinality 3 and alternating of vertical and
horizontal connections.

A special combination of both these cardinalities deserves our attention.
Consider a triplet {u, v, w} ∈ N (P) such that {u, v} 6∈ N (P). Let Kk be the set
guaranteeing the non-triviality of the triplet in P (i.e., {u, v, w} ⊆ Kk; {u, v, w}∩
R(P,Kk) 6= ∅). Obviously, {u, v} ⊆ S(P,Kk) because we assume it is trivial.
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Moreover, an analogous reasoning yields that u and v have to be introduced
in different sets preceding Kk in P, i.e., u ∈ R(P,Ki), v ∈ R(P,Kj), i 6= j,
and both indices i, j < k. So, one can easily see that a specific combination
of non-trivial and trivial sets may put restrictions on the ordering of sets in
the respective structure, and, by Theorem 3.7, in every structure equivalent
with it. This property will be frequently used in Section 7, where we will use a
symbol N3−2(P) to denote a system of non-trivial triplets with a trivial subset
of cardinality 2 - i.e. N3−2(P) = {{u, v, w} ∈ N (P) : {u, v} 6∈ N (P)}.

Remark 3.9. The reader familiar with the imsets of Milan Studený [Hem-
mecke, Lindner, Studený, 2012] can see a close connection between this famous
apparatus and the above-introduced concept of non-trivial sets. Recall that a
characteristic imset is a unique representative of an independence structure in-
duced (represented) by an acyclic directed graph of a Bayesian Network (BN).
In the case of a graph G(N,E), it is a {0, 1}-vector indexed by subsets of N .
It is easy to show that every probability distribution that can be represented
by a compositional model with a structure P can be equivalently represented
using a BN with a graph G. Moreover, P and G are equivalent in the sense that
they encode the same system of structural independencies. It turns out that
1-components of characteristic imset of G corresponds to N (P).

In fact, it was shown in [Kratochv́ıl, 2013] that non-trivial sets of cardinality
2 and 3 are sufficient to guarantee the equivalence. The algorithm generating
the complete N (P) from the respective non-trivial sets of cardinality 2 and
3 was published in [Studený, Hemmecke, and Lindner, 2012] in the case of
characteristic imsets. It is based on the fact that a set of cardinality c ≥ 4 is
non-trivial if there are at least three different non-trivial subsets of cardinality
c− 1.

3.3.2 Formal ratio

Since the number of non-trivial sets grows exponentially with the number of
variables, they are not very useful for characterization of the structural proper-
ties of compositional models. This is why another closely related tool has been
derived.

It appears that an efficient test of equivalence of structures can be based on a
concept of a formal ratio that was introduced in [Kratochv́ıl, 2013]. Informally
stated, one can write a formal ratio F(P) for a structure P as a ratio in which
the numerator contains all of the sets Ki for Ki ∈ P, and the denominator
contains all of the sets S(Ki,P) for Ki ∈ P. If there are sets contained in both
the numerator and denominator then these sets are “canceled” with each other:
one occurrence of a set U ∈ P in the numerator is canceled with one occurrence
of the same set in the denominator.

Using a formal notation of multisets, [S(Ki,P)]Ki∈P , which are sets in the
sense that the ordering of the included sets is irrelevant but in which one element
may appear several times, we may express this idea precisely by the following
definition:
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Definition 3.10. A formal ratio F(P) corresponding to a structure P is

[Ki]Ki∈P \ [S(P,Ki)]Ki∈P
[S(P,Ki)]Ki∈P \ [Ki]Ki∈P

.

Consider structure P = (K1,K2,K3,K4) = ({u}, {v, w}, {u, v, x}, {w, x, y})
and its reordering P ′ = (K4,K3,K2,K1) = ({w, x, y}, {u, v, x}, {v, w},
{u}). For these structures

[S(P,Ki)]Ki∈P = ∅, ∅, {u, v}, {w, x},
[S(P ′,Ki)]Ki∈P = ∅, {x}, {v, w}, {u},

and therefore the respective formal ratios are the following

F(P) =
{u}, {v, w}, {u, v, x}, {w, x, y}

∅, ∅, {u, v}, {w, x}
,

F(P ′) =
{u, v, x}, {w, x, y}

∅, {x}
.

Let us stress once more that the ordering of sets in both numerator and
denominator is irrelevant.

The importance of the formal ratio follows from the following assertion
proven in [Kratochv́ıl, 2013]:

Theorem 3.11. Structures P and P ′ are equivalent iff their formal ratios co-
incide.

The proof in [Kratochv́ıl, 2013] is based on the following idea. Assume a

zero-one vector uP whose coordinates correspond to all subsets of K̂(P) such
that uP [U ] = 1 if U ∈ N (P) and uP [U ] = 0 otherwise. Similarly, let an integer
vector cP (of the same length) be such that cP(U) = 1 if U is in the numerator
of F(P), cP [U ] = −k if U is in the denominator of F(P) k-times, and cP [U ] = 0
otherwise. Obviously, uP uniquely characterizes N (P). Similarly, cP uniquely
characterizes F(P). It can be shown that uP is a Möbius transform of cP and
vice-versa; the proof is completed by employing Theorem 3.7. Note that there
is again a close connection between vectors uP and cP and Studený’s imsets
mentioned in Remark 3.9

Observe that structures P and P ′ from Example 3 are equivalent. They
both induce the following formal ratio:

F(P) = F(P ′) =
{u, v, w}, {u, v, x}, {w, y}, {u, y, z}

∅, {w}, {u, v}, {u, y}
.

To conclude this Section, let us summarize its results in an easy form. The
following three statements are equivalent:

• P and P ′ are equivalent;

• N (P) = N (P ′);

• F(P) = F(P ′).
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4 Operations on structures

Assume that P and P ′ are equivalent. The question to be answered in this
Section is how to get from P ′ to P in terms of some elementary operations
on the structures. Another very important aspect is our ability to generate
all structures equivalent to a given one. In other words, we are looking for
operations that, applied to a structure, yield other structures within the same
class of equivalence. Regarding Theorem 3.11, we can see that we are looking for
operations that do not change the formal ratio of a structure, and the respective
definition gives us a clear hint about the form of possible operations.

These operations can be divided into two groups:

1. Adding/removing sets – we can add/remove a set whose impact disappears
during formal ratio cancelation (i.e., adding or deleting a reducible set).

2. Reordering keeping the system of S-parts, we can apply changes that do
not modify the denominator of the formal ratio. Hence, for both P and
its reordering P ′ [S(P,Ki)]Ki∈P = [S(P ′,Kj)]Kj∈P′ .

Before we investigate all these elementary operations in detail, note that all of
the mentioned operations were introduced in [Kratochv́ıl, 2013] together with
the proof of their completeness.

4.1 Adding/removing sets

It has been shown that we can restrict ourselves to adding/removing of only
reducible sets. Recall that Ki is reducible in P if Ki = S(Ki,P).

Definition 4.1. By simple extension/reduction of P we understand a structure
that differs from P in adding/removing of one set reducible in P.

Recall the structure P ′ = (K3,K1,K2,K4,K5) introduced in Example 3.
One can easily see in Figure 1b that K1 is reducible in P ′, and hence
(K2,K4,K3,K5) is a simple reduction of P ′.

Theorem 4.2. A structure P and its simple extension/reduction are equivalent.

Remark 4.3. Theorem 4.2 was proven in [Kratochv́ıl, 2013] by showing that
this type of transformation does not influence the respective formal ratio. How-
ever, the reader may find it interesting to see how to prove the above assertion
using the notions of Z-avoiding trails. Consider the persegram of P and the
corresponding system of all the induced Z-avoiding trails. There is no box-
marker in the columns corresponding to reducible sets. Therefore, there can be
no regular vertical connection in such columns. That is why adding/removing
of a reducible set cannot affect the system of Z-avoiding trails, which means
that the respective structures are equivalent.
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4.2 Reordering

Let P ′ be a reordering of P (i.e., Ki ∈ P ′ ⇔ Ki ∈ P). As mentioned
above, P ′ and P are equivalent iff (F(P) = F(P ′)), and therefore also iff
[S(P ′,Ki)]Ki∈P′ = [S(P,Kj)]Kj∈P .

In the following, we restrict ourselves to simple reorderings – transpositions
of two successive sets Kk,Kk+1. In the introduced notation, such a reordered
structure P can be denoted by P(k y k−1) or, equivalently, P(k−1 y k).
The reason for this restriction is clear: recall that both R- and S-parts of a
set Ki ∈ P are fully given by the set itself and the union of the sets preceding
Ki. Hence, by swapping positions of two consecutive sets, the R- and S-parts
remain the same for all of the other sets not being swapped. In a more formal
way, in the case of P = (K1, . . . ,Kn) and P ′ = P(k−1 y k), it holds that
S(P ′,Ki) = S(P,Ki) and R(P ′,Ki) = R(P,Ki) for all i ∈ {1, . . . , n} such that
i 6= k, i 6= k − 1. Thus, to check whether F(P(k−1 y k)) = F(P), it is enough
to check only the swapped sets.

4.2.1 Constant transposition

Constant transposition is designed to preserve R- and S-parts of involved sets.

Definition 4.4. Consider a structure P = (K1, . . . ,Kn). Its reordering P(k−
1 y k) is called its constant transposition if R(P,Kk−1) ∩Kk = ∅.

Considering structure P from Example 3 (see Figure 1a), one can easily see
that P(4 y 3) is a constant transposition of P. Indeed, R(P,K3) ∩K4 =
{x} ∩ {w, y} = ∅. Similarly, P(4 y 3)(5 y 4) = (K1,K2,K4,K5,K3) is a
constant transposition of P(4 y 3).

To show that a structure and its constant transposition are equivalent, it is
enough to show that [S(P ′,Ki)]Ki∈P′ = [S(P,Kj)]Kj∈P . In fact, it has thus
been shown that even a stronger property holds true:

Theorem 4.5. If P ′ is a constant transposition of P, then S(P ′,Ki) = S(P,Ki)
for all Ki ∈ P.

The proof has been published in [Kratochv́ıl, 2011].

Remark 4.6. We can generalize constant transposition for long distance moves
as well. Here, we show just a very special case needed in Section 7.

Assume P = (K1, . . . ,Kn), 2 ≤ k ≤ n such that S(P,Kk) ⊆ K1. We can see
that P(k y 2) = P(k y k−1)(k−1 y k−2) . . . (3 y 2), and that each of these
subsequent transpositions corresponds to a constant transposition: R(P,Ki) ∩
Kk = R(P,Ki)∩S(P,Kk) ⊆ R(P,Ki)∩K1 = ∅ by the definition of the R(P,Ki)
for all i = 2, . . . , k − 1. Therefore, P(k y k−1) is a constant transposition of
P and, by iterative application of Theorem 4.5, P(k y k−1)(k−1 y k−2) is a
constant transposition of P(k y k−1), etc.
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4.2.2 Box transposition

A constant transposition preserves S-parts of the involved sets. On the contrary,
box transposition was designed to interchange these S-parts.

Definition 4.7. Consider a structure P = (K1, . . . ,Kn). Its reordering P(k−
1 y k) is called its box transposition if S(P,Kk−1) = S(P,Kk) \R(P,Kk−1).

To prove that a structure P and its box transposition P ′ are equivalent
(F(P) = F(P ′)), it is enough to prove that [S(P ′,Ki)]Ki∈P′ = [S(P,Kj)]Kj∈P .

Theorem 4.8. If P ′ = P(k − 1 y k) is a box transposition of P, then
S(P ′,Kk) = S(P,Kk−1) and S(P ′,Kk−1) = S(P,Kk).

The proof has been published in [Kratochv́ıl, 2011].

Remark 4.9. Let P = (K1, . . . ,Kn), n ≥ 2. Note that P(2 y 1) is always
either a box or a constant transposition of P. It is a constant transposition if
K1 ∩K2 = ∅ and a box transposition otherwise.

Assume a structure P from Example 3 once again (see Figure 1a). Note
that P(3 y 2) is a box transposition of P. Indeed, S(P,K3) \ R(P,K2) =
{u, v} \ {v, w} = {u} = S(P,K2). Considering Remark 4.9, transposition
(2 y 1) always corresponds to either a box or a constant transposition.
Specifically, if applied to P(3 y 2), i.e., P(3 y 2)(2 y 1) is a box trans-
position of P(3 y 2). Hence P ′ from Example 3 (see Figure 1b), where
P ′ = (K3,K1,K2,K4,K5) = P(3 y 2)(2 y 1) is obtained from P by two
constant transpositions.

The completeness of the above-mentioned operations was shown in [Kra-
tochv́ıl, 2013]:

Theorem 4.10. Two structures PA and PB are equivalent iff there exists a
sequence P1, ...,Pm, m ≥ 1 of structures such that P1 = PA,Pm = PB and Pi+1

is a simple reduction/extension, constant transposition, or box transposition of
Pi for all i = 1, . . . , (m−1).

5 Relation to graphical models

This section, included into the paper at the instigation of the anonymous re-
viewer, is intended for the reader familiar with probabilistic graphical models,
who requires to see the relation between graphical and compositional approaches
to multidimensional probability distributions representation. It means that,
among others, the results described in this section will not be used in sub-
sequent parts of this text, and therefore the section may be skipped without
depriving legibility of the rest of the paper.

It is known that the class of compositional models is, in a way, equivalent to
a class of distributions representable in a form of Bayesian networks [Jiroušek,
2004], which can be introduced in two different ways. One possibility is to define
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Bayesian network (BN) as a couple of an acyclic directed graph (DAG) and a
respective system of conditional probability distributions. Here, we will use an
alternative approach that defines a BN as a probability distribution factorizing
with respect to a DAG. In any case we have to use a couple of symbols from
graph theory.

Let us consider a DAG G = (V, E) with nodes from a set of variables V =
{x1, x2, . . . , xq} and the set of oriented edges E . If (xi → xj) ∈ E then we say
that xi is a parent of xj , and pa(xj) denotes the set of all parents of xj . For
all j = 1, . . . , n let Kj = pa(xj) ∪ {xj}. We say that a probability distribution
κ(V ) is a BN with DAG G = (V, E) if it factorizes with respect to G, i.e., if

κ(V ) =

q∏
i=1

κ↓Ki

q∏
i=1

κ↓pa(xi)

. (5.1)

5.1 Transformation of a BN into a compositional model and
vice versa

To get a compositional model representing a distribution κ(V ), which is a BN
with graph G = (V, E), is a simple task. First, one has to realize that nodes of
a DAG can be ordered in the way that parents are always before their children.
Without loss of generality assume it is the ordering (x1, x2, . . . , xq), i.e.,

xi ∈ pa(xj) =⇒ i < j.

This ordering guarantees the fact that pa(xj) ⊆ {x1, x2, . . . , xj−1}, and therefore
formula (5.1) rewrites into the form

κ(V ) = κ↓K1 B κ↓K2 B . . .B κ↓Kq ,

where Ki = {i} ∪ pa(i) for all i = 1, 2, . . . , q. Notice that the structure of this
model (K1,K2, . . . ,Kq) is unambiguously specified by the graph of BN.

The opposite transformation of a compositional model into a BN is a little
bit more complicated. Consider a general compositional model κ(V ) = π1(L1)B

π2(L2)B. . .Bπn(Ln) with structure P = (L1, L2, . . . , Ln), such that
n⋃

i=1

Li = V .

This model is, as a rule, equivalent to several BNs. To get a unique DAG we
have to choose an ordering of variables from V . Let this ordering be defined by
the relation ≺. Now, the definition of the required DAG is simple: G = (V, E),
where

(xi → xj) ∈ E iff there exists k ∈ {1, . . . , n}, such that {xi, xj} ⊆
Lk, j ∈ R(P, Lk), and either i ∈ S(P, Lk), or i ≺ j. (5.2)

The reader certainly noticed that we do not need the ordering on the whole
set V but just on all subsets R(P,Kk). Given these orderings the graph of the
resulting BN is uniquely given by the structure of the considered compositional
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model. In general, however, the respective DAG is not unique. It follows from
(5.2) that the orientation of edges is from S to R-part of the involved set. If
both variables are from R-part of the set, then the edge orientation may be
arbitrary and it is determined by relation ≺, randomly chosen before.

5.2 Impact of basic operations

In this subsection we answer the question how the graph of the corresponding
BN changes when we apply a basic operation (constant or box transpositions)
to a compositional model. Realize that the existence of reducible sets does not
influence the respective graphs constructed in the preceding paragraph, and
therefore adding/removing reducible sets does not change the structure of the
equivalent BN.

Recalling definition of non-trivial sets we immediately see from (5.2) that
(xi → xj) ∈ E iff (xi, xj) ∈ N (P), or, in other words, every edge corresponds
to a non-trivial set of cardinality two and vice-versa. Therefore, using Theo-
rems 3.7 and 4.10 guaranteeing that constant and box transposition does not
change the set of non-trivial sets, we see that constant and box transpositions
neither introduce nor delete an edge in the DAG of the respective BN. The
question remains whether these transformation can change the orientation of
the edges. As mentioned above, the orientation of every edge is from S to R,
or, if both variables are in an R-part of the set, then the orientation is given by
the previously chosen ordering ≺.

5.2.1 Constant transposition

Consider a structure P = (L1, . . . , Ln). Recall that its reordering P ′ = P( −̀1 y
`) is called constant transposition if R(P, L`−1) ∩ L` = ∅. Using Theorem 4.5,
It means that

S(P, Lj) = S(P ′, Lj) and R(P, Lj) = R(P ′, Lj)

for all j = 1, . . . , n. Therefore, regarding the rule (5.2) we can immediately see
that the constant transposition does not change the DAG of the corresponding
BN.

5.2.2 Box transposition

Recall that the reordering P( −̀1 y `) of a structure P = (L1, . . . , Ln) is called a
box transposition if S(P, L`−1) = S(P, L`)\R(P, L`−1). Theorem 4.8 says that
if P ′ = P(` − 1 y `) is a box transposition of P, then S(P ′, L`) = S(P, L`−1)
and S(P ′, L`−1) = S(P, L`). Therefore

R(P ′, L`) = L` \ S(P ′, L`) = L` \ S(P, L`−1) = R(P, L`) ∪ (R(P, L`−1) ∩ L`).

So, the following situations may happen if R(P, L`−1) ∩ L` 6= ∅. Consider xi ∈
(R(P, L`−1)∩L`) and xj ∈ R(P, L`). In this case, naturally, xi ∈ S(P, L`), and
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therefore the graph of a BN corresponding to structure P has an edge (xi → xj).
On the other hand side, both xi, xj ∈ R(P ′, L`). and therefore the orientation
of the respective edge in the graph corresponding to structure P ′ depends on
relation ≺. An analogous situations happens if xi ∈ (R(P, L`−1) ∩ L`) and
xk ∈ (R(P, L`−1)\L`). In this case the orientation of the edge connecting these
two nodes in the graph of a BN corresponding to structure P is given by relation
≺, whereas the graph corresponding to structure P ′ contains the edge (xi → xj)
regardless relation ≺.

So, we see that a box transposition can change the orientation of an edge of
the corresponding BN but only in situations when there are several equivalent
BNs corresponding to the given structure.

6 Operations on generating sequences

Up to now we have studied the impact of elementary operations (transposition,
and adding/deleting sets) on structural independence. From this point forward,
we will study what happens when performing the introduced elementary op-
erations with distributions – elements of a respective generating sequence (a
sequence of low-dimensional probability distributions that represent a composi-
tional model). What is the impact of each of these operations on the respective
compositional model? What are sufficient conditions for two compositional
models with equivalent structures to be the same? These are the questions to
be answered in this Section.

In order to simplify the following lemmata, we will work with a model
whose generating sequence consists of only three distributions π1(K1), π2(K2),
and π3(K3). Thus, we will consider a generating sequence with a structure
P = (K1,K2,K3), and will apply respective operations on π2 and π3. Notice
that this simplification is not at the expense of generality. Indeed, realize that
π1(K1) may be a compositional model itself – it may be composed from several
distributions. Similarly, if π1(K1), π2(K2), π3(K3) is from the beginning of a
much longer generating sequence, Lemma 2.3 says that we in fact study prop-
erties of a marginal of a multidimensional distribution represented by a long
generating sequence.

The first lemma deals with the simple extension/reduction of a structure
and of the respective compositional model.

Lemma 6.1. Consider three distributions π1(K1), π2(K2), and π3(K3) such
that π1 B π2 is defined. If K2 is reducible in P = (K1,K2,K3) then

π1 B π2 B π3 = π1 B π3. (6.1)

Proof. K2 is reducible if K2 = S(P,K2), i.e., if K2 ⊆ K1. Therefore K1 =
K1 ∪K2 and therefore (π1 B π2)↓K1 = π1 by Lemma 2.3, which completes the
proof.
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Lemma 6.2. Consider three distributions π1(K1), π2(K2), and π3(K3). If
(K1,K3,K2) is a constant transposition of (K1,K2,K3) then

π1 B π2 B π3 = π1 B π3 B π2. (6.2)

Proof. Recall that (K1,K3,K2) is a constant transposition of (K1,K2,K3) if
R(P,K2) ∩K3 = ∅. It means that K2 ∩K3 ⊆ S(P,K2) ⊆ K1. Therefore, we
can apply Lemma (5.7) from [Jiroušek, 2011], which yields that π1 B π2 B π3 =
π1 B π3 B π2.

Lemma 6.3. Consider three distributions π1(K1), π2(K2), and π3(K3) such
that π2 and π3 are consistent. If (K1,K3,K2) is a box transposition of (K1,K2,K3)
then

π1 B π2 B π3 = π1 B π3 B π2. (6.3)

Proof. Consider P = (K1,K2,K3) and denote P ′ = (K1,K3,K2). Let us start
by showing that, under the given assumption, π1 B π2 B π3 is defined iff π1 B
π3 B π2 is defined. Recall that π1 B π2 B π3 is defined iff

(i) π
↓S(P,K2)
1 � π

↓S(P,K2)
2 , and

(ii) (π1 B π2)↓S(P,K3) � π
↓S(P,K3)
3 .

Analogously, π1 B π3 B π2 is defined iff

(iii) π
↓S(P′,K3)
1 � π

↓S(P′,K3)
3 , and

(iv) (π1 B π3)↓S(P′,K2) � π
↓S(P′,K2)
2 .

Using Theorem 4.8 and consistency of π2 and π3 we see that (i) and (iii)
coincide. Let us prove that (ii) and (iv) also coincide. By the definition of box
transposition, observe that S(P,K2) ⊆ S(P,K3). Denoting S = S(P,K3) we
can easily see (just using the definition of S(P,Ki)) that

(K1 ∩K2) = S(P,K2) ⊆ S ⊆ K2 ⊆ (K1 ∪K2), (6.4)

from which we immediately see that

(S ∩K2) = S = (S ∩K3). (6.5)

This enables us to compute

(π1 B π2)↓S = π↓S∩K1

1 B π↓S∩K2

2 = π↓S∩K1

1 B π↓S∩K3

3 = (π1 B π3)↓S ,

where the first equation is guaranteed by relationship (6.4) and Lemma 2.3, the
second equation follows from equality (6.5) and the assumption of consistency
on π2 and π3, and the last equation is guaranteed again by Lemma 2.3. Thus
we have shown that (ii) is equivalent to (iv).
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Let us now assume that both expressions in equality (6.3) are defined. Be-
cause of Lemma 4.8 and the fact that π2 and π3 are assumed to be consistent,
the expressions

π1 B π2 B π3 =
π1π2π3

π
↓S(P,K2)
2 π

↓S(P,K3)
3

,

π1 B π3 B π2 =
π1π2π3

π
↓S(P′,K3)
3 π

↓S(P′,K3)
2

are mutually equivalent, which completes the proof.

7 Conditioning and flexible sequences

Knowledge of structural properties of a compositional model helps us, among
other things, when computing conditional distributions. Namely, it can be
shown that computation of a conditional distribution π(·|u = α), for distribution
π represented in the form of a compositional model π = π1B . . .Bπn, is granted
to be easy only if the conditioning variable u appears among the arguments
of the first distribution π1. This property is more precisely expressed in the
following assertion.

Theorem 7.1. Let π1, π2, . . . , πn be a generating sequence with structure P =
(K1,K2, . . . ,Kn) and u ∈ K1. Then, for any value α of variable u for which
π1(u = α) > 0,

(π1 B π2 B . . .B πn)
(
K̂(P) \ {u}|u = α

)
= κ1 B κ2 B . . .B κn,

where for all i = 1, 2, . . . , n

κi(Ki \ {u}) =

{
πi(Ki) if u 6∈ Ki

πi(Ki \ {u}|u = α) if u ∈ Ki.

Proof. Let us show that the assertion holds for n = 2. For n = 1 the assertion is
trivial, and for n > 2 it can easily be proven by the technique of mathematical
induction based on the fact it holds for n = 2.

Let us distinguish between two situations: u ∈ K2 and u 6∈ K2. If u ∈ K2
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then

(π1 B π2)((K1 ∪K2) \ {u}|u = α) =
(π1 B π2)((K1 ∪K2) \ {u}, u = α)

(π1 B π2)↓{u}(u = α)

=
π1(K1 \ {u}, u = α) B π2(K2 \ {u}, u = α)

π
↓{u}
1 (u = α)

=
π1(K1 \ {u}, u = α)

π
↓{u}
1 (u = α)

· π2(K2 \ {u}, u = α)

π↓K1∩K2

2 ((K1 ∩K2) \ {u}, u = α)

= π1(K1 \ {u}|u = α) · π2(K2 \ {u}, u = α)

π
↓{u}
2 (u = α) · π↓K1∩K2

2 ((K1 ∩K2) \ {u}|u = α)

=
π1(K1 \ {u}|u = α) · π2(K2 \ {u}|u = α)

π↓K1∩K2

2 ((K1 ∩K2) \ {u}|u = α)

= π1(K1 \ {u}|u = α) B π2(K2 \ {u}|u = α)

If u 6∈ K2 the computation, though analogous, is even simpler.

(π1 B π2)((K1 ∪K2) \ {u}|u = α) =
π1(K1 \ {u}, u = α) B π2(K2)

π
↓{u}
1 (u = α)

=
π1(K1 \ {u}, u = α)

π
↓{u}
1 (u = α)

· π2(K2)

π↓K1∩K2

2 ((K1 ∩K2))

= π1(K1 \ {u}|u = α) B π2(K2)

In light of Theorem 7.1, it seems reasonable to study this question: When
and how can a given generating sequence be reordered so that a desired variable
is among the arguments of the first distribution? However, not knowing which
variable will be the conditioning one, we will solve this problem for all variables
from P at once. This is why we will be interested in sequences for which any
variable may appear among the arguments of the first distribution (naturally,
after a necessary reordering). This property is met by the so-called flexible
sequences that, in addition to a stronger concept of decomposable generating
sequences, were already defined in [Jiroušek, 2011].

Definition 7.2. A generating sequence π1, π2, . . . , πn with structure P = (K1,

K2, . . . ,Kn) is called flexible if for each u ∈ K̂(P) there exists a permutation
i1, i2, . . . , in of 1, 2, . . . , n such that u ∈ Ki1 and

πi1 B πi2 B . . .B πin = π1 B π2 B . . .B πn.
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In other words, flexible sequences are those which can be reordered in many
ways so that each variable can appear among the arguments of the first distri-
bution. However, this does not mean that each distribution appears at the be-
ginning of the generating sequence. If this were the case, then flexible sequences
would form a subclass of the so-called perfect sequences [Jiroušek, 2011] (every
distribution from a perfect sequence is a marginal of the represented distribution
– Theorem (10.5) in [Jiroušek, 2011]).

It seems natural that if a generating sequence and its reordering represent
the same probability distribution, they should also induce the same system of
structural independencies. In other words, their structures should be equivalent.
This is why we are going to define and study the concept of structural flexibility
as well.

Definition 7.3. A structure P is called flexible if for all u ∈ K̂(P) there exists
its equivalent reordering P ′ such that u appears in the first set of P ′.

Let us stress that similar to the flexibility of generating sequences, the struc-
ture flexibility definition does not require that each set from the structure should
appear at the beginning of an equivalent structure. And yet, we will show that
structure flexibility is much stronger than flexibility for generating sequences;
namely, it coincides with decomposability defined by the well-known running
intersection property (RIP) - see the definition below.

Remark 7.4. As already mentioned in Remark 3.8, a structure P of a compo-
sitional model defines an order on the set of the respective variables from K̂(P).
These variables are ordered with respect to their first appearance in P. There
is a strong relationship between special patterns from N (P) and this partial
order. For example, if {u, v, w} ∈ N (P) then there exists a set Ki ∈ P such
that {u, v, w} ⊆ Ki and at least one of u, v, w lies in its R-part. If simultane-
ously {u, v} 6∈ N (P) then {u, v} ⊆ S(Ki,P), and, necessarily, w ∈ R(Ki,P).
Therefore, both u and v have to be introduced before w in P. Since the system
of non-trivial sets N (P) is one of the characteristics of the equivalence relation
on structures, it means that u and v have to be introduced before w in every
structure equivalent with P (see Theorem 3.7).

Denote N3−2(P) = {{u, v, w} ∈ N (P)|{u, v} 6∈ N (P)}. It will follow from
Lemma 7.6 and Theorem 7.7 that N3−2(P) = ∅ for flexible P. First, we will
prove thatN3−2(P) = ∅ is equivalent to the running intersection property (RIP),
which is defined as follows for a structure P (recall that set Ki ∈ P is irreducible
in P if R(P,Ki) 6= ∅).

Definition 7.5. We say that structure P = (K1, . . . ,Kn) satisfies the running
intersection property (RIP) if for every irreducible set Ki ∈ P there exists an
irreducible set Kj ∈ P such that j < i, and S(Ki,P) ⊆ Kj.

Lemma 7.6. N3−2(P) = ∅ iff P satisfies RIP.

Proof. First, assume that P = (K1, . . . ,Kn) satisfies RIP and there exists
{u, v, w} ∈ N (P) such that {u, v} 6∈ N (P). Let Ki be the set for which
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w ∈ R(P,Ki). Then {u, v} ⊆ S(Ki,P) (because {u, v} 6∈ N (P)), and employ-
ing the definition of RIP, we know that there must exist irreducible Kj ∈ P,
j < i such that {u, v} ⊆ Kj . Since we assume that {u, v} 6∈ N (P), neither
of these two variables may lie in R(P,Ki), and therefore {u, v} ⊆ S(Kj ,P),
which further implies the existence of another irreducible Kk ∈ P, k < j such
that {u, v} ⊆ Kk. This reasoning process can be endlessly repeated, which
contradicts with the fact that the number of the sets in P is finite.

To prove the opposite implication, i.e., N3−2(P) = ∅ ⇒ P satisfies RIP, we
will use the induction on the length of the considered structure n. The assertion
is trivial for n = 2: S(K2,P) = K1 ∩K2 ⊆ K1.

Suppose the assertion holds for all structures of a length smaller than n.
This assumption trivially implies that the assertion also holds for Kn reducible,
and for Kn such that |S(Kn,P)| = 1. Now, we will show that it also holds for
irreducible Kn for which |S(Kn,P)| ≥ 2. Denote

v = arg max
v̄∈S(Kn,P)

{j : v̄ ∈ R(Kj ,P)}, (7.1)

i.e., v is the variable from S(Kn,P) that is introduced last in P. Since Kn

is irreducible we can choose an arbitrary w ∈ R(Kn,P). Let us show that
S(Kn,P) ⊆ Kj for which v ∈ R(Kj ,P). Consider any u ∈ S(Kn,P), u 6= v.
Since u, v ∈ S(Kn,P), we see that {u, v, w} ∈ N (P), and therefore also {u, v} ∈
N (P) (because we assume N3−2(P) = ∅). Therefore there must exist Ki such
that u, v ∈ Ki, and at least one of them must lie in R(Ki,P). But, neither i < j
(v 6∈ K1 ∪ . . . ∪Kj−1 because v ∈ R(Kj ,P)) nor i > j (because of (7.1)) and
therefore u ∈ Kj , which concludes the proof.

Now, we can prove that the notion of structural flexibility coincides with
RIP.

Theorem 7.7. A structure P is flexible iff it satisfies RIP.

Proof. First, assume that P does not satisfy RIP, which means N3−2(P) 6= ∅
due to Lemma 7.6. Therefore there exists a triplet {u, v, w} ∈ N (P) such that
{u, v} 6∈ N (P) in every equivalent structure, and therefore w cannot appear
in the first set of any structure equivalent with P because u and v have to be
introduced first.

To prove the opposite implication of the desired equivalence, we will prove a
little bit stronger assertion: If structure P satisfies RIP then every irreducible
set can be moved to the first position in the structure using two elementary op-
erations: box and constant transpositions. It means that the resulting structure
is equivalent with P.

Let us proceed using the induction on the length of the structure. It is
evident that the assertion holds for a structure consisting of only one set. Now,
supposing it holds for all structures of a length smaller than n we will prove it
also holds for structure P = (K1, . . . ,Kn).

If Kn is reducible in P then the assertion holds because of the induction as-
sumption. If it is irreducible, due to RIP there exists irreducible Kj , j < n such
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that S(Kn,P) ⊆ Kj . Moreover, if (K1, . . . ,Kn) meets RIP then (K1, . . . ,Kn−1)
meets RIP, too, and therefore, using the induction hypothesis, we can find
P ′ = (Ki1 , . . . ,Kin−1

,Kn), which is the reordering of P (that can be obtained
using only box and constant transpositions) such that Kj = Ki1 . It is evi-
dent that S(Kn,P ′) = S(Kn,P). Hence, as shown in Remark 4.6, P ′(n y 2)
can be obtained from P ′ by a sequence of constant transpositions. Since the
transposition (2 y 1) is always either a box or a constant transposition (see
Remark 4.9), the structure P ′(n y 2)(2 y 1) meets the required property and
can be obtained from P using only box and constant transpositions.

Remark 7.8. The reader familiar with decomposable graphs knows that there
are many different ways in which these graphs can be characterized. It follows
from the existence of a join tree [Beeri, Fagin, Maier, and Yannakakis, 1983] that
if a sequence meets RIP then it can be reordered into another RIP sequence
so that the new sequence starts with an arbitrarily selected set. From this
point of view, the preceding theorem is not surprising. The originality of the
message contained in this assertion is twofold. For one thing, the respective
reordering can be done with only the help of constant and box transpositions,
and for another, RIP is guaranteed by a weaker property, which is the structural
flexibility of a sequence.

Based on Theorem 7.7 we can immediately conclude the following assertion,
which is the same as in Lemma 12.3. in [Jiroušek, 2011] (notice that for the
application of box transposition by Lemma 6.3 we have to assume that the
swapped distributions are consistent).

Corollary 7.9. Let π1, . . . , πn be a generating sequence of pairwise-consistent
distributions with flexible structure (K1, . . . ,Kn). Then the generating sequence
is flexible.

8 Conclusions

Compositional models provide a tool for efficient representation of multidimen-
sional probability distributions. Note that an arbitrary probability distribution
can be characterized by many properties. One of them is the system of prob-
abilistic conditional independence statements induced by this distribution. It
means that every compositional model – as a probability distribution – also
induces a system of probabilistic conditional independence statements. A sig-
nificant part of these statements is given by the respective model structure,
which is the same for all the distributions represented in the form of composi-
tional models with this structure.

This paper introduces a compositional model structure as a bearer of the
information about these conditional independence statements. The first part
of the paper recalls the basic properties of compositional models relevant to
the notion of probabilistic conditional independence. In the second part, a
separation criterion is presented, based on nonexistence of a Z-avoiding trail,
enabling us to read the respective conditional independence statements from the



8 Conclusions 28

given structure. It is worth repeating that two different structures may induce
the same system of conditional independence statements; in this case we say they
are equivalent. This issue is treated in the main part of the paper: we present
two ways to characterize equivalent structures and describe transformations
converting a given structure into another equivalent one. In the last part of the
paper we also reveal the impact of these operations on probability distributions
represented in the form of compositional models.

There are many other important questions that are not answered in this
paper. First, let us stress that we dealt only with sequential models. Very
interesting and important results concerning structures of more general (non-
sequential) compositional expressions were achieved by Malvestuto [2014]. Nev-
ertheless, even for sequential models some basic questions remained beyond the
scope of this paper. For example: What is the number of structures equivalent
with a given one? How to find a structure corresponding to a given system of
conditional independence statements? And in case a system of conditional inde-
pendence statements cannot be perfectly represented by any structure, how to
find a structure inducing its maximal subsystem? So, one can see that there is
still an interesting part of compositional model theory open for further research.

Acknowledgement

The paper is a survey of results on structural properties of compositional mod-
els that were achieved with the financial support of several research grants.
During the past two years there were grants of Czech Science Foundation No.
403/12/2175 (first author) and No. 13-20012S (second author).

The authors also appreciate the valuable comments of the anonymous re-
viewer who suggested, among others, to include parts clarifying the relation
between graphical and compositional models. This led to inclusion of Section 5.

References

Andersson, S.A. Madigan, D. Perlman,M.D. 1997. “A characterization of
Markov equivalence classes for acyclic digraphs”, Annals of Statistics, 25:
505-541

Beeri, C. Fagin, R. Maier D., and Yannakakis, M. 1983. “On the Desirability of
Acyclic Database Schemes”, Journal of the ACM 30 (3):479-513.
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Jiroušek, R., 2011. “Foundations of compositional model theory”. International
journal of general systems 40: 623–678.

Kratochv́ıl V. 2011. “Characteristic Properties of Equivalent Structures in Com-
positional Models”, International Journal of Approximate Reasoning 52 (5):
599–612.

Kratochv́ıl, V. 2013. “Probabilistic Compositional Models: solution of an equiv-
alence problem”, International Journal of Approximate Reasoning 54 (5):
590-601.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N. and Leimer, H.-G. 1990. “Inde-
pendence properties of directed markov fields” Networks 20: 491-505.

Malvestuto, F. M. 2014. “Equivalence of compositional expressions and
marginalization in compositional models”. To appear in Kybernetika 50, (3).

Pearl, J. 1988. “Probabilistic Reasoning in Intelligent Systems” Morgan Kauf-
mann, San Francisco, California.

Pearl, J. Paz, A. 1987. “Graphoids: a graph-based logic for reasoning about
relevance relations” Advances in Artificial Intelligence II B. du Boulay, D.
Hogg, and L. Steels (Eds.). North-Holland, Amsterdam: 357–363.
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