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9. Basic Solutions of Fuzzy Coalitional Games

Tomas Kroupa, Milan Viach

This chapter is concerned with basic concepts of
solution for coalitional games with fuzzy coalitions
in the case of finitely many players and transfer-
able utility. The focus is on those solutions which
preoccupy the main part of cooperative game the-
“ory (the core and the Shapley value). A detailed
“discussion or just the comprehensive overview of
~current trends in fuzzy games is beyond the reach
of this chapter. Nevertheless, we mention current
developments and briefly discuss other solution
" concepts.

The theory of cooperative games builds and analyses
mathematical models of situations in which players can
form coalitions and make binding agreements on how
“to share results achieved by these coalitions. One of
the basic models of cooperative games is a cooperative
‘game in coalitional form (briefly a coalitional game or
a game). Following Osborne and Rubinstein [9.1] we
assume that the data specifying a coalitional game are
composed of:

® A nonempty set £2 (the set of players) and

- ‘anonempty set X (the set of consequences),

'  ° A mapping V that assigns to every subset S of £2
a subset V(S) of X, and

® A family {>;};es of binary relations on X (players’
preference relations).

The set £2 of all players is usually referred to as the
grand coalition, subsets of §2 are called coalitions, and
the mapping V is called the characteristic Sfunction (or
coalition function) of the game.

This definition provides a rather general frame-
work for analyzing many classes of coalitional games.
The games of this type are usually called coalitional
games without side payments or without transferable
payoff (or utility). Obviously, for many purposes, this
framework is too general because it neither speci-
fies some useful structure of the set of consequences
nor properties of preference relations. At the same
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time, this framework is also too restrictive because of
requiring that the domain of the characteristic func-
tion must be the system of all subsets of the player
set.

In this chapter, we are mainly concerned with coali-
tional games in which the number of players is finite.
The number of players will be denoted by n and,
without loss of generality, the players will be named
by integers 1,2,...,n. In other words, we set 2 =
N where N = {1,2,...,n}. Moreover, we assume that
the sets V(S) of consequences are subsets of the n-
dimensional real linear space R”, and that each player i
prefers (xi,...,x,) to (y1,...,y,) if and only if x; > y;.
Furthermore, we significantly restrict the generality by
considering only the so-called coalitional games with
transferable payoff or utility. This class of games is
a subclass of games without transferable utility that is
characterized by the property: for each coalition S, there
exists a real number v(S) such that

V(S)={xeR": > x5 <v(S)andy = 0if j ¢S} .

€S

Evidently, each such game can be identified with the
corresponding real-valued function v defined on the sys-
tem of all subsets of N.

In coalitional games, whether with transferable or
nontransferable utility, each player has only two alter-
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natives of participation in a nonempty coalition: full
participation or no participation. This assumption is too
restrictive in many situations, and there has been a need
for models that give players the possibility of partici-
pation in some or all intermediate levels between these
two extreme involvements.

The first mathematical models in the form of coali-
tional games in which the players are permitted to
participate in a coalition not only fully or not at all
but also partially were proposed by Butnariu 9.2
and Aubin [9.3]. Aubin notices that the idea of par-
tial participation in a coalition was used already in the
Shapley-Shubik paper on market games [9.4]. In these
models, the subsets of N no longer represent every pos-
sible coalition. Instead, a notion of a coalition has to be
introduced that makes it possible to represent the partial
membership degrees.

It has become customary to assume that a member-
ship degree of player i € N is determined by a number
a; in the unit interval [ = [0, 1], and to call the result-
ing vector a = (at, .- -> ay) € I' a fuzzy coalition. The

n-dimensional cube " is thus identified with the set
of all fuzzy coalitions. Every subset S of N, that is,
every coalition S, can be viewed as an n-vector from
{0, 13" whose ith components is 1 when i€ S and O
when i ¢ S. These special fuzzy coalitions are often
called crisp coalitions. Hence, we may think of the set
of all fuzzy coalitions I" as the convex closure of the set
{0, 1} of all crisp coalitions. This leads to the notion of
an n-player coalitional game with fuzzy coalitions and
transferable utility (briefly a fuzzy game) as a bounded
function v: I" — R satisfying v(0) = 0.

It turns out that most classes of coalitional games
with transferable utility and most solution concepts
have natural counterparts in the theory of fuzzy games
with transferable utility. Therefore, in what follows, we
start with the classical case (Sect. 9.1) and then deal
with the fuzzy case (Sect. 9.2). Taking into account
that, in comparison with the classical case, the theory
of fuzzy games is relatively less developed, we focus
attention on two well-established solution concepts of
fuzzy games: the core and the Shapley value.

0.1 Coalitional Games with Transferable Utility

We know from the beginning of this chapter that from
the mathematical point of view, every n-player coali-
tional game with transferable utility can be identified
with a real-valued function v defined on the system
of all subsets of the set N = {1,2,... ,n}. For conve-
nience, we assume that always v(0) =0.

It is customary to interpret the value v(S) of the
characteristic function v at coalition S as the worth of
coalition S or the total payoff that coalition S will be
able to distribute among its members, provided exactly
the coalition S forms. However, equally well, the num-
ber v(S) may represent the total cost of reaching some
common goal of coalition S that must be shared by the
members of S; or some other quantity, depending on the
application field. In conformity with the players pref-
erences stated previously, we usually assume that v(S)
represents the total payoff that S can distribute among
its members.

Since the preferences are fixed, we denote the game
given through N and v by (N,v), or simply v, and
the collection of all games with fixed N by Gy. The
sum v -+ w of games from Gy defined by (v +w)(S) =
v($) 4+ w(S) for each coalition S is again a game from
Gy. Moreover, if multiplication of v & Gy by a real
number « is defined by (av)(S) = av(S) for each coali-

tion S, then av also belongs to Gy. An important and
well-known fact is that Gy endowed with these two al-
gebraic operations is a real linear space.

Example 9.1 Simple games

If the range of a game v is the two-element set {0, 1}
only, then the game can be viewed as a model of a vot-
ing system where each coalition A C N is either winning
(v(A) = 1) or loosing (v(A) = 0). Then it is natural to
assume that the game also satisfies monotonicity; that
is, if coalition A is winning and B is a coalition with
A C B, then B is also winning. It is also natural to con-
sider only games with at least one winning coalition.
Thus, we define a simple game [9.5, Section 2.2.3] to
be a {0, 1}-valued coalitional game v such that the grand
coalition is winning and v(A) < v(B), whenever A € B
foreachA,BCN.

We say that a game v is superadditive if v(AU B) =
v(A) + v(B), for every disjoint pair of coalitions A, B &
N. Consequently, in a superadditive game, it may be ad-
vantageous for members of disjoint coalitions A and B
to form coalition AU B because every pair of disjoint
coalitions can obtain jointly at least as much as they
could have obtained separately. Consequently, it is ad-
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9.1 Coalitional Games with Transferable Utility

yantageous to form the largest possible coalitions, that
is, the grand coalition.

The strengthening of the property of superadditivity
is the assumption of nondecreasing marginal contri-
bution of a player to each coalition with respect to
coalition inclusion: a game v is said to be convex

whenever
y(AU{i}) —v(A) S v(BU {i}) —v(B)

for each i € N and every A € B C N\ {i}. It can be di-
rectly checked that convexity of v is equivalent to

y(A U B) -+ V(A N B) > V(A) + V(B)
forevery A, BCN.

Example 9.2
Let B be a nonempty coalition in a simple game (N, v).
Then the game vp given by

1, A2B,

) ACN,
0, otherwise,

vp(A) =

is a convex simple game.

Example 9.3 Bankruptcy game [9.6]

Let e>0 be the total value of assets held in
a bankruptcy estate of a debtor and let N be the set of all
creditors. Furthermore, let d; > 0 be the debt to creditor
i € N. Assume that e <) . di. The bankruptcy game
is then the game such that, for every A C N,

v(A) =max | 0,e— Z d;
iEN\A

It can be shown that the bankruptcy game is convex.

There is a variety of solution concepts for coali-
tional games with n players. Some, like the core, stable
set or bargaining set, may consist of sets of real n-
vectors, while others offer as a solution of a game
a single real n-vector.

9.1.1 The (ore

Let v be an n-player coalitional game with transferable
utility. The core of v is the set of all efficient payoff
vectors x € R” upon which no coalition can improve,

that is,

Cv)=4{xeR" Zx,- = p(N)
ieN

and ) x; > v(A) foreach ACNp. (9.1)

€A

The Bondareva—Shapley theorem [9.5, Theorem 3.1.4]
gives a necessary and sufficient condition for the core
nonemptiness in terms of the so-called balanced sys-
tems. It is easy to see that the core of every game is
a (possibly empty) convex polytope. Moreover, the core
of a convex game is always nonempty and its vertices
can be explicitly characterized [9.7].

9.1.2 The Shapley Value

Letf = (fi.fo.....f:) be a mapping that assigns to ev-
ery game v from some collection of games from Gy
a real n-vector f(v) = (fi(v),(v),....[:(v)). Follow-
ing the basic interpretation of values of a characteristic
functions as the total payoff, we can interpret the values
of components of such a function as payoffs to individ-
ual players in game v.

Let A be a nonempty collection of games from Gy.
A solution function on A is a mapping f from A into
the n-dimensional real linear space R”. If the domain
A of f is not explicitly specified, then it is assumed to
be Gy. The collection of such mappings is too broad to
contain only the mappings that lead to sensible solution
concepts. Hence, to obtain reasonable solution concepts
we have to require that the solution functions have some
reasonable properties. One of the natural properties in
many contexts is the following property of efficiency.

Property 9.1 Efficiency

A solution function f on a subset A of Gy is efficient on
A fi(v) +HO) + -+ £, (v) = v(N) for every game v
from A.

This property can be interpreted as a combina-
tion of the requirements of the feasibility defined by
FW LW+ -+ (v) < v(NV) and collective rational-
ity defined by fi(v) +/2(v) + -+ + /£ (v) Z v(N).

In addition to satisfying the efficiency condition,
solution functions are required to satisfy a number of
other desirable properties. To introduce some of them,
we need further definitions.

Player i from N is a null player in game v if
v(SU{i}) = v(S) for every coalition S that does not con-
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tain player i; that is, participation of a null player in
a coalition does not contribute anything to the coalition
in question.

Player i from N is a dummiy player in game v ifv(SU
{ity = v(S) +v({i}) for every coalition S that does not
contain player i; that is, a dummy player contributes to
every coalition the same amount, his or her value of the
characteristic function.

Players i and j from N are interchangeable in
game v if v(SU{i}) = v(SU {j}) for every coalition S
that contains neither player i nor player j. In other
words, two players are interchangeable if they can re-
place each other in every coalition that contain one of
them.

Property 9.2 Null player
A solution function f satisfies the null player property
if f,(v) = 0 whenever v € Gy and i is a null player in v.

Property 9.3 Dummy player

A solution function f satisfies the dummy player prop-
erty if fi(v) = v({i}) whenever v € Gy and i is a dummy
player in v.

Property 9.4 Equal treatment

A solution function f satisfies the equal treatment prop-
erty if fi(v) = fi(v) for every v € Gy and every pair of
players i, j that are interchangeable inv.

These three properties are quite reasonable and
attractive, especially from the point of fairness and im-
partiality: a player who contributes nothing should get
nothing; a player who contributes the same amount to
every coalition cannot expect to get anything else than
he or she contributed; and two players who contribute
the same to each coalition should be treated equally by
the solution function.

The next property reflects the natural requirement
that the solution function should be independent of the
players’ names. Let v be a game from Gyandm:N — N
be a permutation of N, and let the image of coalition S
under 77 be denoted by 7(S). It is obvious that, for every
v € Gy, the function wv defined on Gy by (Z)(S) =
(7 (S)) is again a game from Gy. Apparently, the game
v differs from game v only in players’ names; they are
interchanged by the permutation 7.

Property 9.5 Anonymity
A solution function f is said to be anonymous if, for

every permutation 7w of N, we have f;(7v) = frw (v) for
every game v € Gy and every playeri € V.

When a game consists of two independent games
played separately by the same players or if a game is
split into a sum of games, then it is natural to require
the following property of additivity.

Property 9.6 Additivity

A solution function f on Gy is said to be additive if
flu+v) =f(u)+f(v) for every pair of games u and v
from Gy.

The requirement of additivity differs from the previ-
ous conditions in one important aspect. It involves two
different games that may or may not be mutually depen-
dent. In contrast, the dummy player and equal treatment
properties involve only one game, and the anonymity
property involves only those games which are com-
pletely determined by a single game.

Remark 9.1

The terminology introduced in the literature for various
properties of players and solution functions is not com-
pletely standardized. For example, some authors use the
term dummy player and symmetric players (or substi-
tutes), for what we call null player and interchangeable
players, respectively. Moreover, the term symrmelry is
sometimes used for our equal treatment and sometimes
for our anonymity.

One of the most studied and most influential single-
valued solution concept for coalitional games with
transferable utility is the Shapley solution function
or briefly the Shapley value, proposed by Shapley in
1953 [9.8]. The simplest way of introducing the Shap-
ley value is to define it explicitly by the following
well-known formula for calculation of its components.

Definition 9.1

The Shapley value on a subset A of Gy is a solution
function ¢ on A whose components ¢;(v), ¢2 67 A
@, (v) at game v € A are defined by

— D —s)!
=Y CER=D s s ).
S.ies ’

(9.2)
where the sum is meant over all coalitions S contain-
ing player i, and s generically stands for the number of
players in coalition S.
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9.1 Coalitional Games with Transferable Utility

To clarify the basic idea behind this definition, we
first recall the notion of players” marginal contributions
to coalitions.

pefinition 9.2

For each player i and each coalition S, a marginal con-
tribution of player i to coalition S in game v from Gy is
the number 717 (S) defined by

(S)y—v(S\{i}) if ieS

5= |
’}11(5)_1 VSUL) —v(S) if igS

Now imagine a procedure for dividing the total payoff
v(N) among the members of N in which the players en-
ter a room in some prescribed order and each player
receives his or her marginal contribution as payoff to
the coalition of players already being in the room. Sup-
pose that the prescribed order is (7 (1), 7(2), ..., w(n))
where 7: N — N is a fixed permutation of N. Then the
procedure under consideration determines the payoffs
to individual players as follows: before the first player
7(1) entered the room, there was the empty coalition
waiting in the room. After player 7 (1) enters, the coali-
tion in the room becomes {7 (1)} and the player receives
v({r(1)}) —v(9). Similarly, before the second player
7(2) entered, there was coalition {7 (1)} waiting in the
room. After player 7 (2) enters, coalition {7 (1), 7(2)}
is formed in the room and player 7(2) receives
v({mr (1), w(2)}) —v({zr (1)}). This continues till the last
player 7 (n) enters and receives v(N) — v(N \ {m (11)}).

Let S7 denote the coalition of players preceding
player 7 in the order given by (x(1),7(2),...,7(n));
that is, ST = {w (1), w(2),...,7w(j— 1)} where j is the
uniquely determined member of N such that i = 7(j).
Because there are n! possible orders, the arithmeti-
cal average of the marginal contributions of player i
taken over all possible orderings is equal to the num-
ber (1/n!) 3" m!(S¥) where the sum is understood over
all permutations 7w of N. This number is exactly the i-th
component of the Shapley value. Therefore, in addition
to the equality (9.2) we also have the equality

— 1 v ¥
@i(v) = ~ Z,,:mi (S7) (9.3)

for computing the components of the Shapley value.

In addition to satisfying the condition of efficiency,
the Shapley value has a number of other useful prop-
erties. In particular, it satisfies all properties 9.2-9.6.
Remarkably, no other solution function on Gy satisfies

the properties of null player, equal treatment, and addi-
tivity at the same time.

Theorem 9.1 Shapley

For each N, there exists a unique solution function on
Gy satisfying the properties of efficiency, null player,
equal treatment, and additivity; this solution function is

the Shapley value introduced by Definition 9.1.

The standard proof of this basic result follows from
the following facts:

® The collection {ur: T # @, T C N} of unanimity
games defined by

f1 ifTcs

ur(S) = | 0 otherwise,

(9.4)
form a base of the linear space Gy.

® The null player and equal treatment properties guar-
antee that ¢ is determined uniquely on multiples of
unanimity games.

© The property of additivity (combined with the fact
that the unanimity games form a basis) makes it
possible to extend ¢ in a unique way to the whole
space Gy.

In addition to the original axiomatization by Shap-
ley, there exist several equally beautiful alternative
axiomatizations of the Shapley value that do not use the
property of additivity [9.9, 10].

9.1.3 Probabilistic Values

Let us fix some player i and, for every coalition S that
does not contain player i, denote by «;(S) the num-
ber s!(n —s—1)!/nl. The family {;(S) : S TN\ {i}} is
a probability distribution over the set of coalitions not
containing player i. Because the i-th component of the
Shapley value can be computed by

e = Y aS)MESU{) —v(S)].

SCTN\{i}

we see that the i-th component of the Shapley value
is the expected marginal contribution of player i with
respect to the probability measure {;(S): S C N\ {i}}
and that the Shapley value belongs to the following
class of solution functions:

Definition 9.3
A solution function f on a subset A of Gy is called
probabilistic on A if, for each player i, there ex-
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ists a probability distribution {p;(S): SCTN\{i}} on
the collection of coalitions not containing i such
that

f0 = pSPES UL —v(S)] (9.5)

ST\ 1

for every v € A.

The family of probabilistic solution functions embraces
an enormous number of functions [9.11]. The efficient
probabilistic solution functions are often called quasi-
values, and the anonymous probabilistic solution func-
tions are called semivalues. Since the Shapley value
is anonymous and efficient on Gy, we know that it is
both a quasivalue and a semivalue on Gy. Moreover, the
Shapley value is the only probabilistic solution function
with these properties.

Theorem 9.2 Weber

If N has at least three elements, then the Shapley value
is the unique probabilistic solution function on Gy, that
is, anonymous and efficient.

Another widely known probabilistic solution func-
tion is the function proposed originally only for voting
games by Banzhaf [9.12].

Definition 9.4
The Banzhaf value on Gy is a solution function ¥ on
Gy whose components at game v are defined by

=y

STV}

MSUL —v(S)].  (9.8)

2)1——1

Again, by simple computation, we can verify that the
Banzhaf solution is a probabilistic solution function.
Consequently, the i-th component of the Banzhaf so-
lution is the expected marginal contribution of player i
with respect to the probability measure {Bi(S): SSN\
{i}}, where B;(S) = 1/2"~" for each subset S of N\ {i}.
From the probabilistic point of view, the Banzhaf so-
lution is based on the assumption that each player i is
equally likely to join any subcoalition of N'\ {i}. On the
other hand, the Shapley value is based on the assump-
tion that the coalition the player i enters is equally likely
to be of any size 5,0 <s <n-— 1, and that all coalitions
of this size are equally likely.

9.2 Coalitional Games with Fuzzy Coalitions

Since the publication of Aubin’s seminal paper [9.3],
cooperative scenarios allowing for players’ fractional
membership degrees in coalitions have been studied. In
such situations, the subsets of N no longer model ev-
ery possible coalition. Instead, a notion of coalitions has
to be introduced that makes it possible to represent the
partial membership degrees. It has become customary
to assume that a membership degree of player i € N is
determined by a number ; in the unit interval I = [0, 11,
and to call the resulting vector a = (ai, ... ,a,) €1"
a fuzzy coalition. (The choice of I" is not the only pos-
sible choice, see [9.13] or the discussion in [9.14})
The n-dimensional cube " is thus identified with the
set of all fuzzy coalitions. Every subset A of N, that
is, every classical coalition, can be viewed as a vector
14 € {0, 1}" with coordinates

1 itieA,

nz‘ i =
(1) 0 otherwise.

These special fuzzy coalitions are also called crisp
coalitions. When A = {i} is a singleton, we write
simply 1; in place of Iy;. Hence, we may think

of the set of all fuzzy coalitions [" as the con-
vex closure of the set {0, 1}" of all crisp coalitions;
see [9.14] for further explanation of this convexification
process.

Several definitions of fuzzy games appear in the lit-
erature [9.3, 15]. We adopt the one used by Azrieli and
Lehrer 19.13]. However, note that the authors of [9.13]
use a slightly more general definition, since they con-
sider a fuzzy coalition a to be any nonnegative real
vector such that a < ¢, where g € R" is a given non-
negative vector.

Definition 9.5

An n-player game (with fuzzy coalitions and transfer-
able utility) is a bounded function v: I" — R satisfying
v(lg)=0.

If we want to emphasize the dependence of Defini-
tion 9.5 on the number n of players, then we write am,v)
in place of v. Further, by v we denote the restriction of
v to all crisp coalitions

pA)=v(ly), ACN. (9.7)
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9.2 Coalitional Games with Fuzzy Coalitions

Hence, every game with fuzzy coalitions v induces
a classical coalition game v with transferable utility.
Most solution concepts of the cooperative game the-
ory have been generalized to games with fuzzy coali-
tions. A payoff vector is any vector x with n real coordi-
nates, x = (x,...,%,) € R". In-a particular game with
fuzzy coalitions (I",v), each player i € N obtains the
amount of utility x; as aresult of his cooperative activity.
Consequently, a fuzzy coalition a € I gains the amount

n
(a,x) = Z aix; .
i=1

which is just the weighted average of the players’ pay-
offs x with respect to their participation levels in the
fuzzy coalition a. By a feasible payoff in game (I, v),
we understand a payoff vector x with {1y, x) < v(ly).

The following general definition captures most so-
lution concepts for games with fuzzy coalitions.

Definition 9.6

Let I'y be a class of all games with fuzzy coalitions
(I",v) and let Ay be its nonempty subclass. A solution
on Ay is a function o that associates with each game
(I'",v) in Ay a subset o (1", v) of the set

{x e R"|(1y, x) <v(y)}

of all feasible payoffs in game (1", v).

The choice of ¢ is governed by all thinkable rules
of economic rationality. Every solution ¢ is thus de-
termined by a system of restrictions on the set of all
feasible payoff vectors in the game. For example, we
may formulate a set of axioms for ¢ to satisfy or single
out inequalities making the payoffs in o (I", v) stable, in
some sense.

9,2,1 Multivalued Solutions

Core
The core is a solution concept ¢ defined on the whole
class of games with fuzzy coalitions Iy. We present the
definition that appeared in {9.3].

Definition 9.7
Let N = {l,...,n} be the set of all players and v € I'y.
The core of v is a set
C(v) = {x e R"|{Iy,x) = v(1y), {a,x) > v(a).
forevery a € I'}.
(9.8)

In words, the core of v is the set of all payoff vec-
tors x such that no coalition a € [" is better off when
accepting any other payoff vector y ¢ C(v). This is
a consequence of the two conditions in (9.8): Pareto ef-
ficiency (1y,x) = v(1y) requires that the profit of the
grand coalition is distributed among all the players in N
and coalitional rationality (a,x) > v(a) means that no
coalition a € [" accepts less than is its profit v(a).

Observe that the core C(v) of a game with fuzzy
coalitions v is an intersection of uncountably many
halfspaces (a,x) > v(a) with the affine hyperplane
(Iy.x) = v(ly). This implies that the core is a possi-
bly empty compact convex subset of R”, since C(v) is
included in the core (9.1) of a classical coalition game v
given by (9.7). In this way, we may think of the Aubin’s
core C(v) as a refinement of the classical core (9.1).

A payoff x in the core C(v) must meet uncountably
many restrictions represented by all coalitions [”. This
raises several questions:

I. When is C(v) nonempty/empty?

2. Whenis C(v) reducible to the intersection of finitely
many sets only?

3. For every a € [", is there a core element x € C{(v)
giving coalition a exactly its worth v(a)?

4. Is there an allocation rule for assigning payoffs in
C(v) to fuzzy coalitions?

Azrieli and Lehrer formulated a necessary and a suf-
ficient condition for the core nonemptiness [9.13], thus
generalizing the well-known Bondareva—Shapley the-
orem for classical coalition games. We will need an
additional notion in order to state their result. The
strong superadditive cover of a game v € [y is a game
¥ € I'y such that, for every a € I",

£
v(a) = sup Zkkv(ak) LeN,d<a, 1;>0,
k=1

4
Z)&kak:a, i=1,...,¢

k=1

The nonemptiness of C(v) depends on value of ¥ at
one point only.

Theorem 9.3 Azrieli and Lehrer [9.13]
Let v € I'y. The core C(v) is nonempty if and only if
v(ly) = P(Ly).

The above theorem answers Question 1. Neverthe-
less, it may be difficult to check the condition v(1y) =

151

6 | v ued

Td



Part A ‘ Foundations

5(1y). Can we simplify this task for some classes of
games? In particular, can we show that the shape of the
core is simpler on some class of games? This leads nat-
urally to Question 2. Branzei et al. [9.16] showed that
the class of games for which this holds true is the class
of convex games. We say that a game v € [y is convex,
whenever the inequality

y(a+c)—via) <v(b+c)—v(b) {9.9)

is satisfied for every a, b, c € I" such that b+c € [" and
a < b. A word of caution is in order here: in general,
as shown in [9.13], the convexity of the game v € I'y
does not imply and is not implied by the convexity of v
as an n-place real function. The game-theoretic convex-
ity captures the economic principle of nondecreasing
marginal utility. Interestingly, this property makes it
possible to simplify the structure of C(v).

Theorem 9.4 Branzei et al. [9.12]

Let ve Iy be a convex game. Then C(v) # @ and,
moreover, C(v) coincides with the core C(¥) of the clas-
sical coalition game v.

The previous theorem, which solves Question 2, pro-
vides in fact the complete characterization of core on
the class of convex games with fuzzy coalitions. Indeed,
since the game v is convex, we can use the result of
Shapley [9.7] to describe the shape of C(v) = C V).
The point 3 motivates the following definition. A
game v € [y is said to be exact whenever for every
a € I', there exists x € C(v) such that (a, x) = v(a). The
class of exact games can be explicitly described [9.13].

Theorem 9.5
Let v € I'y. Then the following properties are equiva-
lent:

i) visexact;
i) v(a) = min{{a,x)|x € C()};
iii) v is simultaneously
a) a concave, positively homogeneous function on
I, and
b) v(ha + (1=21)1y) = Av(a) + (1 = A)v(Ly), for
everya € [" andevery 0 <A < 1.

The second equivalent property enables us to generate
many examples of exact games — it is enough to take the
minimum of a family of linear functions, each of which
coincides at point 1y.

Question 4 amounts to asking for the existence of
allocation rules in the sense of Lehrer [9.17] or dy-
namic procedures for approximating the core elements
by Wi [9.18]. A bargaining procedure for recovering the
elements of the Aubin’s core C(v) is discussed in [9.19],
where the authors present the so-called Cimmino-style
bargaining scheme. For a game v € [y and some initial
payoff xX° € R”, the goal is to recover a sequence of pay-
offs converging to a core element, provided that C(v) #
(. We consider a probability measure that captures the
bargaining power of coalitions a € I": a coalitional as-
sessment is any complete probability measure v on /"
In what follows, we will require that v is such that, for
every Lebesgue measurable set A C I,

v(A) >0, wheneverAisopenorly € A. (9.10)

Let x € R” be an arbitrary payoff and a € I". We denote

yeR"{a,y) = v(a)}
yeR"[{Iy,y) = v(ln)}

C(I(V) = E . e 1” \ {HN} ’
{ a=1y.

What happens when payoff x is accepted by a, that
is, x € C,(v)? Then coalition a has no incentive to bar-
gain for another payoff. On the contrary, if x ¢ Cy(v),
then a may seek the payoff P.x € C,(v) such that Pox
is the closest to x in some sense. Specifically, we will
assume that P,x minimizes the Euclidean distance of x
from set C,(v). This yields the formula

P.x
= arg minyec, (v 1y — |

maxi0, v(a) — (a,x)}

ael"\{lg, 1y},

llall*
= 1y — (Ly,
X + Y__(__]Y_)__L_N__EZHN a = RN s
n
x a=1ly,
where || - || is the Euclidean norm. After all coalitions

a € I" have raised their requests on the new payoff P,x,
we will average their demands with respect to the coali-
tional assessment v in order to obtain a new proposal
payoff vector Px. Hence, Px is computed as

Px = / P,xdv(a).

[ll

The integral on the right-hand side is well defined,
whenever v is Lebesgue measurable. The amalgamated
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projection operator P is the main tool in the Cimmino-
style bargaining procedure: an initial payoff x° is arbi-
trary, and we put xX* = Px¥~! foreach k = 1,2, ...

Theorem 9.6 )
Let v € [y be a continuous game with fuzzy coalitions
and let v be a coalitional assessment satisfying (9.10):

1. If the sequence (x*)ien generated by the Cimmino
procedure is bounded and

lim | = Pox*|| dv(a) =0, (9.11)

k—r00
[O‘I]"

then C(v) # @ and lim x* € C(v).
k—>00

(S5

If the sequence (x*)zepy is unbounded or (9.11) does
not hold, then C(v) = .

The interested reader is invited to consult [9.19] for fur-
ther details and numerical experiments.

9.2,2 Single-Valued Solutions

Shapley value
Aubin defined Shapley value on spaces of games
with fuzzy coalitions possessing nice analytical prop-
erties [9.3, 14, Chapter 13.4]. Specificically, let a func-
tion v:R" — R be positively homogeneous and Lip-
schitz in the neighborhood of 1. Such functions are
termed generalized sharing games with side payments
by Aubin [9.14, Chap. 13.4]. The restriction of v onto
the cube [" is clearly a game with fuzzy coalitions and
therefore we would not make any distinction between v
and its restriction to I". In addition, assume that func-
tion v is continuously differentiable at 1y and denote by
Gy the class of all such games with fuzzy coalitions.
Hence, we may put

o) =Ve(ly). veg,. (9.12)

Each coordinate o;(v) of the gradient vector o(v) cap-
tures the marginal contribution of player i € N to the
grand coalition 1y. As pointed out by Aubin, the gradi-
ent measures the roles of the players as pivots in game v.
Moreover, the operator o given by (9.12) can be con-
sidered as a generalized Shapley value on the class of
games 61{/ (cf. Theorem 9.1): Aubin proved [9.14, Chap-
ter 13.4] that the operator defined by (9.12) satisfies

(BN’ O—("’)) = V(HN) s

for every game v € g,{,, and
0i(7rv) = o (v)

for every player i € N and every permutation 7 of N.
Moreover, ¢ fulfills a certain variant of the Dummy
Property.

When defining a value on games with fuzzy coali-
tions, many other authors [9.15,20] proceed in the
following way: a classical cooperative game is extended
from the set of all crisp coalitions to the set of all fuzzy
coalitions. The main issue is to decide on the nature of
this extension procedure and to check that the extended
game with fuzzy coalitions inherits all or at least some
properties of the function that is extended (such as su-
peradditivity or convexity). Clearly, there are as many
choices for the extension as there are possible interpo-
lations of a real function on {0, 1}” to the cube [0, 17"

Tsurumi et al. [9.20] used the Choquet integral as
an extension. Specifically, for every a e I", let V, =
{aila; > 0,i € N} and let n, = |V,|. Without loss of gen-
erality, we may assume that the elements of V, are
ordered and write them as by <--- < b,,. Further, put
laly = {i € N|a; >y}, for each a € I" and for each ye
[0, 1].

Definition 9.8
A game with fuzzy coalitions (I”,v) is a game with
Choquet integral form whenever

Ny

v(a) = Z‘_’([a]b,») (bi—=bi—), ael",

i==1

where bo = 0. Let I'$ be the class of all games with
Choquet integral form.

In the above definition the function v is the so-called
Choquet integral [9.21] of a with respect to the restric-
tion v of v to all crisp coalitions. It was shown that
every game v € I’NC is monotone whenever v is mono-
tone [9.20, Lemma 2] and that v is a continuous function
on [" [9.20, Theorem 2]. The authors define a mapping

08— ([0, co)h!™"

which is called a Shapley function, by the following as-
signment

g

0@ =Y @) {aly,) (b= biy) .

=l

ieN. vel$ ael",

15
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where
S(®)(B)
Al — DBl —1AD!
_ 5 QA= DA ) .
ACB ‘ \
€A
BCN.

whenever i € B, and f7(¥)(B) =0, otherwise. Observe
that f(v)(a) is the Choquet integral of a with respect
to f,-O(v) and that f,.o(\"f)(B) is the Shapley value of v
with the grand coalition N replaced with the coalition B.
Before we show that the Shapley function has some ex-
pected properties, we prepare the following definitions.
Let a € I" and i,j € N. For each bel" with b < q, de-
fine a vector bf; whose coordinates are

b,‘/\(lj k=1.
(bg.)k_—_ b Aa k=j, keN.

by otherwise ,

For an arbitrary b € I", put

b k=i
(bjlal), = (b1 k=], keN .

b, otherwise,

Clearly, we have both b < a and bjla] < a. The follow-
ing theorem is proved in [9.20].

Theorem 9.7
The operator f: [} ¢ — ([0, o0)")!" has the following
properties:

1. Ifvel{anda €I, then

S fi)@) = v(@) and  f(v)(a)=0.

ieN

for every j € N such that @; = 0.
Ifve FNC, a eI", and b € I" such that v(bAc) =
v(b), for every ¢ € 1" with ¢ < a, then

o

(@) =fi(»(b) forevery ieN.

3. Ifvel¥,a el aj is such that v(aj Ac) = v(b),

for every ¢ € I' withc = a, and v(b) = v(bfj) for ev-
ery b e I' with b < ajj, then

f@) =F0)(@) -

4, Ifv,we Flg, thenv+w € F,\f, and
(v +w)(a) =fiv)a) +filw)(a) .

for every i € N and every d € I".

The previous theorem thus says that the Shapley func-
tion f on the class of games I ]\? has the properties
analogous to the Shapley value: efficiency, the carrier
property, symmetry, and additivity.

Butnariu and Kroupa [9.15] studied a value operator
on the class of fuzzy games (I".V) satisfying

v(a) = Z y(v(d), ael".
1€f0.1]
where ¥ : [0, 1] — R fulfills
(y(f) = 0iff 1 =0) and Y (1) = |
and

a ={ieNla=1}.

The class of such fuzzy games is denoted by I A‘,l’ . The
so-called Shapley mapping function can be axioma-
tized on [ A‘/’ [9.15, Axioms 1-3]: it turns out that there
is only one Shapley mapping ¢ : ry — ®mH"[9.15,
Theorem 1].

Theorem 9.8
There exists a unique Shapley mapping @ : [ 1\’,[’ —
(R and it is given by the following formula:

(@) =
sy WD ) v\ i)

sePa) lar|!
ifa;=r>0,
0, otherwise,

where

Pi(a") ={RCNlieRand R & al .

The expected total allocation of player i € N is then ob-
tained as

@sz@mmm.

m
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provided that theA above Pebesgue integral exists. The
operator & = (Py.....D,) is called the cumulative
value of v. If the weight function 3 is bounded and
[ebesgue integrable, then [9.15, Theorem 2] shows that

the cumulative value is well-defined and its coordinates
are

|
() = v(1) / () dr
0

foreachi € N.

Owen’s approach to classical Shapley value [9.22]
cannot be, strictly speaking, classified as an attempt to
define a Shapley-style value on some class of games
with fuzzy coalitions, but we mention his construction
for the sake of completeness. The idea is to extend
a game v € Gy with crisp coalitions from its domain
{I4]A € N} to the whole unit cube I" by way of the
multilinear interpolation. The resulting multilinear ex-
tension v can be described explicitly as the function

v@y=) |[la]]a-a) [va),

ACN | iI€A  i¢A

a="(ay,....a,)el". (9.13)

9.3 Final Remarks

We presented results concerning basic concepts of so-
lution for coalitional games with fuzzy coalitions and
finitely many players in the case of transferable utility.
We concentrated on those solutions which preoccupy
the main part of cooperative game theory (the core and
the Shapley value). A detailed discussion or just the
comprehensive overview of the current trends in fuzzy
games is beyond the reach of this chapter. Neverthe-
less, in this section we mention current developments
and briefly discuss other solution concepts. The reader
should always consult the relevant reference for the
specification of the concepts used by the cited authors;
for example, we can find at least two definitions of
a convex fuzzy game:

1. Azrieli and Lehrer [9.13] and [9.16] use the defini-
tion (9.9) employed herein;

Tsurumi et al. [9.20] call a game with fuzzy coali-
tions v convex whenever

2.

viav by +v(aAb) = via)+v(b)
holds true for every a. b e I".

Function v is linear in each of its variables separately
and v(A) = v(l,), for each A € N. The usual formula
(9.13) for the Shapley value ¢(v) of v now takes the
following diagonal form [9.22]

v

|
bi(v) = / —aé(t.....[) dr . (9.14)
a,\f,‘
0

Hence, ¢;(v) is completely determined by the behavior
of the function ¥ in the neighborhood of the diagonal
in /. The formula (9.14) is important from the com-
putational point of view: its use in connection with
statistical techniques can enhance computations with
the Shapley value — see [9.23, Chap. X11.4] for further
details.

Since the space of games with crisp coalitions is fi-
nite dimensional unlike the space of games with fuzzy
coalitions, there is no general approach to the Shap-
ley value of fuzzy games. Even a direct comparison of
the cumulative value introduced above with the Shap-
ley function on the space of games I\ of Tsurumi
et al. [9.20] is hardly possible since the domains of
Shapley operators are essentially different. The selec-
tion of the right space of games and an appropriate
solution thus vary from one application to another.

Shellshear [9.24] employs the concavification of
the fuzzy game — the strong supperadditive cover — in
order to show [9.24, Theorem 4.4] that the strong sup-
peradditive cover has a stable core if and only if the
original game has a stable core. Further, he investigates
important properties of the concavification and its su-
perdifferential; new necessary and sufficient conditions
for core stability are given in [9.23, Chap. XIL.4].

Yang et al. [9.25] introduced the concept of bargain-
ing sets for games with fuzzy coalitions; they prove
that the bargaining set coincides with the Aubin core
whenever a game is continuous and convex. Lin and
Liu [9.26] extended the results from [9.25] in order
to overcome some weakness of the previously used
fuzzy bargaining sets. The concept of the classical Mas-
Colells bargaining set was also generalized and the
authors proved existence theorems for such fuzzy bar-
gaining sets. Moreover, both Aumann and Maschler and
Mas-Colell fuzzy bargaining sets of a continuous con-
vex cooperative fuzzy game coincide with its Aubin
core.
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A fuzzy game is represented as a convex program
in [9.27]. It is shown that the optimum of the program
determines the optimal coalitions as well as the optimal
rewards for the players. Further, this framework seems
to unify a number of existing representations of solu-
tions: the core, the least core, and the nucleolus.

Wu [9.28] investigates various types of cores based
on the dominance among payoff vectors and the con-
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81.5 Conclusions

The analysis of the experimental results of the
bio-inspired methods considered in this paper, the
FPSO+FGA. {FPSO: fuzzy particle swarm optimiza-
tion; FGA: fuzzy generic algorithm), lead us to the
conclusion that for the optimization of these bench-
mark mathematical functions execution on the GPU is
a good alternative, because it is easier and very fast to
optimize and achieve good results than to try it with
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