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1 Introduction

This handbook series is devoted to many-valued logics and the associated mathe-
matical structures. States of MV-algebras constitute the object of study of a rapidly
growing discipline, which involves and takes inspiration from several areas of math-
ematics: Łukasiewicz logic, ordered algebraic structures, artificial intelligence, game
theory and others.

States are functions from an MV-algebra into the real unit interval satisfying a nor-
malization condition and a variant of the classical law of finite additivity of probability
measures, making clear the intimate relation with finitely additive probability measures.
In our exposition we underline several other interpretations of states. Namely the inte-
gral representation of states by regular Borel probability measures and the bookmaking
theorem for infinite-valued events. We also discuss the relation of states to real ho-
momorphisms of unital lattice ordered Abelian groups, finitely presented MV-algebras,
piecewise linear geometry, and conditional probability in non-classical setting.

The chapter is organized as follows. In Section 2 we shall recall the basic notions
and results used in the rest of this chapter. Namely we summarize the main mathemati-
cal tools involving MV-algebras, Łukasiewicz logic, probability measures and compact
convex sets. In Section 3 we will introduce states of MV-algebras and discuss their ele-
mentary properties (Section 3.1). We will include basic examples of states (Section 3.2)
and characterize completely the states of finitely presented MV-algebras (Section 3.3).
In Section 3.4 the connection of states to lattice ordered groups is made clear.

One of the main results of this chapter, the integral representation theorem, is proved
in Section 4. The set of all states (the state space) forms a Bauer simplex (Section 4.1).
Section 4.2 is about the existence of invariant faithful states.

De Finetti’s coherence criterion for many-valued events and states is discussed in
Section 5: in Section 5.1 we concentrate on coherent books on free MV-algebras and
in Section 5.2 we explore the computational complexity for the problem of deciding if
a book on formulas of Łukasiewicz logic is coherent.

Section 6 introduces an algebraic setting for states of MV-algebras, the variety of
SMV-algebras. In the ensuing subsections we study the algebraic properties of this
variety and we present a way to characterize de Finetti’s coherence criterion on many-
valued events in a purely algebraic way. Conditional states and an extended coherence
criterion for conditional many-valued events are the content of Section 7.



1184 Tommaso Flaminio and Tomáš Kroupa

No survey chapter can deliver a fully accurate portrait of a given subject. Section 8
contains the brief discussion of omitted results and topics, accompanied with the detailed
list of further reading about states and numerous references to the current literature.

2 Basic notions

We summarize basic notions and results which are used in this chapter. The scope
of involved mathematical apparatus is somewhat extensive, ranging from algebraic se-
mantics of Łukasiewicz logic (Section 2.1-2.2) over measure theory (Section 2.3) to
infinite-dimensional convex sets (Section 2.4). Therefore we confine to discussing only
the most essential concepts of those disciplines. The reader is invited to consult the cited
references for details, if needed.

2.1 MV-algebras

Our notation and definitions are according to the Chapter VI of this Handbook. The
standard reference about MV-algebras is [15].

DEFINITION 2.1.1. An MV-algebra is a structure A = 〈A,⊕,¬, 0〉, where ⊕ is a bi-
nary operation, ¬ is a unary operation and 0 is a constant, such that the following
conditions are satisfied for every a, b ∈ A:

(i) 〈A,⊕, 0〉 is an Abelian monoid

(ii) ¬(¬a) = a

(iii) ¬0⊕ a = ¬0

(iv) ¬(¬a⊕ b)⊕ b = ¬(¬b⊕ a)⊕ a.

The class of MV-algebras forms a variety that we shall denote by MV. We introduce
the new constant 1 and three additional operations �, 	 and→ as follows:

1 = ¬0 a� b = ¬(¬a⊕ ¬b) a	 b = a� ¬b a→ b = ¬a⊕ b.

The Chang distance is the binary operation

d(a, b) = (a	 b)⊕ (b	 a). (1)

In the rest of this chapter we shall always assume that any MV-algebra has at least two
elements and thus 0 6= 1.

For every MV-algebra A, the binary relation ≤ on A given by

a ≤ b whenever a→ b = 1

is a partial order. As a matter of fact, ≤ is a lattice order induced by the join ∨ and
the meet ∧ defined by

a ∨ b = ¬(¬a⊕ b)⊕ b and a ∧ b = ¬(¬a ∨ ¬b),

respectively. The lattice reduct of A then becomes a distributive lattice with the top
element 1 and the bottom element 0. If the order ≤ of A is total, then A is said to be
an MV-chain.
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EXAMPLE 2.1.2. The basic example of an MV-algebra is the standard MV-algebra
[0, 1]Ł, which is just the real unit interval [0, 1] equipped with the operations

a⊕ b = min(1, a+ b) a� b = max(0, a+ b− 1) ¬a = 1− a. (2)

The partial order of the standard MV-algebra coincides with the usual order of real
numbers from [0, 1]. It is worth mentioning that the standard MV-algebra [0, 1]Ł is
generic for the variety MV, that is, MV = V([0, 1]Ł).

EXAMPLE 2.1.3. Every Boolean algebra is an MV-algebra with respect to the opera-
tions ⊕ = ∨, � = ∧, and the complement ¬.

EXAMPLE 2.1.4. For every natural number d, the set Łd = {0, 1/d, . . . , (d− 1)/d, 1}
endowed with the restriction of the operations of [0, 1]Ł is a finite MV-chain.

MV-algebras generalize Boolean algebras in the following sense: an MV-algebra A
is a Boolean algebra if and only if a⊕ a = a for every a ∈ A. Hence MV-algebras are
particular non-idempotent generalizations of Boolean algebras. For any MV-algebra A,
we denote

B(A) = {a ∈ A | a⊕ a = a}

and call B(A) the Boolean center (or the Boolean skeleton) of A. It follows that
the structure 〈B(A),∨,∧,¬, 0, 1〉 is a Boolean algebra.

Let A = 〈A,⊕A,¬A, 0A〉 and B = 〈B,⊕B ,¬B , 0B〉 be MV-algebras. A homo-
morphism from A to B is a mapping h : A→ B such that, for every a1, a2 ∈ A,

(i) h(a1 ⊕A a2) = h(a1)⊕B h(a2)

(ii) h(¬Aa1) = ¬Bh(a1)

(iii) h(0A) = 0B .

Let us define

H(A,B) = {h | h is a homomorphism from A to B}.

In case that B = [0, 1]Ł, we write simply H(A) in place of H(A, [0, 1]Ł). An isomor-
phism h ∈ H(A,B) is a bijective homomorphism.

Let X be a nonempty set. The set [0, 1]X of all functions X → [0, 1] becomes
an MV-algebra if the operations ⊕, ¬, and the element 0 as in (2) are defined pointwise.
The corresponding lattice operations ∨ and ∧ are then the pointwise maximum and
the pointwise minimum of two functions X → [0, 1], respectively.

DEFINITION 2.1.5. Let X be a nonempty set. A clan over X is an MV-algebra AX =
〈AX ,⊕,¬, 0〉, where AX ⊆ [0, 1]X is a nonempty set of functions X → [0, 1], endowed
with the pointwise defined operations of the standard MV-algebra.

We say that a clan AX is separating whenever the following condition is satisfied: if
x, y ∈ X with x 6= y, then there exists a ∈ AX such that a(x) 6= a(y).
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It turns out that the clans of [0, 1]-valued continuous functions over some com-
pact Hausdorff space are the prototypes of an important class of MV-algebras. We will
introduce the necessary algebraic machinery in order to formulate the corresponding
representation theorem. An ideal in an MV-algebra A is a subset I ⊆ A such that

(i) 0 ∈ I .

(ii) If a, b ∈ I , then a⊕ b ∈ I .

(iii) If b ∈ I and b ≥ a ∈ A, then a ∈ I .

An ideal I is proper if I 6= A. We say that a proper ideal M is maximal if M is not
strictly included in any proper ideal of A. If A is an MV-algebra and S is a subset of A,
then the ideal generated by S coincides with

(S ] = {a ∈ A | a ≤ i1 ⊕ · · · ⊕ in for some n ∈ N and i1, . . . , in ∈ S}.

An ideal I is said to be finitely generated if there exists a finite subset S of A such
that I = (S ]. A filter in an MV-algebra A is a subset F ⊆ A closed with respect to �
and such that 1 ∈ F , and if b ∈ F and b ≤ a ∈ A, then a ∈ F . Ideals and filters are
dual objects in the setting of MV-algebras. Indeed, there is a one-to-one correspondence
between ideals and filters: if I is an ideal of an MV-algebra A, the set

FI = {a ∈ A | ¬a ∈ I}

is a filter in A. Conversely, for every filter F ,

IF = {b ∈ A | ¬b ∈ F}

is an ideal in A. The notions of proper and maximal filter, respectively, are defined as
usual.

Let Max(A) be the nonempty set of all maximal ideals of A, which we call the
maximal ideal space of A. Given any ideal I of A, put

OI = {M ∈ Max(A) | I 6⊆M}.

THEOREM 2.1.6 ([36, Theorem 3.6.10]). For every MV-algebra A, its maximal ideal
space Max(A) is a compact Hausdorff space whose family of open sets coincides with
{OI | I is an ideal of A}.

Let us consider the set

Rad(A) =
⋂
{M |M ∈ Max(A)}

called the radical of A. We say that A is semisimple if Rad(A) = {0}. It can be shown
[36, Lemma 4.2.3] that semisimplicity is equivalent to non-existence of infinitesimal
elements in A, that is, for every a ∈ A and every n ∈ N, the condition

⊕n
i=1 a ≤ ¬a

implies a = 0.
The representation of semisimple MV-algebras is one of the crucial tools employed

in the study of states.
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THEOREM 2.1.7 ([36, Theorem 5.4.7]). Let A be a semisimple MV-algebra. Then A
is isomorphic to a separating clan of [0, 1]-valued continuous functions defined on the
compact Hausdorff space Max(A).

2.2 Łukasiewicz logic

In this section we provide a survey of Łukasiewicz infinite-valued propositional
logic and its associated Lindenbaum algebra. For further details see the Chapter VI and
XI of this Handbook, or consult the book [15].

We use the algebraic semantics based on MV-algebras, which enables us to use the
same notation for the logical connectives and the corresponding MV-algebraic opera-
tions in the following paragraphs. Formulas φ, ψ, . . . are constructed from propositional
variables A1, A2, . . . by applying the standard rules known in Boolean logic. The con-
nectives are negation ¬, disjunction ⊕, and conjunction �. The implication φ→ ψ can
be defined as ¬φ⊕ ψ. The set of all propositional formulas is denoted by Form.

The standard semantics for connectives of Łukasiewicz logic is defined by the cor-
responding operations of the standard MV-algebra [0, 1]Ł. A valuation is a mapping
V : Form→ [0, 1] such that, for each φ, ψ ∈ Form,

V (¬φ) = 1− V (φ)

V (φ⊕ ψ) = V (φ)⊕ V (ψ)

V (φ� ψ) = V (φ)� V (ψ).

For every two formulas φ, ψ ∈ Form, we define the relation ≡ by the following stipu-
lation: we say that φ ≡ ψ iff V (φ) = V (ψ) for every valuation V . It turns out that ≡
is an equivalence relation on Form. For every φ ∈ Form we denote [φ] the equivalence
class of φ with respect to ≡.

The Lindenbaum algebra of Łukasiewicz logic is the MV-algebra F of equivalence
classes {[φ] | φ ∈ Form} endowed with the canonical operations ¬,⊕, and �:

¬[φ] = [¬φ]

[φ]⊕ [ψ] = [φ⊕ ψ]

[φ]� [ψ] = [φ� ψ].

By Chang’s completeness theorem [36, Theorem 5.3.7], we may identify F with the free
MV-algebra over countably many generators, which is a sub-MV-algebra of [0, 1][0,1]N

.
Assume that Formn is the set of all formulas φ ∈ Form containing only the propo-

sitional variables from the list A1, . . . , An. Let Fn be the corresponding Lindenbaum
algebra, which coincides with the free n-generated MV-algebra. By McNaughton’s
theorem [1, Theorem 2.1.20], we know that Fn is isomorphic to the clan of functions
f : [0, 1]n → [0, 1] such that each f is

(i) continuous,

(ii) piecewise linear, and

(iii) each linear piece has integer coefficients only.

We call each function [0, 1]n → [0, 1] satisfying (i)–(iii) a McNaughton function.
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REMARK 2.2.1. In this context we use the term “linear” as a synonym for “affine”.
There are more non-equivalent definitions of a piecewise linear function appearing in
literature. For the purposes of this chapter, we adopt the weaker but the usual definition
used in MV-algebraic context; see [1]. A function f : [0, 1]n → [0, 1] is piecewise linear
if there exist linear functions f1, . . . , fm on [0, 1]n such that for each x ∈ [0, 1]n there is
some j ∈ {1, . . . ,m} with fj(x) = f(x). Other authors may use a stronger definition
that implies continuity; cf. [7, Definition 7.10].

An MV-algebra A is said to be finitely presented if it is isomorphic to the quotient
Fn/I for some natural number n and some finitely generated ideal I of Fn.

Łukasiewicz logic is an algebraizable logic in the sense of Blok and Pigozzi. As a
consequence, a finitely presented MV-algebra is the Lindenbaum algebra of a finitely
axiomatizable theory1 in Łukasiewicz logic and, moreover, it has a completely geometric
characterization—see [48, Theorem 6.3]. Indeed, let P ⊆ [0, 1]n be a nonempty rational
polyhedron2 and M(P ) be the MV-algebra of all the restrictions to P of n-variable
McNaughton functions in Fn.

PROPOSITION 2.2.2. Let P ⊆ [0, 1]n. Then the following are equivalent:

(i) P is a rational polyhedron.

(ii) P = f−1(1) for some McNaughton function f ∈ Fn.

The following characterizations of a finitely presented MV-algebra are used freely in this
chapter.

THEOREM 2.2.3. Let A be an MV-algebra. Then the following are equivalent:

(i) A is a finitely presented MV-algebra.

(ii) A is isomorphic to the Lindenbaum algebra of a theory with a single axiom.

(iii) A is isomorphic to M(P ), where P is a nonempty rational polyhedron in [0, 1]n,
for some n ∈ N.

2.3 Probability measures

We will need the basic notions of measure theory as appearing in [10] and [54],
for example. The definitions given below apply to the case of Boolean algebras of sets,
which is sufficient for most of our purposes.

Let X be a nonempty set. An algebra of sets A is any Boolean algebra of subsets
of X . A finitely additive probability is a function µ : A→ [0, 1] such that:

(i) If A,B ∈ A, where A ∩B = ∅, then µ(A ∪B) = µ(A) + µ(B).

(ii) µ(∅) = 0 and µ(X) = 1.

1 In Łukasiewicz logic, we can replace any finite number of axioms with a single one. It has the effect
that a finitely generated ideal I corresponds, through the algebraizability of Łukasiewicz logic, to a finitely
axiomatizable theory TI , which, in turn, corresponds to a single formula ϑ. Thus, algebraically, finitely
generated and principal ideals in MV-algebras coincide.

2 By a rational polyhedron we mean a finite point-set union of simplices with rational vertices in Rn; see
Section 2.4.
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REMARK 2.3.1. The terminology oscillates: for example, Rao and Rao [54] call the
above function µ a probability charge. Moreover, we will see that µ is at the same time
a special example of state of an MV-algebra; cf. Definition 3.0.1.

The condition (i), which is called finite additivity, must be strengthened in most
applications. To this end, we require A to be closed with respect to countable point-set
unions. A σ-algebra is an algebra of sets A such that the condition of σ-completeness
holds true:

if A1, A2, . . . ∈ A, then
∞⋃
n=1

An ∈ A.

Let A be a σ-algebra. A finitely additive probability µ : A → [0, 1] is a probability
measure if it is σ-additive, that is:

if A1, A2, . . . ∈ A with Ai ∩Aj = ∅ for i 6= j, then µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ(An).

In case that the universe X is a topological space, the most natural choice of the
σ-algebra over X is the Borel σ-algebra B(X). Namely, the family B(X) is the small-
est σ-algebra over X containing every open set in X . Let µ be a probability measure
defined on B(X). Then there is no ambiguity in referring to µ as a Borel probability
measure on X . Assume that X is a compact Hausdorff space. The support of Borel
probability measure µ on X is the closed set

⋂
{A ⊆ X | µ(A) = 1, A closed}. Let

x ∈ X . Then the Borel probability measure defined by

δx(A) =

{
1 x ∈ A
0 x /∈ A

is called the Dirac measure at x. The support of δx is the singleton {x}. We say that
a Borel probability measure µ on X is regular whenever for every Borel set A ⊆ X ,

µ(A) = sup{µ(B) | B ⊆ A,B compact}.

In general, not every Borel probability measure on a compact Hausdorff space X
is regular. On the other hand, if every open set in the compact Hausdorff space X is
an Fσ set, that is, a countable union of closed sets, then every Borel probability measure
is necessarily regular. In particular, this applies to a compact Hausdorff space X that is
metrizable.

2.4 Compact convex sets

The detailed exposition on compact convex sets in a space with weak topology is
the subject of [5] or [27]. Our goal is to introduce the notion of infinite-dimensional sim-
plex, the so-called Choquet simplex, that is a faithful generalization of an n-dimensional
simplex.

Let E be a real linear space. A convex set in E is any subset K of E that is closed
under convex combinations: if x1, . . . , xn ∈ K and αi ≥ 0 with

∑n
i=1 αi = 1, then

α1x1 + · · ·+ αnxn ∈ K. Given any set X ⊆ E, the convex hull of X is the set co(X)
of all convex combinations of elements in X .
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By an affine combination we mean a linear combination α1x1 + · · · + αnxn with
α1 + · · · + αn = 1, where αi ∈ R. A subset A of E is said to be affinely independent
if there does not exist an element a ∈ A that can be expressed as an affine combination
of elements from A \ {a}. An affine subspace of E is any subset of E that is closed
under affine combinations. An n-dimensional simplex is the convex hull of n+1 affinely
independent points in E.

Let K1 and K2 be convex sets in linear spaces E1 and E2, respectively. A mapping
f : K1 → K2 is said to be affine if f(α1x1 + · · ·+αnxn) = α1f(x1)+ · · ·+αnf(xn),
for every convex combination α1x1 + · · · + αnxn ∈ K1. If f is a bijection, then the
inverse mapping f−1 is also affine and we call f an affine isomorphism of K1 and K2.

A convex cone in E is a subset C of E such that 0 ∈ C and α1x1 + α2x2 ∈ C for
any non-negative α1, α2 ∈ R and x1, x2 ∈ C. A strict convex cone is any convex cone
C that satisfies this condition: if both x ∈ C and −x ∈ C, then x = 0. A base for
a convex cone C is any convex subset K of C such that every non-zero element y ∈ C
may be uniquely expressed as y = αx for some α ≥ 0 and some x ∈ K. The bases
of cones can be easily visualized geometrically: the following characterization is true
even for infinite-dimensional spaces.

PROPOSITION 2.4.1. Let K be a non-empty convex subset of a linear space E and
C = {αx | α ≥ 0, x ∈ K}. Then C is a convex cone in E and the following conditions
are equivalent:

(i) K is a base for C.

(ii) K is contained in an affine subspace A of E such that 0 /∈ A.

Strict convex cones determine a partial order on linear spaces: if C is a strict convex
cone in a linear space E, then the relation ≤C defined by x ≤C y iff y − x ∈ C for
any x, y ∈ E makes E into a partially ordered linear space and, moreover, we have that
C = {x ∈ E | 0 ≤C x}. A lattice cone is any strict convex cone C in E such that
the set C endowed with a partial order ≤C is a lattice. A simplex in a linear space E is
any convex subset S of E that is affinely isomorphic to a base for a lattice cone in some
linear space.

The deepest results about convex sets in infinite-dimensional spaces are attained
when we assume that the linear space E is a locally convex Hausdorff space. We say
that a subset S of E is a Choquet simplex if it is a simplex that is a compact set. Clearly,
since E = Rk is locally convex, every n-dimensional simplex is a Choquet simplex.

An extreme point of a convex set K is a point e ∈ K such that the set K \ {e}
remains convex. The set

∂(K) = {e ∈ K | e is an extreme point of K}

is called an extreme boundary of K. For any set X ⊆ E, let co(X) be the topological
closure in E of the convex hull co(X). The next theorem is the well-known characteri-
zation [29] of every compact convex set by its extreme boundary.

THEOREM 2.4.2 (Krein-Milman). If K is a compact convex subset of a locally convex
Hausdorff space E, then K = co ∂(K).
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Let K1 and K2 be two compact convex subsets of E. An affine homeomorphism h
of K1 and K2 is an affine isomorphism h : K1 → K2 that is simultaneously a homeo-
morphism.

Choquet simplices whose extreme boundaries satisfy additional topological condi-
tions are of particular interest.

DEFINITION 2.4.3. Let E be a locally convex Hausdorff space. A Choquet simplex
S ⊆ E is called a Bauer simplex if its extreme boundary ∂(S) is a closed subset of E.

Every n-dimensional simplex S is a Bauer simplex since its extreme boundary ∂S
has only finitely many extreme points. More generally, let X be a compact Hausdorff
space and letM(X) denote the convex set of all regular Borel probability measures over
X . We endow the setM(X) with the so-called weak* topology: a net (µγ) inM(X)
weak* converges to µ ∈M(X) if and only if∫

X

f dµγ →
∫
X

f dµ for every continuous function f : X → R. (3)

The properties of M(X) are collected in the next theorem for a future reference; see
[5, Corollary II.4.2] for further details.

THEOREM 2.4.4. Let X be a compact Hausdorff space.

(i) The set of all Borel probability measuresM(X) endowed with the weak* topology
is a Bauer simplex.

(ii) The extreme boundary of M(X) is ∂M(X) = {δx | x ∈ X}.

(iii) The mapping x 7→ δx is a homeomorphism of X and ∂M(X).

As we recalled in the end of Section 2.3, ifX is a compact set in a finite-dimensional
Euclidean space, then every Borel probability measure inM(X) is regular. Moreover,
the compact spaceM(X) is metrizable in its weak* topology.

3 States

DEFINITION 3.0.1. Let A be an MV-algebra. A mapping s : A→ [0, 1] is a state of A
whenever s(1) = 1 and for every a, b ∈ A the following condition is satisfied:

if a� b = 0, then s(a⊕ b) = s(a) + s(b). (4)

The condition (4) means additivity with respect to Łukasiewicz sum ⊕. Indeed, the
requirement a� b = 0 is analogous to disjointness of a pair of elements in a Boolean al-
gebra. Thus states can be thought of as generalizations of finitely additive probabilities:
every finitely additive probability on a Boolean algebra is a state as a special case of the
above definition. In particular, every Borel probability measure is a state as well.

REMARK 3.0.2. For historical reasons going back to the relation between states of
`-groups and MV-algebraic states, which in turns can be traced back to quantum me-
chanics, we always refer to states of an MV-algebra and not to states on it.
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3.1 Basic properties

We will summarize the basic properties of states with respect to the operations and
the lattice order of an MV-algebra A.

PROPOSITION 3.1.1. Let s be a state of an MV-algebra A. For every a, b ∈ A:

(i) s(0) = 0.

(ii) s(¬a) = 1− s(a).

(iii) If a ≤ b, then s(b	 a) = s(b)− s(a). (subtractivity)

(iv) s(a⊕ b) + s(a� b) = s(a) + s(b). (strong modularity)

(v) s(a ∨ b) + s(a ∧ b) = s(a) + s(b). (weak modularity)

(vi) If a ≤ b, then s(a) ≤ s(b). (monotonicity)

(vii) s(a ∨ b) ≤ s(a⊕ b) ≤ s(a) + s(b). (subadditivity)

(viii) If a ∈ Rad(A), then s(a) = 0.

Proof. (i) We have s(1) = s(1⊕ 0) = s(1) + s(0), which yields s(0) = 0. The identity
(ii) follows from s(a) + s(¬a) = s(a ⊕ ¬a) = s(1) = 1 since in every MV-algebra,
a�¬a = 0 holds true. In order to prove (iii), observe that a ≤ b implies (b	a)⊕a = b.
Since (b	 a)� a = b�¬a� a = 0, we get s(b) = s((b	 a)⊕ a) = s(b	 a) + s(a).
Property (iv): as a consequence of [36, Proposition 2.1.2(h)], the identity (a⊕b)�¬b =
(¬a⊕ ¬b)� a holds true. This, together with subtractivity, yields

s(a⊕ b)− s(b) = s((a⊕ b)	 b) = s((a⊕ b)� ¬b) = s((¬a⊕ ¬b)� a)

= s(¬(a� b)� a) = s(a	 (a� b)) = s(a)− s(a� b).

Weak modularity (v) is a consequence of (iv) and [36, Proposition 2.1.2(d)–(e)], which
says that a⊕ b = (a ∨ b)⊕ (a ∧ b) and a� b = (a ∨ b)� (a ∧ b). Thus

s(a) + s(b) = s(a⊕ b) + s(a� b)
= s((a ∨ b)⊕ (a ∧ b)) + s((a ∨ b)� (a ∧ b))
= s(a ∨ b) + s(a ∧ b).

Monotonicity (vi) is a direct consequence of subtractivity (iii). Subadditivity (vii) results
from (vi) by considering that a∨b ≤ a⊕b together with modularity (iv) and nonnegativ-
ity of state. (viii) Let a ∈ Rad(A). Reasoning by contradiction, assume that s(a) > 0.
Then [36, Lemma 3.5.2(a)] gives a � a = 0. Hence s(a ⊕ a) = 2s(a). Proceeding by
induction on the number of summands a, we can analogously derive the identity

s

(
n⊕
i=1

a

)
= ns(a), for every n ∈ N.
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But this means that there exists some n0 ∈ N for which we obtain

s

(
n0⊕
i=1

a

)
= n0s(a) > 1,

a contradiction.

COROLLARY 3.1.2. Let A be an MV-algebra. The following are equivalent for a func-
tion s : A→ [0, 1] with s(1) = 1:

(i) s is a state and

(ii) s(a⊕ b) + s(a� b) = s(a) + s(b), for every a, b ∈ A.

Proof. An easy consequence of Proposition 3.1.1(iv).

REMARK 3.1.3. Every state satisfies the two modularity laws (iv)–(v) whose combina-
tion gives s(a⊕ b)− s(a∨ b) = s(a∧ b)− s(a� b). In particular, the weak modularity
(v) expresses the fact that any state is a monotone valuation in the sense of lattice theory
[11, Chapter V]. The converse clearly fails: not every monotone valuation on the lattice
reduct of an MV-algebra A is a state of A. Indeed, consider A = [0, 1]Ł and a lattice
homomorphism h : [0, 1]→ [0, 1] such that h(a) = 1 if a = 1, and h(a) = 0 otherwise.
Then h is a monotone valuation but not a state of [0, 1]Ł.

The next assertion is an immediate consequence of the properties of the Boolean
center of any MV-algebra and the definition of state.

PROPOSITION 3.1.4. For every state s of an MV-algebra A, the restriction of s to
the Boolean center B(A) is a finitely additive probability.

The restriction of s to B(A) may carry little information about the state s. Indeed,
when A = Fn is the MV-algebra of n-variable McNaughton functions, its Boolean
center contains only two elements: the functions 0 and 1.

There is no stateless MV-algebra.

PROPOSITION 3.1.5. Every MV-algebra A carries at least one state s.

Proof. By [36, Proposition 3.4.5], the collection Max(A) of all maximal ideals of A
is nonempty. Let M ∈ Max(A). Then the quotient MV-algebra A/M is simple [36,
Proposition 4.2.10] and thus isomorphic to a subalgebra of the standard MV-algebra
[0, 1]Ł by [36, Proposition 5.4.1]. Hence we can compose the natural epimorphism
e : A → A/M with the embedding ι : A/M → [0, 1] and put s = ι ◦ e. Since both e
and ι are homomorphisms, their composition s is a homomorphism of A into [0, 1]Ł and
thus a state.

REMARK 3.1.6. Notice that the proof of Proposition 3.1.5 uses the fact that homomor-
phisms into the standard MV-algebra are states. This simple observation will play a key
role in the characterization of the state space; cf. Example 3.2.2 and Section 4.1.

The set of all states on an MV-algebra, which can be endowed with a topology, is
called the state space. We will establish its basic geometric properties and show that
semisimple MV-algebras have the largest possible state spaces among all MV-algebras.
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PROPOSITION 3.1.7. Let S(A) be the family of all states of an MV-algebra A. Then:

(i) S(A) is a nonempty compact convex subset of [0, 1]A.

(ii) The state spaces S(A) and S(A/Rad(A)) are affinely homeomorphic.

Proof. (i) That S(A) 6= ∅ is a consequence of Proposition 3.1.5. By Tychonoff’s the-
orem (see [6, Theorem 2.61], for example), the product space [0, 1]A is a compact sub-
space of the locally convex space RA. It can routinely be verified that S(A) ⊆ [0, 1]A

is closed and thus compact. To check that a convex combination of two states is a state
is straightforward as well.

(ii) The assertion is trivial if A is semisimple. Assume that A is not semisimple so
that Rad(A) 6= {0}. Let s ∈ S(A). First, we will show that s(a) = s(b), whenever
a, b ∈ A are such that a/Rad(A) = b/Rad(A). The last condition implies d(a, b) ∈
Rad(A), where d is the Chang distance given by (1), and Proposition 3.1.1(viii) yields
s(d(a, b)) = 0. Strong modularity together with monotonicity give

s(a	 b) + s(b	 a) = s((a	 b)� (b	 a)) + s((a	 b)⊕ (b	 a))

= s((a	 b)� (b	 a)) + s(d(a, b)) = 0.

Hence necessarily s(a	 b) = s(b	a) = 0. Using strong modularity again, we can now
write

s(¬a) + s(b) = s(¬a⊕ b) = 1 = s(a⊕ ¬b) = s(a) + s(¬b),

from which results s(a) = s(b). It is thus correct to define s′ : A/Rad(A)→ [0, 1] by
s′(a/Rad(A)) = s(a), for every a ∈ A. Then s′ ∈ S(A/Rad(A)). It is easily seen
that the mapping s 7→ s′ is an affine isomorphism. In order to show that the mapping
s 7→ s′ is a homeomorphism, we need only check that it is continuous. Let (sγ) be a net
(generalized sequence) of elements in S(A) such that sγ → s in S(A). This means that

lim
γ
sγ(a) = s(a), for every a ∈ A.

Then, for every a ∈ A, we have s′γ(a/Rad(A)) = sγ(a)→ s(a) = s′(a/Rad(A)) in
[0, 1]. Hence s 7→ s′ is continuous.

We say that a state s of A is faithful if s is strictly positive, that is, we have s(a) > 0
whenever a ∈ A is nonzero.

PROPOSITION 3.1.8. Let A be an MV-algebra. Then:

(i) A state s of A is faithful iff s(a) < s(b), for every a, b ∈ A with a < b.

(ii) If A carries a faithful state, then A is semisimple.

Proof. (i) If s is faithful, then the condition a < b implies b 	 a > 0 and subtractivity
gives s(b) − s(a) = s(b 	 a) > 0. Conversely, if a 6= 0, then s(a) = s(a 	 0) =
s(a)− s(0) > 0.

(ii) Suppose that A is not semisimple. Then there exists a nonzero a ∈ Rad(A).
However, Proposition 3.1.1(viii) says that s(a) = 0 for every state s of A.
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3.2 Examples of states

We will discuss basic examples of states of various MV-algebras. The next sec-
tions then reveal the general pattern common to all of those examples. We have already
proved (Proposition 3.1.5) that an arbitrary MV-algebra carries at least one state; in fact,
the examples suggest that MV-algebras are abundant in states.

EXAMPLE 3.2.1 (Finitely-additive probability). We know that any Boolean algebra
B is an MV-algebra in which the MV-operations ⊕ and � coincide with the lattice
operations∨ and∧, respectively. Thus every state s of B is a finitely additive probability
since the condition (4) reads as follows:

if a ∧ b = 0, then s(a ∨ b) = s(a) + s(b).

EXAMPLE 3.2.2 (Homomorphism). Every homomorphism h of an MV-algebra A into
the standard MV-algebra [0, 1]Ł is a state of A. In particular, whenever A is a subalgebra
of the MV-algebra [0, 1]X of all functions X → [0, 1]. For any x ∈ X the evaluation
mapping sx : A→ [0, 1] given by

sx(f) = f(x), f ∈ A, (5)

is a state of A.

Both examples above are special cases of the following construction. Let A be
a semisimple MV-algebra with the maximal ideal space Max(A) and assume that A∗

is the separating clan of continuous functions Max(A)→ [0, 1] that is isomorphic to A
(Theorem 2.1.7). For every a ∈ A, let a∗ ∈ A∗ be the function corresponding to a
via the isomorphism. Consider any regular Borel probability measure µ on the compact
Hausdorff space Max(A). Put

sµ(a) =

∫
Max(A)

a∗ dµ, for every a ∈ A. (6)

It can be routinely checked that sµ is a state of A. Observe that (5) is a special case
of (6) upon putting µ = δM , where δM is the Dirac measure supported by a maximal
ideal M ∈ Max(A).

EXAMPLE 3.2.3 (Lebesgue state). As an important special case of (6), consider A to
be a finitely presented MV-algebra. Then there exists n ∈ N and a nonempty rational
polyhedron P ⊆ [0, 1]n, dim(P ) = n, such that A is isomorphic to the MV-algebra
M(P ) of restrictions of McNaughton functions f ∈ Fn to P (Theorem 2.2.3). Let λ
be the n-dimensional Lebesgue measure on [0, 1]n. Since λ(P ) > 0 it makes sense to
define a state of M(P ) by putting

sλ(f) =

∫
P
f dλ

λ(P )
, f ∈M(P ). (7)

The MV-algebra M(P ) is isomorphic to the Lindenbaum algebra of theory {ϑ}
for some satisfiable formula ϑ ∈ Formn, so we arrive at the following interpretation
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of sλ. The number (7) is the average truth value (with respect to all the models of {ϑ})
of any formula ϕ such that [ϕ] coincides with the restriction of f to P . Indeed, sλ(f)
is the expected value of f with respect to the uniform distribution λ over the possible
worlds in P .3

EXAMPLE 3.2.4 (States of Lindenbaum algebra). Another example interesting from
the logical viewpoint is the Lindenbaum algebra F of Łukasiewicz logic over countably-
many propositional variables. For every f ∈ F there exist n ∈ N, g ∈ Fn and
a nonempty set I ⊆ {1, . . . , n} such that f(〈xi〉i∈N) = g(〈xi〉i∈I), for every sequence
〈xi〉i∈N ∈ [0, 1]N. Thus every element of F is a function of n variables only and coin-
cides with some McNaughton function.

This enables us to simplify the computation of states of F defined by (6) since,
for any Borel probability measure µ on the compact Hausdorff space (in the product
topology) [0, 1]N, we have

sµ(f) =

∫
[0,1]N

f dµ =

∫
[0,1]n

g dµ′,

where µ′ is the Borel measure on [0, 1]n given by µ′(A) = µ
(
π−1(A)

)
, A is a Borel

set in [0, 1]n and π : [0, 1]N → [0, 1]n is the projection function. In conclusion, when it
comes to computing the average truth value (6), there is no loss of generality in replacing
the Lindenbaum algebra F of Łukasiewicz logic with the MV-algebra of McNaughton
functions Fn, for some n ∈ N.

EXAMPLE 3.2.5. Let ∗[0, 1]Ł be a non-trivial ultraproduct of the standard MV-algebra
[0, 1]Ł and choose a positive infinitesimal c ∈ ∗[0, 1]. The Chang MV-algebra C is
(up to an isomorphism) the MV-subalgebra of ∗[0, 1]Ł generated by the set {0, c} (see
[36, Example 2.4.5] for a detailed analysis of Chang MV-algebra). It is known that C
has the universe Rad(C) ∪ Rad(C)∗, where Rad(C) = {0, c, c ⊕ c, c ⊕ c ⊕ c, . . .}
is the radical of C and Rad(C)∗ = {1, 1 − c, 1 − (c ⊕ c), 1 − (c ⊕ c ⊕ c), . . .} is
the co-radical of C.

It is worth to notice that, by Proposition 3.1.1 (viii) and (ii), Chang algebra has
only one trivial state. Namely C has a unique state s such that s(x) = 0 for every
x ∈ Rad(C) and s(x) = 1 for every x ∈ Rad(C)∗.

In general, having only one trivial state is a property that characterizes a wide class
of MV-algebras, the so-called perfect MV-algebras, which are MV-algebras A having
Rad(A) ∪ Rad(A)∗ as the universe (see [36, Section 4.3]).

3.3 States of finitely presented MV-algebras

In this section we completely characterize the states of any finitely presented MV-
algebra. Although the result proved herein is a special case of integral representation
theorem developed below (Section 4), we consider its separate treatment a worthwhile
digression on the way to understanding the structure and the properties of states of any
MV-algebra.

3 With a small abuse of notation, we will identify the possible worlds of an MV-algebra A with the
elements ofH(A). This identification will be made explicit in Section 5.
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First, we will recall the basic results concerning Schauder hats and bases; see [1]
or [48]. Let T ⊆ [0, 1]n be an n-dimensional simplex with rational vertices. Let x =
〈a1/d, . . . , an/d〉 be a vertex of T , for uniquely determined relatively prime integers
a1, . . . , an, d with d ≥ 1. Call 〈a1, . . . , an, d〉 the homogeneous coordinates of x, and
let den(x) = d be the denominator of x. We say that simplex T is unimodular if
the determinant of the integer square matrix having the homogeneous coordinates of all
the vertices of T in its rows is equal to ±1. An r-dimensional simplex with r ≤ n is
unimodular if it is a face of some unimodular n-dimensional simplex.

Let p1, . . . , pl be the linear pieces of an n-variable McNaughton function f . For
every permutation π of {1, . . . , l}, put:

Pπ = {x ∈ [0, 1]n | pπ(1)(x) ≤ pπ(2)(x) ≤ · · · ≤ pπ(l)(x)}, (8)

C = {Pπ | Pπ is n-dimensional}. (9)

Clearly C is a finite set of n-dimensional polytopes with rational vertices, that is, every
Pπ ∈ C is the convex hull of a finite set of rational points in [0, 1]n. It is well-known
that C can be refined to a unimodular triangulation of [0, 1]n that linearizes f , which is
a finite set Σ of n-dimensional unimodular simplices over the rational vertices such that:

(i) the union of all simplices in Σ is equal to [0, 1]n,

(ii) any two simplices in Σ intersect in a common face and

(iii) for each simplex T ∈ Σ, there exists j = 1, . . . , l such that the restriction of f to
T coincides with pj (we also say that f is linear over Σ).

Let VΣ = {x1, . . . ,xm} be the set of vertices of all simplices in Σ. The Schauder
hat at xi ∈ VΣ is the McNaughton function hxi = hi linearized by Σ such that hi(xi) =
1/den(xi) and hi(xj) = 0 for every vertex xj distinct from xi in Σ. The set HΣ =
{h1, . . . , hm} is called a Schauder basis for Fn. The normalized Schauder hat at xi is
the McNaughton function

ĥxi = ĥi = den(xi) · hi.

We denote by ĤΣ = {ĥ1, . . . , ĥm} the subset of Fn consisting of all the normalized
Schauder hats. The set ĤΣ is also called a normalized Schauder basis.

Note that every McNaughton function that is linear over Σ is a linear combination
of the family of Schauder hats corresponding to Σ, where each hat has a uniquely deter-
mined integer coefficient between 0 and den(xi). Thus

f =
∑

xi∈VΣ

axi · hi, (10)

for uniquely determined integers 0 ≤ axi ≤ den(xi).
This argument can be easily generalized to the case of finitely many McNaughton

functions. In particular, if f1, . . . , fk are McNaughton functions on the n-cube [0, 1]n,
we can find a unimodular triangulation Σ of [0, 1]n with vertices VΣ = {x1, . . . ,xm}
such that each fi is linear over each simplex of Σ. In what follows we will need the
following result.
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LEMMA 3.3.1. Let f1, . . . , fk, Σ, VΣ and ĤΣ be as above. Then:

(i) For distinct ĥi, ĥj ∈ ĤΣ, ĥi � ĥj = 0.

(ii)
m⊕
t=1

ĥt = 1.

(iii) fi =

m⊕
t=1

fi(xt) · ĥt, for each i = 1, . . . , k.

For the proof of Theorem 3.3.4 we prepare two more lemmas.

LEMMA 3.3.2. Let P ⊆ [0, 1]n be a nonempty rational polyhedron. If µ and ν are
Borel probability measures on P such that µ 6= ν, then sµ 6= sν , where sµ and sν are
given by (6).

Proof. By way of contradiction, suppose sµ = sν . The Borel subsets of P are gener-
ated by the collection of all closed (in the subspace Euclidean topology of P ) rational
polyhedra. Indeed, every closed subset in P can be written as a countable intersection
of such polyhedra. Since the set of all rational polyhedra is closed under finite inter-
sections, [10, Theorem 3.3] yields the existence of a rational polyhedron R ⊆ P with
µ(R) 6= ν(R).

There is f ∈ M(P ) such that R = f−1(1) by Proposition 2.2.2. Let χR denote
the characteristic function of R. Then we obtain

χR =
∧
m∈N

m⊙
i=1

f. (11)

For every m ∈ N, the function
⊙m

i=1 f belongs to M(P ). The contradiction now fol-
lows from (11) together with the Lebesgue’s dominated convergence theorem [6, Theo-
rem 11.21]:

µ(R) =

∫
P

χR dµ =
∧
m∈N

∫
P

m⊙
i=1

f dµ =
∧
m∈N

sµ

(
m⊙
i=1

f

)

=
∧
m∈N

sν

(
m⊙
i=1

f

)
=
∧
m∈N

∫
P

m⊙
i=1

f dν =

∫
P

χR dν = ν(R).

LEMMA 3.3.3. Let P ⊆ [0, 1]n be a rational polyhedron, Σ be any unimodular trian-
gulation of P and ĤΣ be a normalized Schauder basis. If a : ĤΣ → [0, 1] is a function
such that

∑
x∈VΣ

a(ĥx) = 1, then there exists a Borel probability measure δ with finite
support on P satisfying a(ĥx) = sδ(ĥx), for each x ∈ VΣ.

Proof. Let δx be the Dirac measure concentrated at a vertex x ∈ VΣ. Put

δ =
∑
x∈VΣ

a(ĥx)δx.
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Then, for each vertex x ∈ VΣ, we get

sδ(ĥx) =

∫
P

ĥx dδ =
∑

x′∈VΣ

∫
P

a(ĥx′)ĥx dδx′

=
∑

x′∈VΣ

a(ĥx′)ĥx(x′) = a(ĥx)ĥx(x) = a(ĥx).

THEOREM 3.3.4. Let s be a state of the finitely presented MV-algebra M(P ), whereP
is a nonempty rational polyhedron. Then there exists a unique Borel probability measure
µ on P such that s = sµ.

Proof. Let s be a state of M(P ). For any normalized Schauder basis ĤΣ, let us define
the set of Borel probability measures

MΣ = {µ | s(ĥx) = sµ(ĥx), for each x ∈ VΣ}.

Note thatMΣ 6= ∅ by Lemma 3.3.3. It follows directly from the definition of weak*
topology (see Section 2.4) on the set of all Borel probability measuresM(P ) over P that
MΣ is weak* closed inM(P ). Indeed, consider any net (µγ) inMΣ weak* converging
to some µ ∈M(P ). For each ĥx ∈ ĤΣ, this means by (3) that

s(ĥx) = sµγ (ĥx)→ sµ(ĥx),

andMΣ is thus weak* closed.
Let T denote the family of all unimodular triangulations of polyhedron P . We are

going to show that ⋂
Σ∈T

MΣ 6= ∅. (12)

SinceM(P ) is weak* compact by Theorem 2.4.4,MΣ is weak* compact too, so
it suffices to prove

⋂
Σ′∈T′MΣ′ 6= ∅ for every finite subset T′ ⊆ T. It follows from

[1, Lemma 2.1.7] that finitely-many unimodular triangulations—ergo Schauder bases—
can always be jointly refined. Specifically, this means that there exists a Schauder basis
HΣ such that: for every Σ′ ∈ T′ with T′ finite and for each normalized Schauder hat
ĥx ∈ ĤΣ′ , there exists a uniquely determined nonnegative integer vector (βy)y∈VΣ

such
that ĥx =

∑
y∈VΣ

βyhy. Let δ =
∑

y∈VΣ
s(ĥy)δy. Clearly, δ ∈ M(P ). Linearity

of Lebesgue integral gives

sδ(ĥx) =

∫
P

ĥx dδ =
∑

y′∈VΣ

s(ĥy′)

∫
P

∑
y∈VΣ

βy
den(y)

ĥy dδy′ . (13)

For every y ∈ VΣ,
s(ĥy)

den(y)
=
s(den(y)hy)

den(y)
= s(hy).
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Then additivity of states enables us to express the right-hand side of (13) as∑
y′∈VΣ

s(ĥy′)
∑

y∈VΣ

βy
den(y)

ĥy(y′) =
∑

y′∈VΣ

s(ĥy′)
βy′

den(y′)
=
∑

y′∈VΣ

s

(
βy′

den(y′)
ĥy′

)

= s

 ∑
y∈VΣ

βyhy

 = s(ĥx).

Thus we have shown that δ ∈
⋂

Σ′∈T′MΣ′ , which implies (12), as T′ was an arbitrary
finite set of unimodular triangulations of P .

We will prove that sµ = s for every µ ∈
⋂

Σ∈TMΣ. Indeed, given a function
f ∈ M(P ), find Π ∈ T and a Schauder basis HΠ such that f =

∑
x∈VΠ

αxhx, for
uniquely determined nonnegative integers αx [1, Lemma 2.1.19]. It results that

s(f) = s

( ∑
x∈VΠ

αxhx

)
=
∑

x∈VΠ

αxs(hx) =
∑

x∈VΠ

αxsµ(hx)

= sµ

( ∑
x∈VΠ

αxhx

)
=
∑

x∈VΠ

αxs(hx) = sµ(f).

Finally, the set
⋂

Σ∈TMΣ contains a single element by Lemma 3.3.2.

REMARK 3.3.5. The unique Borel probability measure µ on the rational polyhedron P
from Theorem 3.3.4 is regular since P ⊆ [0, 1]n.

The previous proof highlights the central role of Schauder bases as the basic building
blocks of any element in the finitely presented algebra. As a matter of fact, the resulting
measure µ such that s = sµ is the “finest” probability measure among all the probabil-
ities agreeing with s over all Schauder bases or, equivalently, over the collection of all
unimodular triangulations of the rational polyhedron P . Theorem 3.3.4 is substantially
generalized into an integral representation for states of any MV-algebra in Section 4.

3.4 States of `-groups

The states of MV-algebras are closely related to normalized positive real homo-
morphisms of lattice ordered Abelian groups (further abbreviated as `-groups); see [27].
We will use the construction of unital `-group associated with an MV-algebra—the de-
tails can be found in [36, Section 5]. Let 〈G, 1〉 be an Abelian `-group with strong
unit 1 and neutral element 0 (a unital `-group, for short). Then the order interval
Γ(G, 1) = {a ∈ G | 0 ≤ a ≤ 1} becomes an MV-algebra with the induced oper-
ations a ⊕ b = (a + b) ∧ 1 and ¬a = 1 − a. The group operation + of 〈G, 1〉 and
the MV-algebraic operations of Γ(G, 1) are related as follows:

a+ b = (a⊕ b) + (a� b), for every a, b ∈ Γ(G, 1). (14)
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Conversely, given some MV-algebra A, Mundici [43] constructed the unital Abelian
`-group 〈GA, 1〉 such that A is isomorphic to Γ(GA, 1) and showed that Γ provides
the categorical equivalence between the category of MV-algebras and that of unital
`-groups.

By G+ we denote the partially ordered monoid of all positive elements (a ≥ 0)
in a unital `-group 〈G, 1〉. A state of a unital `-group 〈G, 1〉 is a group homomorphism
s : G → R such that s(a) ≥ 0, for every a ∈ G+, and s(1) = 1. By S(G, 1) we
denote the set of all states of 〈G, 1〉. It turns out that measuring the elements of an
MV-algebra A with a state s is essentially the same as specifying a state of the corre-
sponding unital `-group 〈GA, 1〉.

PROPOSITION 3.4.1. Let 〈G, 1〉 be a unital `-group and A = Γ(G, 1) be the associ-
ated MV-algebra. Then:

(i) For every state s of 〈G, 1〉, the restriction s̄ of s to A is a state of A.

(ii) The mapping s 7→ s̄ is an affine isomorphism of S(G, 1) onto S(A).

Proof. (i) Clearly, s̄(1) = s(1) = 1. Let a, b ∈ A be such that a � b = 0. By (14) this
means that a⊕ b = a+ b, where + is the addition in (G, 1). Therefore

s̄(a⊕ b) = s̄(a+ b) = s(a+ b) = s(a) + s(b) = s̄(a) + s̄(b).

(ii) We need to invert the mapping s 7→ s̄ sending a state s of 〈G, 1〉 to its restriction
s̄ on A. To this end, assume that r is a state of A. First, we extend state r to a monoid
homomorphism r̃ : G+ → [0,∞) in a unique way as follows. We can identify G+ with
the monoid of good sequences [36, Proposition 5.1.14]. Specifically, for every a ∈ G+

there exists a unique tuple 〈g1, . . . , gn〉 ∈ An (up to appending a finite sequence of 0s)
such that

(i) a = g1 + · · ·+ gn,

(ii) gi ⊕ gi+1 = gi,

(iii) gi � gi+1 = gi+1.

Define r̃(a) = r̃(〈g1, . . . , gn〉) = r(g1) + · · · + r(gn). Clearly r̃(0) = r(0) = 0. We
need only show that r̃(a+ b) = r̃(a) + r̃(b) for every a ∈ G+ and every b ∈ A. Put

g′1 = g1 ⊕ b,
g′2 = g2 ⊕ g1 � b,
g′3 = g3 ⊕ g2 � b,

...

g′n = gn ⊕ gn−1 � b,
g′n+1 = gn � b.
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It can be shown that the good sequence 〈g′1, . . . , g′n+1〉 represents a+ b ∈ G+. Then

r̃(a+ b) = r̃(〈g′1, . . . , g′n+1〉) = r(g′1) + r(g′2) + · · ·+ r(g′n+1)

= r(g1 ⊕ b) + r(g2 ⊕ g1 � b) + · · ·+ r(gn � b).

The application of strong modularity (Proposition 3.1.1(iv)) to each summand makes it
possible to write the last sum as

r(g1) + r(b)− r(g1 � b)
+ r(g2) + r(g1 � b)− r(g2 � g1︸ ︷︷ ︸

g2

�b)

+ r(g3) + r(g2 � b)− r(g3 � g2︸ ︷︷ ︸
g3

�b)

+ · · ·
+ r(gn) + r(gn−1 � b)− r(gn � gn−1︸ ︷︷ ︸

gn

�b)

+ r(gn � b)
= r(g1) + · · ·+ r(gn) + r(b)

= r̃(a) + r̃(b).

This shows that r̃ is a monoid homomorphism. Since G = G+ − G+, we can
put r̂(a − b) = r̃(a) − r̃(b) for every a, b ∈ G and routinely show that the definition
is correct. The state r̂ is the sought unique extension of r. Consequently, there exists
a one-to-one correspondence between S(G, 1) and S(A) given by the restriction map
s 7→ s̄. This map is easily seen to be affine.

Thus every state of an MV-algebra A can be lifted to the unique state of the en-
veloping Abelian `-group GA. This fact has, among others, the following interesting
consequence derived from the known results about states of `-groups.

COROLLARY 3.4.2. Let A be an MV-algebra and B be a sub-MV-algebra. For every
state s of B there exists a state s′ of A such that s′(b) = s(b), b ∈ B.

Proof. The `-group GB is a subgroup of the `-group GA. The state s of B lifts to
a unique state (also denoted by s) of GB . It suffices to show that there exists a state
s′ of GA such that s′(b) = s(b), b ∈ GB . The last claim is, however, the content of
[27, Corollary 4.3].

4 Integral representation

In this section we are going to prove one of the main results of this chapter: the one-
to-one correspondence of states to regular Borel probability measures over the maximal
ideal space of an MV-algebra. This correspondence is realized via Lebesgue integral
and turns out to have very strong geometrical and topological properties. Specifically,
we will show that the integral states of the form sµ introduced in (6) are the most general
examples of states.
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From now on, we always assume thatM(Max(A)), the Bauer simplex of all regular
Borel probability measures over Max(A), is equipped with the weak* topology (see
Section 2.4).

THEOREM 4.0.1. Let A be an MV-algebra andM(Max(A)) be the set of all regular
Borel probability measures on Max(A). Then there is an affine homeomorphism

Φ: S(A)→M(Max(A))

such that, for every a ∈ A,

s(a) =

∫
Max(A)

a∗(M) dµs(M), where µs = Φ(s). (15)

Proof. In the light of Proposition 3.1.7(ii), we may assume that A is semisimple, with-
out loss of generality. In particular, A is isomorphic to a separating MV-algebra A∗

of continuous functions Max(A) → [0, 1] (see Theorem 2.1.7). Let s ∈ S(A∗). We
are going to extend s uniquely to a bounded linear functional over the Banach space
C(Max(A)) of all continuous functions Max(A) → R endowed with the supremum
norm ‖·‖.

By Proposition 3.4.1, the state s of A∗ uniquely corresponds to a state s′ of unital
`-groupGA∗ such that Γ(GA∗ , 1) = A∗. The unital `-groupGA∗ embeds in its divisible
hull, i.e., the rational sub-vector lattice HA∗ = {qa | a ∈ GA∗ , q ∈ Q} (see, e.g.
[9, Sections 1.6.8–1.6.9]). Putting s′′(qa) = qs′(a) for every q ∈ Q and a ∈ GA∗ , it
is easy to check that s′′ : HA∗ → R is a positive linear functional uniquely extending
state s′. The functional s′′ is bounded: if b ∈ HA∗ is such that ‖b‖ ≤ 1, then |s′′(b)| ≤
s′′(1) = 1. Hence we obtain a continuous linear functional s′′ on the vector lattice HA∗ .

The lattice version of Stone–Weierstrass Theorem [6, Theorem 9.12] says that HA∗

is a norm-dense subspace of the Banach spaceC(Max(A)). For every b ∈ C(Max(A)),
there exists a sequence 〈bn〉 ∈ HN

A∗ such that ‖b− bn‖ → 0 whenever n→∞. There-
fore, we can uniquely extend s′′ onto C(Max(A)) by letting ŝ(b) = limn→∞ s(bn).
Since for b ≥ 0 we can find the converging sequence with elements bn ≥ 0, the unique
extension ŝ is a positive linear functional on C(Max(A)).

In order to complete the proof, it suffices to apply the Riesz representation theorem
[6, Theorem 14.14] to ŝ. This yields a unique regular Borel probability measure µs such
that

ŝ(b) =

∫
Max(A)

b dµs, for every b ∈ C(Max(A)),

so that
s(a∗) = ŝ(a∗) =

∫
Max(A)

a∗ dµs. (16)

Consider the mapping Φ: S(A)→M(Max(A)) sending each s to a unique µs = Φ(s)
such that (16) holds. It is easy to see that Φ is an affine mapping ontoM(Max(A)). Let
µ, ν ∈M(Max(A)) and µ = ν. Then

sµ(a∗) =

∫
Max(A)

a∗ dµ =

∫
Max(A)

a∗ dν = sν(a∗),
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for every a ∈ A. Thus sµ = sν and the mapping Φ is one-to-one. To finish the proof,
we only need to check that the affine isomorphism Φ is also a homeomorphism. Since Φ
is a bijection between compact Hausdorff spaces, it suffices to check that Φ−1 is contin-
uous. Let (µγ) be a net inM(Max(A)) weak* converging to some µ ∈ M(Max(A)).
This means that∫

Max(A)

f dµγ →
∫

Max(A)

f dµ for every f ∈ C(Max(A)). (17)

However, setting f = a∗ for a ∈ A, formula (17) reads as

sµγ (a)→ sµ(a) for every a ∈ A.

In other words, the net (Φ−1(µγ)) converges to Φ−1(µ) in the state space S(A). This
concludes the proof.

COROLLARY 4.0.2. Let AX be a separating clan of continuous functions over a com-
pact Hausdorff space X . Then for every state s of AX there exists a unique regular
Borel probability measure µs on X such that s(a) =

∫
X
a dµs, for every a ∈ AX .

REMARK 4.0.3. The special case of Theorem 4.0.1 appeared in [32], where the for-
mula (15) was proved with the assumption that A is semisimple and without the explicit
proof of the uniqueness of the representing Borel probability measure µs. The main idea
of the proof of Theorem 4.0.1 presented above belongs to Panti [52]. Independently,
the uniqueness of representing probability measure µs for any state s of the semisimple
MV-algebra A was established in [31], where also the proof that Φ is an affine home-
omorphism appears. The result presented in [31] in fact shows that Theorem 4.0.1 is
equivalent to characterizing the state space of A as a Bauer simplex.

REMARK 4.0.4. IfX is a metrizable space, then every Borel probability measure onX
is regular and we may thus drop the word “regular” in the statement of the above theo-
rems. A case in point is the maximal ideal space Max(A) of every countable MV-alge-
bra A since the corresponding Max(A) is second countable and thus metrizable.

A special case of Theorem 4.0.1 for a Boolean algebra B shows somewhat unex-
pected result: every finitely additive probability corresponds to a unique regular Borel
probability measure on the Stone space of B.

COROLLARY 4.0.5. Let B be a Boolean algebra. For every finitely additive proba-
bility ν of B there exists a unique regular Borel probability measure µν on the Stone
space Max(B) of B such that

ν(a) = µν(a∗), for every a ∈ B,

where a∗ is the clopen subset of Max(B) corresponding to a.

A word of caution is in order here: the statement of Corollary 4.0.5 does not express
the wrong claim “every finitely additive probability is a probability measure”. As in
the proof of Theorem 4.0.1, the real content of Corollary 4.0.5 is the extension of the
dual representation of finitely additive probability to a continuous linear functional on
the Banach space of continuous functions over the Stone space.
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REMARK 4.0.6. To the best of the authors’ knowledge, there is only one reference
where the result of Corollary 4.0.5 is explicitly formulated. Namely, Nešetřil and Ossona
de Mendez [50] use the correspondence of finitely additive probabilities and regular
Borel probability measures in their model-theoretic study of graph limits.

4.1 Characterization of state space

Using integral representation, we will slightly refine the description of state space
provided by Proposition 3.1.7. Recall that we always consider the state space S(A) with
the relative topology of the product space [0, 1]A.

THEOREM 4.1.1. Let A be an MV-algebra. Then:

(i) The state space S(A) is a Bauer simplex.

(ii) The extreme boundary ∂S(A) is compact and

∂S(A) = {h ∈ S(A) | h is a homomorphism A→ [0, 1]}.

(iii) S(A) = co(H(A)).

Proof. Without loss of generality, we may assume that the algebra A is semisimple
(Proposition 3.1.7(ii)). By Proposition 3.1.7(i), S(A) is a compact convex set in [0, 1]A.
Hence, it suffices to show that S(A) is a Choquet simplex with ∂S(A) compact. By
Theorem 4.0.1, the mapping Φ: S(A) → M(Max(A)) is an affine homeomorphism.
This implies that Φ−1 is an affine homeomorphism also. Theorem 2.4.4 yields

∂M(Max(A)) = {δM |M ∈ Max(A)}

so that every element s ∈ Φ−1(∂M(Max(A))) is of the form

sM : a ∈ A 7→ a∗(M) ∈ [0, 1].

Thus sM is a homomorphism. Conversely, every homomorphism of A into [0, 1] arises
in this way. It follows that the extreme boundary ∂S(A) must be compact since Φ is
a homeomorphism. Since Φ is an affine isomorphism andM(Max(A)) is a simplex, the
image Φ−1(M(Max(A))) = S(A) is also a simplex. This establishes (i) and (ii). The
part (iii) directly follows from (i)–(ii) and Krein-Milman theorem (Theorem 2.4.2).

Theorem 4.1.1 says that these are the only examples of a state s ∈ S(A):

(i) A homomorphism h ∈ ∂S(A)

(ii) A convex combination g =
∑n
i=1 αihi for some h1, . . . , hn ∈ ∂S(A) and non-

negative reals α1, . . . , αn satisfying
∑n
i=1 αi = 1

(iii) the limit in [0, 1]A of a generalized sequence (gγ), where every gγ is as in (ii).

Recall that an MV-algebra A is said to be simple whenever the only maximal ideal
of A is {0}.
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COROLLARY 4.1.2. Let A be an MV-algebra. Then:

(i) There are n maximal ideals in A if and only if S(A) is affinely homeomorphic
to the (n− 1)-dimensional standard simplex.

(ii) In particular, if A is simple, then the only state of A is the unique embedding of A
into the real unit interval [0, 1].

In conclusion, simpliciality and the topology of state space enables us to claim that
states of an MV-algebra and regular Borel probability measures over the compact Haus-
dorff maximal ideal space can be identified up to an affine homeomorphism. The affine
homeomorphism is determined by the integral formula (15), which is frequently used
in applications.

4.2 Existence of invariant states and faithful states

The integral representation theorem for states enables us to study MV-algebraic
dynamics in analogy with the probabilistic dynamics. A measure-theoretic dynamical
system is a quadruple 〈X,A, µ, T 〉, where X is a nonempty set, A is a σ-algebra of
subsets of X , a mapping T : X → X is A-A measurable (T−1(A) ∈ A, for every
A ∈ A), and µ : A→ [0, 1] is a probability measure invariant with respect to T , i.e,

µ(T−1(A)) = µ(A), for every A ∈ A.

Analogously, let e be an endomorphism of an MV-algebra A and s ∈ S(A). Put

se(a) = s(e(a)), a ∈ A. (18)

Then se is a state of A. We call s an e-invariant state whenever se = s. Every endo-
morphism e of A induces a continuous transformation Te : Max(A)→ Max(A):

Te(M) = {a ∈ A | e(a) ∈M}, for every M ∈ Max(A).

In particular, the function Te is B(Max(A))-B(Max(A)) measurable.

PROPOSITION 4.2.1. Let e be an endomorphism of an MV-algebra A and s ∈ S(A).
Then s is an e-invariant state if and only if 〈Max(A),B(Max(A)), µs, Te〉 is a measure-
theoretic dynamical system.

Proof. Clearly, e is an endomorphism of the isomorphic image A∗ of A and we have
e(a∗) = a∗ ◦ Te. Then Theorem 4.0.1 and the change of variables in the Lebesgue
integral (see [6, Theorem 13.46]) yield

se(a) = s(e(a)) =

∫
Max(A)

e(a∗) dµs =

∫
Max(A)

a∗ ◦ Te dµs =

∫
Max(A)

a∗ d
(
µs ◦ T−1

e

)
.

Hence the equality ∫
Max(A)

a∗ d
(
µs ◦ T−1

e

)
=

∫
Max(A)

a∗ dµs = s(a)

holds if and only if µs is invariant with respect to Te.
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PROPOSITION 4.2.2. Let e be an endomorphism of an MV-algebra A. Then there
exists an e-invariant state s of A.

Proof. Consider the mapping ē : S(A) → S(A) defined by ē(s) = se, where se is as
in (18). Then ē is continuous. Indeed, for every a ∈ A and every net (sγ) in S(A) such
that sγ → s ∈ S(A), we have

ē(sγ)(a) = sγ(e(a))→ s(e(a)) = ē(s)(a).

Because ē is a continuous mapping of the compact convex set S(A) into itself, the
Brouwer–Schauder–Tychonoff fixed point theorem [6, Theorem 17.56] says that there
must exist a fixed point of the mapping ē, a state s ∈ S(A) such that ē(s) = s.

The existence of a state s invariant with respect to a single endomorphism e is the
consequence of purely geometrical-topological properties of the state space. The situ-
ation becomes more interesting if we require invariance of s with respect to all the au-
tomorphisms of the MV-algebra: we call a state s of A invariant if it is α-invariant
for every automorphism α of A. The existence of invariant states possibly satisfying
additional properties can directly be proved for the free n-generated MV-algebra.

THEOREM 4.2.3. The free n-generated MV-algebra Fn has an invariant faithful state
with rational values.

Proof. The natural candidate for a state from the statement is the Lebesgue state sλ
(Example 3.2.3) given by the Riemann integral

sλ(f) =

∫
[0,1]n

f(x) dx, f ∈ Fn.

Let f ∈ Fn. By [1, Lemma 2.1.4], there exists a polyhedral complex Σ and n-di-
mensional convex polytopes P1, . . . , Pm ∈ Σ with rational vertices such that f is linear
over each Pi and

⋃m
i=1 Pi = [0, 1]n. For every i = 1, . . . ,m, put

vi(f) =

∫
Pi

f(x) dx

and observe that sλ(f) =
∑m
i=1 vi(f). Since each polytope Pi has rational vertices

and the linear function f over Pi has Z coefficients, the value vi(f) is rational and thus
sλ(f) ∈ [0, 1] ∩ Q.

State sλ is faithful. Indeed, if f 6= 0, then there exists a polytope Pi ∈ Σ of dimen-
sion n such that f is nonzero in the interior of Pi. Thus sλ(f) ≥ vi(f) > 0.

Let α be an automorphism of Fn. Then α is determined by its action on the free
generators of Fn, the i-th coordinate projection functions πi : [0, 1]n → [0, 1]. Denote
qi = α(πi), for each i = 1, . . . , n, and put Tα(x) = (q1(x), . . . , qn(x)), x ∈ [0, 1]n.
The two mappings α and Tα are related by the formula

α(f) = f ◦ Tα, f ∈ Fn.
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It can be shown that Tα is a Z-homeomorphism of [0, 1]n, that is, Tα is a homeomor-
phism of [0, 1]n such that the scalar components of Tα and T−1

α are in Fn. This implies
existence of a polyhedral complex Θ such that Q1, . . . , Qr ∈ Θ are convex polytopes
with rational vertices,

⋃r
i=1Qi = [0, 1]n, and both Tα and T−1

α are linear over each Qi.
Since the components of Tα and T−1

α restricted to Qi are linear functions with Z co-
efficients, the corresponding Jacobian matrix satisfies |JTα(x)| = 1 for every x in the
interior of Qi. Thus, for every f ∈ Fn,

sλ(α(f)) =

∫
[0,1]n

α(f)(x) dx =

∫
[0,1]n

f(Tα(x)) dx =

r∑
i=1

∫
Qi

f(Tα(x)) dx

=

r∑
i=1

∫
int Qi

f(Tα(x)) · |JTα(x)| dx.

Using the change of variable [6, Theorem 13.49], the last expression is equal to

r∑
i=1

∫
int Qi

f(x) dx =

∫
[0,1]n

f(x) dx = sλ(f).

The theorem underlines the importance of Lebesgue state for Łukasiewicz logic: the
average truth value of a formula is invariant under all substitutionsAi 7→ α(A1, . . . , An),
i = 1, . . . , n such that the equivalence classes [α(A1, . . . , An)] generate Fn. Moreover,
the statement of Theorem 4.2.3 can easily be extended onto the class of all finitely pre-
sented MV-algebras.

5 De Finetti’s coherence criterion for many-valued events

De Finetti’s foundation of subjective probability theory is based on the notion of
coherent betting odds. Two players, a bookmaker and a gambler, wager money on
the occurrence of some events of interest e1, . . . , ek. At the very first stage of the game,
the bookmaker publishes a book β assigning a betting odd βi ∈ [0, 1] to each event ei
and the gambler, once the book has been published, places stakes σ1, . . . , σk ∈ R, one
for each event ei, and pays to the bookmaker the amount of

∑k
i=1 σi · βi euros. Notice

that each stake σi is positive for the gambler whenever the bet is placed, while it is nega-
tive for a bet accepted. In other words, the effect of gambler’s decision to pay a negative
amount σi on ei, is that she will receive, already in this first stage of the game, σi · βi
euros from the bookmaker. We call this assumption reversibility.

At this stage of the game, the bookmaker and the gambler are obviously uncertain
about the truth value of the events involved in the game. However, once a future possible
world w is reached, every ei is known to be either true or false in this possible world.
For every event ei, the bookmaker pays back to the gambler σi euros if ei turns out to
be true in w, or nothing if ei is false in w.

Formally, if we denote byw(ei) the truth-value of ei in the worldw, the total balance
for the bookmaker at the end of the game is calculated by

∑k
i=1 σi(βi − w(ei)) and

hence, in the worldw, the bookmaker gains money if his balance is positive, or he looses
money if it is negative. Notice that the balance is calculated with respect to a specific
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possible world w, but if the bookmaker arranges his book β in a such a way that he is
going to loose money in every possible world, then we say he incurred a sure loss and the
book β is called Dutch, or incoherent. Conversely, the book β is called coherent if it does
not ensure bookmaker to incur a sure loss, i.e., for every choice of stakes σ1, . . . , σk,
there exists a world w in which the bookmaker’s total balance is not negative.

A suitable formalization of classical de Finetti’s betting game consists in interpret-
ing events, books and possible worlds by the following stipulations:

• events are elements of an arbitrary Boolean algebra B,

• a book on a finite subset {e1, . . . , ek} ⊆ B is a map β : ei 7→ βi ∈ [0, 1], and

• a possible world is a Boolean homomorphism of B into the two element Boolean
chain 2, that is, any element ofH(B,2).

Within this framework, de Finetti’s coherence criterion reads as follows:

Classical Coherence Criterion. Let B be a Boolean algebra and let {e1, . . . , ek} be
a finite subset of B. A book β : ei 7→ βi is said to be coherent iff for each choice of
σ1, . . . , σk ∈ R, there exists w ∈ H(B,2) such that

k∑
i=1

σi(βi − w(ei)) ≥ 0.

The celebrated de Finetti’s theorem can be stated as follows.

THEOREM 5.0.1 (de Finetti). For every Boolean algebra B, for every finite subset
{e1, . . . , ek} and for every book β, the following are equivalent:

(i) β is coherent.

(ii) There exists a finitely additive probability measure µ : B → [0, 1] such that
µ(ei) = βi, for every i = 1, . . . , k.

It is not difficult to generalize the Classical Coherence Criterion to events being el-
ements of an MV-algebra A and possible worlds being MV-homomorphisms of A into
the standard MV-algebra [0, 1]Ł. Within the MV-algebraic setting, the game played by
the bettor and the bookmaker must take into account that events are evaluated by every
possible world w taking values in [0, 1]. Therefore, in a possible world w, the amount
of money that the gambler will receive back from the bookmaker is calculated by weight-
ing each stake σi with the truth-value w(ei) ∈ [0, 1] of ei. This leads to the many-valued
version of the Classical Coherence Criterion.

Many-valued Coherence Criterion. Let A be an MV-algebra and A′ = {e1, . . . , ek}
be a finite subset of A. We say that a book β : ei 7→ βi is coherent iff for each choice of
σ1, . . . , σk ∈ R, there exists w ∈ H(A) such that

k∑
i=1

σi(βi − w(ei)) ≥ 0. (19)

The aim of the first part of this section is to generalize de Finetti’s theorem to many-
valued events. First, we need some preliminary results.
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LEMMA 5.0.2. Let A be an MV-algebra and A′ = {e1, . . . , ek} be a finite subset of
A. Then, for every β ∈ co(H(A)), its restriction to A′ is a coherent book.

Proof. Let A′ = {e1, . . . , ek} be a finite subset of A. Let λ1, . . . , λr ∈ R+ be such that∑r
j=1 λj = 1 and let w1, . . . , wr ∈ H(A) be such that, for all i = 1, . . . , k,

βi = β(ei) =

r∑
j=1

λjwj(ei). (20)

Assume, by way of contradiction, that for some σ1, . . . , σk ∈ R, it holds that, for all
w ∈ H(A),

∑k
i=1 σi(βi −w(ei)) < 0. Then, in particular, for all j = 1, . . . , r, one has

k∑
i=1

σi(βi − wj(ei)) =

k∑
i=1

σiβi −
k∑
i=1

σiwj(ei) < 0.

Therefore, since
∑r
j=1 λj = 1,

k∑
i=1

σiβi −
r∑
j=1

λj

(
k∑
i=1

σiwj(ei)

)
< 0,

that is, from (20),

k∑
i=1

σi

 r∑
j=1

λjwj(ei)

− r∑
j=1

λj

(
k∑
i=1

σiwj(ei)

)
< 0,

a contradiction.

LEMMA 5.0.3. Let A be an MV-algebra, let A′ = {e1, . . . , ek} be a finite subset of A
and let β be a book on A′. If β is coherent, then there exists γ ∈ co(H(A)) such that
β(ei) = γ(ei) for all ei ∈ A′.

Proof. Let

H �A′= {x ∈ [0, 1]k | x = (h(e1), . . . , h(ek)) for h ∈ H(A)}. (21)

Since H(A) is closed in [0, 1]A, then both H �A′ and co(H �A′) are compact subsets
of [0, 1]k. Let y = 〈β(e1), . . . , β(ek)〉 ∈ [0, 1]k and assume, by way of contradiction,
that y 6∈ co(H �A′). Then, since co(H �A′) is convex, by the Separating Hyperplane
Theorem [22, Lemma 3.5] there exist p ∈ Rk and r ∈ R such that the affine hyperplane
H = {a | p ◦ a = r} strongly separates y and co(H �A′), meaning that the scalar
product p ◦ y < r and, for all x ∈ H �A′ , we have p ◦ x > r. In particular, for every
x ∈ H �A′ , it follows that p ◦ (y − x) < 0 and hence, letting p = 〈σ1, . . . , σk〉,

k∑
i=1

σi(β(ei)− h(ei)) < 0

for every h ∈ H(A), contradicting the coherence of β.
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THEOREM 5.0.4. Let A be an MV-algebra, A′ = {e1, . . . , ek} be a finite subset of A
and let β be a book on A′. Then the following are equivalent:

(i) β is coherent.

(ii) There exists a state s ∈ S(A) such that s coincides with β over A′.

(iii) β can be extended to a convex combination of at most k + 1 elements of H(A).

Proof. The fact that the last two claims are equivalent is a consequence of Carathéodory
theorem [22, Theorem 2.3]. To prove the equivalence of the first two we shall use the
fact that, for every MV-algebra A, S(A) = co(H(A)) (Theorem 4.1.1(iii)).

(ii) ⇒ (i): Let s ∈ co(H(A)) and assume, by way of contradiction, that β is not
A′-coherent for some finite subset A′ = {e1, . . . , ek} of A. So there are σ1, . . . , σk ∈ R

such that, for every w ∈ H(A),
∑k
i=1 σi(βi − w(ei)) < 0, which gives

k∑
i=1

σiβi <

k∑
i=1

σiw(ei).

From Theorem 4.1.1(ii),H(A) is closed and therefore, by the continuity of addition and
multiplication,

min
w∈H(A)

k∑
i=1

σiw(ei) =

k∑
i=1

min
w∈H(A)

σiw(ei)

=

k∑
i=1

σi min
w∈H(A)

w(ei)

=

k∑
i=1

σiw(ei)

for some w ∈ H(A). Further, let

z =

k∑
i=1

σiw(ei)−
k∑
i=1

σiβi > 0.

Since by hypothesis s is a state and so it belongs to co(H(A)), it holds

∀ε > 0 ∃β′ ∈ co(H(A)) such that, ∀i = 1, . . . , k, |βi − β′(ei)| < ε.

Therefore, in particular, for all sufficiently small ε, there is β′ ∈ co(H(A)), such that,
for all w ∈ H(A),

k∑
i=1

σiβ
′(ei) <

z

2
+

k∑
i=1

σiβi <

k∑
i=1

σiw(ei) ≤
k∑
i=1

σiw(ei)

and thus
∑k
i=1 σi(β

′(ei) − w(ei)) < 0. Therefore β′ is not coherent, contradicting
Lemma 5.0.2.
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(i)⇒ (ii): Let β be coherent. Then, for every finite subset A′ ⊆ A, Lemma 5.0.3
ensures that the set

D(A′) = {γ ∈ co(H(A)) | β = γ on A′}

is a nonempty closed subset of co(H(A)). Notice that, for every choice of finite subsets
A′1, . . . , A

′
m ⊆ A,

D(A′1) ∩ · · · ∩ D(A′m) = D(A′1 ∪ · · · ∪A′m)

and hence the family {D(A′) | A′ is a finite subset of A} has the finite intersection prop-
erty. Therefore there exists γ ∈ co(H(A)) such that

γ ∈
⋂
{D(A′) | A′ is a finite subset of A}.

Thus γ = β on A and β ∈ co(H(A)) and so the claim follows by setting γ = s.

5.1 Betting on formulas of Łukasiewicz logic

It is common to think about an event as a formula in the language of a logical cal-
culus. For this reason, a suitable setting for many-valued events is the Lindenbaum
algebra of Łukasiewicz propositional logic. By Form (Formn) we denote the class of all
formulas in Łukasiewicz logic (the class of all formulas containing at most the first n
propositional variables), respectively. In Section 2.2 we recalled that the Lindenbaum
algebra of Łukasiewicz propositional calculus with n variables is the free n-generated
MV-algebra Fn which, in turn, is isomorphic to the MV-algebra of McNaughton func-
tions on [0, 1]n with pointwise operations of ⊕ and ¬.

In this section we are going to provide an alternative proof of Theorem 5.0.4 con-
sidering coherent assignments on finite subsets of the free n-generated MV-algebra Fn.
Moreover, we will show that the problem of establishing the coherence for a rational-
valued book on formulas of Łukasiewicz logic is NP-complete.

We now prepare some terminology and notation in view of the main theorem of this
section. We assume a reasonably compact binary encoding of φ ∈ Form, such that
the number size(φ) of bits in the encoding of φ is bounded above by a polynomial
e1 : N→ N of the number c(φ) of symbols �,→ occurring in φ, that is,

size(φ) ≤ e1(c(φi)).

Analogously, we assume that the length in bits of the encoding of a finite set of formulas
{φ1, . . . , φk} ⊆ Form, in symbols size({φ1, . . . , φk}), satisfies

size({φ1, . . . , φk}) ≤ e2(size(φ1) + · · ·+ size(φk))

for some polynomial e2 : N → N. Also, letting β : {φ1, . . . , φk} → [0, 1] be a ratio-
nal book such that β(φi) = ni/di with ni and di relatively prime integers for all i
in {1, . . . , k}, we assume a binary encoding of β such that the number of bits in the
encoding of β, in symbols, size(β), satisfies

size(β) ≤ e3 (size({φ1, . . . , φk}) + k · log2 max{d1, . . . , dk})

for some polynomial e3 : N→ N.



Chapter XVII: States of MV-algebras 1213

PROPOSITION 5.1.1. Let s be a state of Fn and let HΣ be a Schauder basis for Fn. If
hi ∈ HΣ is the Schauder hat at xi, then s(den(xi) · hi) = den(xi) · s(hi).

Proof. This is a direct consequence of additivity of s and the definition of a (normalized)
Schauder hat.

PROPOSITION 5.1.2. Let φ1, . . . , φk ∈ Formn for some k ≥ 1. Then there exist
a unary polynomial q : N → N and a unimodular triangulation Σ of [0, 1]n linearizing
[φ1], . . . , [φk], such that each rational vertex x of Σ satisfies

log2 den(x) ≤ q(size({φ1, . . . , φk})).

Proof. For all i ∈ {1, . . . , k}, let fi be the n-ary McNaughton function [φi]. Let
p1, . . . , pl be the list of all the linear pieces of the functions f1, . . . , fk, together with
the projection functions x1, . . . , xn and the constants 0, 1, and define Pπ as in (8) and C
as in (9) based on these pieces. Let Σ be a unimodular triangulation produced from C
without adding new vertices, as explained in Section 3.3. We show that Σ satisfies the
statement.

First, since C includes all the linear domains of all the functions f1, . . . , fk and Σ
is a subdivision of C, it follows that Σ linearizes all the functions f1, . . . , fk. Second,
by the definition of McNaughton function each piece pi has the form

pi(x1, . . . , xn) = ci,1x1 + · · ·+ ci,nxn + di

with ci,1, . . . , ci,n, dn ∈ Z. Thus, by inspection of (8), each vertex x ∈ VΣ is the
rational solution of a system of n linear equations in n unknowns, each equation having
one of the following forms

ph(x1, . . . , xn) = pi(x1, . . . , xn)

ph(x1, . . . , xn) = 0

ph(x1, . . . , xn) = 1

for h, i ∈ {1, . . . , l}, or xi = 0, xi = 1 for i ∈ {1, . . . , n}.
Suppose that pi is a linear piece of fj . A routine induction on φj shows that

|ci,1|, . . . , |ci,n| ≤ size(φj).

Hence, the largest coefficient (in absolute value) of any linear piece amongst p1, . . . , pl
is bounded above by

max{size(φj) | j ∈ {1, . . . , k}} ≤ size({φ1, . . . , φk}),

so that the m-th equation in the linear system having x as solution has the form

am,1x1 + · · ·+ am,nxn = bm

with
|am,1|, . . . , |am,n| ≤ 2 · size({φ1, . . . , φk}). (22)
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Since

x =

 a1,1 . . . a1,n

...
. . .

...
an,1 . . . an,n


−1 b1

...
bn

 = A−1B,

it follows that den(x) ≤ | det(A)| by elementary linear algebra [56]. In light of (22),
the application of Hadamard’s inequality now yields the desired bound:

|det(A)| ≤
∏

i∈{1,...,m}

(a2
i,1 + · · ·+ a2

i,n)1/2

≤
∏

i∈{1,...,n}

|ai,1|+ · · ·+ |ai,n|

≤
∏

i∈{1,...,n}

2n · size({φ1, . . . , φk})

≤ 22n log2 n·size({φ1,...,φk})

≤ 2q(size({φ1,...,φk})).

It is enough to put
q(m) = m2

and notice that n ≤ size({φ1, . . . , φk}), since the size of a set of formulas over n distinct
variables is greater than or equal to n.

THEOREM 5.1.3. Let φ1, . . . , φk ∈ Formn and β : [φi] 7→ βi ∈ [0, 1] ∩ Q be a book.
The following are equivalent:

(i) β is coherent.

(ii) There exist a unary polynomial p : N → N and l ≤ k + 1 homomorphisms
q1, . . . , ql in H(Fn) satisfying the following. For all i ∈ {1, . . . , l}, qi ranges
in the finite MV-chain Łdi ,where

log2 di ≤ p(size(β)),

and 〈β(φi)〉i∈{1,...,k} is a convex combination of

〈q1(φi)〉i∈{1,...,k}, . . . , 〈ql(φi)〉i∈{1,...,k}.

Proof. (i)⇒ (ii) Let s be a state of Fn satisfying Theorem 5.0.4 and let Σ be a unimod-
ular triangulation satisfying Proposition 5.1.2. Let x1, . . . ,xm be the rational vertices
of Σ and put d1 = den(x1), . . . , dn = den(xm). Let ĥi be the normalized Schauder
hat at vertex xi, i ∈ {1, . . . ,m}, and define λ1, . . . , λm ∈ R+ by putting, for every
i ∈ {1, . . . ,m},

λi = s(ĥi).
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Then

λ1 + · · ·+ λm = s(ĥ1) + · · ·+ s(ĥm)

= s(ĥ1 ⊕ · · · ⊕ ĥm) by Lemma 3.3.1(i) and additivity of s

= s(1) by Lemma 3.3.1(ii)

= 1.

Let h = ĥi/di be the Schauder hat at vertex xi, i ∈ {1, . . . ,m}. For all i ∈ {1, . . . , k},
fi is a McNaughton function linearized by Σ, and for j ∈ {1, . . . ,m}, hj is the Schauder
hat at vertex xj of Σ. Thus by (10) there is a unique choice of integers 0 ≤ ai,j ≤
den(xj) ≤ 1 such that

fi =

n∑
j=1

ai,j · hj .

For all i ∈ {1, . . . ,m}, let ti be the homomorphism from Fn to [0, 1]Ł defined by
putting, for every f ∈ Fn,

ti(f) = f(xi).

Note that ti ranges in {0, 1/di, . . . , (di − 1)/di, 1}, and by Proposition 5.1.2,

log2 di = log2 den(xi) ≤ q(size({φ1, . . . , φk})) ≤ p(size(β)),

letting
p(n) = q(n) = n2,

as size({φ1, . . . , φk}) ≤ size(β). For every j ∈ {1, . . . , k}:

m∑
i=1

λi · ti(φj) =

m∑
i=1

λi · fj(xi)

=

m∑
i=1

s(ĥi) · aj,i/di

=

m∑
i=1

s(di · hi) · aj,i/di

=

m∑
i=1

s(aj,i · hi) by Proposition 5.1.1

=

m∑
i=1

s(aj,i/di · ĥi)

= s

(
m⊕
i=1

aj,i/di · ĥi

)
by Lemma 3.3.1(1) and additivity of s

= s(fj).
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As λ1 + · · ·+λn = 1, the point 〈β(φi)〉i∈{1,...,k} is a convex combination of points
〈t1(φi)〉i∈{1,...,k}, 〈t2(φi)〉i∈{1,...,k}, . . . , 〈tm(φi)〉i∈{1,...,k}. By Carathéodory theorem
(see, e.g. [22, Theorem 2.3]), there exists a choice of l ≤ k + 1 homomorphisms
q1, . . . , ql amongst t1, . . . , tm such that (β(φi))i∈{1,...,k} is a convex combination of

〈q1(φi)〉i∈{1,...,k}, . . . , 〈ql(φi)〉i∈{1,...,k},

and we are done.
(ii)⇒ (i) By Theorem 4.1.1, for every λ1, . . . , λm ∈ R+ satisfying

∑m
i=1 λi = 1,

the map s from Fn to [0, 1] defined by putting

s([ϕ]) =

m∑
i=1

λi · qi([ϕ])

for every ϕ ∈ Formn, is a state. This means that β is coherent by Theorem 5.0.4.

5.2 Complexity

Let 〈β〉 denote the binary encoding of some rational Łukasiewicz assessment β.
The problem of deciding coherence of rational Łukasiewicz assessments is defined as:

LUK-COH = {〈β〉 | β is a coherent book on Łukasiewicz formulas}.

THEOREM 5.2.1. LUK-COH is NP-complete.

In the next two paragraphs we prove that LUK-COH is in NP (Lemma 5.2.2) and
is NP-hard (Lemma 5.2.3), thus proving Theorem 5.2.1.
Upper Bound. It is known that the feasibility problem of linear systems is decidable
in polynomial time in the size of the binary encoding of the linear system [56]. There-
fore, Theorem 5.1.3 directly furnishes a nondeterministic polynomial time algorithm for
the coherence problem as follows.

LEMMA 5.2.2. LUK-COH is in NP.

Proof. Let β : {φ1, . . . , φk} → [0, 1] ∩ Q be a rational-valued book on Łukasiewicz
formulas φ1, . . . , φk over variablesA1, . . . , Am. Following Lemma 5.1.3, the algorithm
guesses a natural number l ≤ k + 1 and, for all i ∈ {1, . . . , l}, the algorithm guesses
the denominator di, the restriction of homomorphism qi to variables A1, . . . , Am, and
eventually checks the feasibility of the following linear system:

x1 + · · ·+ xl−1 + xl = 1

q1(φ1)x1 + · · ·+ ql−1(φ1)xl−1 + ql(φ1)xl = β(φ1)

...

q1(φk)x1 + · · ·+ ql−1(φk)xl−1 + ql(φk)xl = β(φk).
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By Lemma 5.1.3, for all i ∈ {1, . . . , l}, the denominator di has a polynomial-space
encoding. It follows that the restriction of qi to A1, . . . , Am, as well as the coefficients
q1(φ1), . . . , ql(φk), are in {0, 1/di, . . . , (di−1)/di, 1}. So the size of the system is poly-
nomial in size(β), and the algorithm terminates in time polynomial in size(β). Notice
that the linear system is feasible if and only if β is a convex combination of q1, . . . , ql if
and only if β is coherent.

Lower Bound. Let 〈φ〉 denote the binary encoding of the formula φ ∈ Form. In [44] it
is proved that the problem

LUK-SAT = {〈φ〉 | φ is satisfiable in Łukasiewicz logic}

is NP-complete.

LEMMA 5.2.3. LUK-COH is NP-hard.

Proof. We provide a logarithmic-space reduction from the NP-hard problem LUK-SAT
to LUK-COH.

Let φ ∈ Formn. Let β be the book sending formulas A1 ⊕ ¬A1, . . . , Am ⊕ ¬Am,
and φ to 1, that is,

β(A1 ⊕ ¬A1) = . . . = β(Am ⊕ ¬Am) = β(φ) = 1.

The construction of the assessment β is feasible in space logarithmic in size(φ). We
show that β is coherent if and only if φ is satisfiable in Łukasiewicz logic.

(⇒) Suppose that β is coherent. Let bi = −1 for all i ∈ [m + 1], and let q be
a homomorphism from Fn to [0, 1]Ł such that (19) holds, that is,

β(φ)− q(φ) ≤
m∑
i=1

(q(Ai ⊕ ¬Ai)− β(Ai ⊕ ¬Ai)).

As q(Ai ⊕ ¬Ai) = 1 = β(Ai ⊕ ¬Ai) for every i ∈ {1, . . . ,m}, the right-hand side
vanishes so that

1 = β(φ) ≤ q(φ) ≤ 1.

(⇐) Let q ∈ H(Fn) be such that q(φ) = 1. Then q is a state of Fn satisfying

q([φ]) = 1 = β(φ)

and for every i ∈ {1, . . . ,m},

q([Ai ⊕ ¬Ai]) = 1 = β(Ai ⊕ ¬Ai).

Hence β is coherent by Example 3.2.2 and Theorem 5.0.4.
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6 MV-algebras with internal states

The content presented in the preceding sections shows that states of MV-algebras
are tightly connected to Borel probability measures on the maximal spectral spaces.
Moreover, de Finetti’s theorem about coherent betting on Boolean events can be gen-
eralized to states and many-valued events. In this section we are going to enrich the
existing perspectives with a purely algebraic approach to states. Namely we are go-
ing to introduce a class of algebras, called SMV-algebras, which provide a universal-
algebraic framework for states. SMV-algebras are defined by expanding the signature
of MV-algebras with a fresh unary symbol σ, which is equationally described in order
to preserve the basic properties of a state. The mapping σ is called an internal state of
an MV-algebra A and, as we will see, it can be successfully applied to cope with de
Finetti’s coherence criterion in a purely algebraic setting, among other applications.

DEFINITION 6.0.1. An MV-algebra with internal state (SMV-algebra, for short) is
an algebra 〈A, σ〉 = 〈A,⊕,¬, σ, 0〉, where 〈A,⊕,¬, 0〉 is an MV-algebra and σ is a
unary operator on A satisfying the following conditions for every x, y ∈ A:

(σ1) σ(0) = 0

(σ2) σ(¬x) = ¬(σ(x))

(σ3) σ(x⊕ y) = σ(x)⊕ σ(y 	 (x� y))

(σ4) σ(σ(x)⊕ σ(y)) = σ(x)⊕ σ(y).

An SMV-algebra 〈A, σ〉 is said to be faithful if it satisfies the following quasi-equation:
σ(x) = 0 implies x = 0.

Clearly the class of SMV-algebras constitutes a variety, which is denoted by SMV.

EXAMPLE 6.0.2. (a) We start with a trivial example. Let A be any MV-algebra and
σ be the identity on A. Then 〈A, σ〉 is an SMV-algebra.

(b) Let σ be an idempotent endomorphism of an MV-algebra A. For example, we
may take A to be a non-trivial ultrapower of the standard MV-algebra [0, 1]Ł and
σ to be the standard part function. Then 〈A, σ〉 is an SMV-algebra.

(c) This is a sufficiently general example for our purposes. Let A be the MV-algebra
of all continuous and piecewise linear functions with real coefficients from [0, 1]n

into [0, 1]. Then A is an MV-algebra endowed with the pointwise application of
the operations ⊕ and ¬. For every f ∈ A let σ(f) be the function from [0, 1]n to
[0, 1] which is constantly equal to∫

[0,1]n
f(x) dx.

It follows that 〈A, σ〉 is an SMV-algebra. It will become clear from the results
of the next section that 〈A, σ〉 is simple and thus subdirectly irreducible, but it
is not totally ordered. This algebra is faithful, i.e., it satisfies the quasi-equation
σ(x) = 0 implies x = 0.
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LEMMA 6.0.3. In any SMV-algebra 〈A, σ〉 the following properties hold:

(i) σ(1) = 1.

(ii) If x ≤ y, then σ(x) ≤ σ(y).

(iii) σ(x⊕ y) ≤ σ(x)⊕ σ(y); and if x� y = 0, then σ(x⊕ y) = σ(x)⊕ σ(y).

(iv) σ(x	 y) ≥ σ(x)	 σ(y); and if y ≤ x, then σ(x	 y) = σ(x)	 σ(y).

(v) d(σ(x), σ(y)) ≤ σ(d(x, y)), where d is the Chang distance.

(vi) σ(x)� σ(y) ≤ σ(x� y). Thus if x� y = 0, then σ(x)� σ(y) = 0.

(vii) σ(σ(x)) = σ(x).

(viii) The image σ(A) of A under σ is the domain of an MV-subalgebra σ(A) of A.

Proof. (i) A direct consequence of (σ1) and (σ2).

(ii) If x ≤ y, then y = x ⊕ (y 	 x), and hence σ(y) = σ(x ⊕ (y 	 x)). Since
x�(y	x) = 0, by (σ3) we get σ(y) = σ(x⊕(y	x)) = σ(x)⊕σ(y	x) ≥ σ(x).

(iii) By (ii), σ(y) ≥ σ(y 	 (x� y)), so

σ(x⊕ y) = σ(x)⊕ σ(y 	 (x� y)) ≤ σ(x)⊕ σ(y).

If (x� y) = 0, then σ(x⊕ y) = σ(x)⊕ σ(y 	 (x� y)) = σ(x)⊕ σ(y).

(iv) Using (σ2), (iii) and the order-reversing property of ¬, we obtain:

σ(x	 y) = σ(¬(¬x⊕ y)) = ¬(σ(¬x⊕ y)) ≥ ¬(¬σ(x)⊕ σ(y))

= ¬(¬(σ(x))⊕ σ(y)) = σ(x)	 σ(y).

Moreover, if y ≤ x, then ¬x� y = 0. Hence again by (c),

σ(x	 y) = ¬(σ(¬x⊕ y)) = ¬(σ(¬x)⊕ σ(y)) = σ(x)	 σ(y).

(v) Since (x 	 y) � (y 	 x) = 0, by (iv) and (iii) we get σ(d(x, y)) = σ(x 	 y) ⊕
σ(y 	 x) ≥ (σ(x)	 σ(y))⊕ (σ(y)	 σ(x)) = d(σ(x), σ(y)).

(vi) We have x� y = x	 ¬y and thus (iv) and (σ2) yield

σ(x� y) = σ(x	 ¬y) ≥ σ(x)	 σ(¬y) = σ(x)	 ¬(σ(y)) = σ(x)� σ(y).

If x� y = 0, then 0 = σ(x� y) ≥ σ(x)� σ(y). Therefore, σ(x� y) = 0.

(vii) By (i), σ(0) = 0, and using (σ4) we get

σ(σ(x)) = σ(σ(x)⊕ σ(0)) = σ(x)⊕ σ(0) = σ(x).

(viii) By (vii), the range of σ consists of all the fixed points of σ. Therefore, it is
sufficient to prove that the set of the fixed points is closed under ⊕ and under ¬.
Closure under ⊕ follows from (σ4). Concerning closure under ¬, using (σ2) and
(vii), we get σ(¬(σ(x))) = ¬(σ(σ(x)) = ¬(σ(x)).
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6.1 Subdirectly irreducible SMV-algebras

A σ-filter of an SMV-algebra 〈A, σ〉 is a filter in the MV-algebra A closed under σ.
Given a congruence θ of an SMV-algebra 〈A, σ〉, we define

Fθ = {x ∈ A | 〈x, 1〉 ∈ θ}.

Conversely, given a σ-filter F of 〈A, σ〉, we define

θF = {〈x, y〉 | ¬(d(x, y)) ∈ F},

where d is the Chang distance.

THEOREM 6.1.1. The maps F 7→ θF and θ 7→ Fθ are mutually inverse isomorphisms
between the lattice of congruences of an SMV-algebra 〈A, σ〉, and the lattice of σ-fil-
ters of 〈A, σ〉.

Proof. The above defined maps are mutually inverse isomorphisms between the lattice
of MV-congruences and the lattice of MV-filters. Therefore it suffices to prove that F
is a σ-filter iff θF is an SMV-congruence. Since σ(1) = 1, the congruences classes of 1
are σ-filters. Conversely, let F be a σ-filter of an SMV-algebra 〈A, σ〉. If 〈x, y〉 ∈ θF ,
then ¬(d(x, y)) ∈ F , so that σ(¬d(x, y)) ∈ F , where F is a σ-filter. From Lemma 6.0.3
(v) we obtain d(σ(x), σ(y)) ≤ σ(d(x, y)), and thus by the order-reversing property of ¬
it follows that ¬(d(σ(x), σ(y))) ≥ ¬(σ(d(x, y))) ∈ F . Hence ¬(d(σ(x), σ(y))) ∈ F ,
and 〈σ(x), σ(y)〉 ∈ θF . In conclusion, θF is a congruence of 〈A, σ〉.

For every positive integer n and a ∈ A we define

an = a� · · · � a︸ ︷︷ ︸
n

.

LEMMA 6.1.2. Let 〈A, σ〉 be an SMV-algebra. Then the σ-filter Fσ(x) generated by
a single element σ(x) ∈ σ(A) is Fσ(x) = {y ∈ A | ∃n ∈ N(y ≥ σ(x)n)}.

Proof. Let H = {y ∈ A | ∃n ∈ N(y ≥ σ(x)n)}. By the definition of σ-filter, every
element of H also belongs to Fσ(x). Thus H ⊆ Fσ(x). For the converse inclusion, it
is sufficient to prove that H is a σ-filter and σ(x) ∈ H . Let us show that H is closed
under σ. If y ∈ H , then there is n ∈ N such that y ≥ σ(x)n. By Lemma 6.0.3 (ii), (vi)
and (vii), we get

σ(y) ≥ σ(σ(x)n) ≥ (σ(σ(x)))n ≥ σ(x)n.

Thus σ(y) ∈ H . That σ(x) ∈ H is trivial.

Now we are ready to prove the main result of this section.

THEOREM 6.1.3. (i) If 〈A, σ〉 is a subdirectly irreducible SMV-algebra, then σ(A)
is linearly ordered.

(ii) If 〈A, σ〉 is faithful, then 〈A, σ〉 is a subdirectly irreducible SMV-algebra iff σ(A)
is a subdirectly irreducible MV-algebra.
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Proof. (i) Let H be the smallest non-trivial σ-filter of 〈A, σ〉 and let x ∈ H \ {1}.
Suppose by contradiction that σ(A) is not linearly ordered, and let σ(a), σ(b) ∈ σ(A)
be such that σ(a) 6≤ σ(b) and σ(b) 6≤ σ(a). Then the filters Fσ(a)→σ(b) and Fσ(b)→σ(a)

generated by σ(a) → σ(b) and σ(b) → σ(a), respectively, are non-trivial. Hence they
both contain H . In particular, x ∈ Fσ(a)→σ(b) and x ∈ Fσ(b)→σ(a). Since we know that
σ(a) → σ(b) ∈ σ(A) and σ(b) → σ(a) ∈ σ(A), by Lemma 6.1.2 there is n ∈ N such
that x ≥ (σ(a)→ σ(b))n and x ≥ (σ(b)→ σ(a))n. Therefore,

x ≥ (σ(a)→ σ(b))n ∨ (σ(b)→ σ(a))n = 1.

Hence x = 1, which is a contradiction.
(ii) If 〈A, σ〉 is faithful, then by definition σ(x) = 0 implies x = 0 and σ(x) = 1

implies x = 1. It follows that the intersection of a non-trivial σ-filter H of 〈A, σ〉 with
σ(A) is a non-trivial σ-filter of σ(A). Moreover, every filter of σ(A) is closed under σ.
Then every MV-filter of σ(A) is indeed a σ-filter. Hence, if H is a minimal σ-filter of
〈A, σ〉, then H ∩ σ(A) is a minimal non-trivial σ-filter of σ(A). In fact, if F is another
non-trivial filter of σ(A), then the σ-filter F ′ of 〈A, σ〉 generated by F contains H , and

F = F ′ ∩ σ(A) ⊇ H ∩ σ(A).

Hence H ∩σ(A) is minimal. Therefore, if 〈A, σ〉 is subdirectly irreducible, so is σ(A).
Conversely, if H is the minimal non-trivial filter of σ(A), then the σ-filter F of

〈A, σ〉 generated by H is the minimal non-trivial σ-filter of 〈A, σ〉. Indeed, if G is
another non-trivial σ-filter of 〈A, σ〉, then G ∩ σ(A) ⊇ F ∩ σ(A) = H . Then G
contains the σ-filter generated by H , that is, F ⊆ G and F is minimal. Thus 〈A, σ〉 is
subdirectly irreducible.

REMARK 6.1.4. In addition to the results contained in the previous theorem, the subdi-
rectly irreducible SMV-algebras have been completely characterized by Dvurečenskij,
Kowalski and Montagna. Their proof requires techniques from universal algebra which
are out of the scope of this chapter. We invite the interested reader to consult the last
section of this document, where we include an extensive list of references.

REMARK 6.1.5. The variety SMV is not generated by its linearly ordered algebras. In-
deed, the equation σ(x∨y) = σ(x)∨σ(y) is valid in any linearly ordered SMV-algebra,
but it does not hold in general. It is enough to consider Example 6.0.2 (c) with f(x) = x
and g(x) = 1− x. Then σ(f ∨ g) = 3

4 > σ(f) ∨ σ(g) = 1
2 .

6.2 States of MV-algebras and internal states

In this section we relate the notion of an SMV-algebra and that of state of an
MV-algebra. We will show that, starting from an SMV-algebra 〈A, σ〉, one can define
a state s of the MV-algebra A. Conversely, starting from a state s of an MV-algebra A,
we shall recover an MV-algebra T containing A as an MV-subalgebra together with an
internal state σ of T .

Let us start with an SMV-algebra 〈A, σ〉. By Lemma 6.0.3 (viii), 〈σ(A),⊕,¬, 0〉
is an MV-subalgebra of A, where ⊕ and ¬ denote respectively the restrictions of MV-
algebraic operations of A to σ(A). If M is a maximal filter of σ(A), then the quo-
tient MV-algebra σ(A)/M is simple and thus there has to be a unique embedding of
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σ(A)/M into the standard MV-algebra [0, 1]Ł; see the proof of Proposition 3.1.5. Let
i : σ(A)/M ↪→ [0, 1]Ł be such an embedding and let ηM : σ(A) → σ(A)/M be the
canonical MV-homomorphism induced by the maximal filter M . Finally, let us call s
the map obtained by the composition

i ◦ ηM ◦ σ : A→ [0, 1]Ł. (23)

Then s is a state of A as the following theorem shows.

THEOREM 6.2.1. Let 〈A, σ〉 be any SMV-algebra and let s : A → [0, 1]Ł be defined
by (23). Then s is a state of A.

Proof. Since σ, i and ηM preserve 1, it is clear that s(1) = 1. To show that s is additive,
let x, y ∈ A be such that x � y = 0. By Lemma 6.0.3 (iii) one has σ(x ⊕ y) =
σ(x) ⊕ σ(y). Moreover, by Lemma 6.0.3 (f), σ(x) � σ(y) = 0, thus s(x) � s(y) = 0.
Hence s(x⊕ y) = s(x)⊕ s(y) = s(x) + s(y)− (s(x)� s(y)) = s(x) + s(y).

Conversely, we shall obtain an SMV-algebra from an MV-algebra equipped with
a state. To this purpose, we need to introduce an MV-algebraic tensor product (or
simply a tensor product) between MV-algebras. Let A, B and C be MV-algebras.
A bimorphism from the direct product A×B of A and B into C, is a map Υ satisfying
the following list of properties:

(i) Υ(1, 1) = 1 and for all a ∈ A and b ∈ B, Υ(a, 0) = Υ(0, b) = 0.

(ii) For all a, a1, a2 ∈ A and b, b1, b2 ∈ B, Υ(a1 ∧ a2, b) = Υ(a1, b) ∧ Υ(a2, b),
Υ(a1 ∨ a2, b) = Υ(a1, b) ∨ Υ(a2, b) and Υ(a, b1 ∧ b2) = Υ(a, b1) ∧ Υ(a, b2),
Υ(a, b1 ∨ b2) = Υ(a, b1) ∨Υ(a, b2).

(iii) For all a, a1, a2 ∈ A and b, b1, b2 ∈ B, if a1 � a2 = 0, then Υ(a1 � a2, b) =
Υ(a1, b)�Υ(a2, b) and Υ(a1⊕a2, b) = Υ(a1, b)⊕Υ(a2, b). If b1�b2 = 0, then
Υ(a, b1 � b2) = Υ(a, b1)�Υ(a, b2) and Υ(a, b1 ⊕ b2) = Υ(a, b1)⊕Υ(a, b2).

Then the tensor product A⊗B of two MV-algebras A and B is an MV-algebra (unique
up to an isomorphism) such that there is a universal bimorphism Υ from A × B into
A ⊗ B. Universality means that for any bimorphism Υ′ : A × B → C, where C
is an MV-algebra, there exists a unique homomorphism λ : A ⊗ B → C such that
Υ′ = λ ◦Υ.

In algebraic terms, A⊗B is constructed in the following way: let F (A×B) be the
free MV-algebra over the free generating set A × B. Let IT be the ideal of F (A × B)
generated by the following elements for every a, a1, a2 ∈ A and b, b1, b2 ∈ B:

(i) d(〈1, 1〉, 1)

(ii) d(〈a, 0〉, 0)

(iii) d(〈0, b〉, 0)

(iv) d(〈a1 ∧ a2, b〉, 〈a1, b〉 ∧ 〈a2, b〉)

(v) d(〈a1 ∨ a2, b〉, 〈a1, b〉 ∨ 〈a2, b〉)

(vi) d(〈a, b1 ∧ b2〉, 〈a, b1〉 ∧ 〈a, b2〉))
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(vii) d(〈a, b1 ∨ b2〉, 〈a, b1〉 ∨ 〈a, b2〉),

(viii) d(〈a1 � a2, b〉, 0) whenever a1 � a2 = 0

(ix) d(〈a1 ⊕ a2, b〉, 〈a1, b〉 ⊕ 〈a2, b〉) whenever a1 � a2 = 0

(x) d(〈a, b1 � b2〉, 0) whenever b1 � b2 = 0

(xi) d(〈a, b1 ⊕ b2〉, 〈a, b1〉 ⊕ 〈a, b2〉) whenever b1 � b2 = 0.

Then we define A⊗B to be the MV-algebra F (A×B)/IT .
In the following we consider the tensor products of the form T = [0, 1]Ł⊗A, where

A is an arbitrary MV-algebra. For every α ∈ [0, 1] and a ∈ A, we shall denote Υ(α, a)
by α⊗ a.

PROPOSITION 6.2.2. Let T = [0, 1]Ł⊗A. Then the following conditions hold for any
α, α1, α2 ∈ [0, 1] and any a, a1, a2 ∈ A:

(i) (α1⊕α2)⊗ 1 = (α1⊗ 1)⊕ (α2⊗ 1), and 1⊗ (a1⊕ a2) = (1⊗ a1)⊕ (1⊗ a2).

(ii) ¬(α⊗ 1) = (1− α)⊗ 1, and ¬(1⊗ a) = 1⊗ ¬a.

(iii) The maps Φ: α 7→ (α⊗ 1), and Ψ: a 7→ (1⊗ a) are respectively embeddings of
[0, 1]Ł and A into T .

(iv) If α1 � α2 = 0, then (α1 + α2)⊗ a = (α1 ⊗ a)⊕ (α2 ⊗ a), and if a1 � a2 = 0,
then α⊗ (a1 ⊕ a2) = (α⊗ a1)⊕ (α⊗ a2).

(v) α⊗ (a1	a2) = (α⊗a1)	 (α⊗a2), and (α1	α2)⊗a = (α1⊗a)	 (α2⊗a).

(vi) 1 ⊗ 1 is the top element of T , while for every a ∈ A and every α ∈ [0, 1], 0 ⊗ a
and α⊗ 0 coincide with the bottom element of T .

Proof. All the properties but (iii) are straightforward consequences of the tensor product
construction explained above. For the proof of (iii) see Proposition 2.1 in [35].

Due to Proposition 6.2.2 (iii), for any α ∈ [0, 1], we may denote α⊗ 1 by α.

THEOREM 6.2.3. Let A be an MV-algebra and s be a state of A. Then there exists a
state ŝ : [0, 1]Ł⊗A→ [0, 1] making 〈T , ŝ〉 an SMV-algebra. Moreover, if Φ and Ψ are
the embeddings of [0, 1]Ł and A into T , respectively, then Φ(s(a)) = ŝ(Ψ(a)) for each
a ∈ A.

Proof. Let us define the state s1 of Ψ(A) by the stipulation s1(Ψ(a)) = s(a) for every
a ∈ A. Then, since Ψ(A) is an MV-subalgebra of T , by Corollary 3.4.2 the state s1

can be extended to a state s2 : [0, 1]Ł ⊗ A → [0, 1]. Finally, the map ŝ : [0, 1]Ł ⊗ A →
[0, 1]Ł ⊗A defined by

ŝ(t) = s2(t)⊗ 1

makes (T , ŝ) into an SMV-algebra. Moreover, for every a ∈ A,

ŝ(Ψ(a)) = s2(Ψ(a))⊗ 1 = Φ(s(a))

and the claim is settled.
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6.3 Dealing with coherent books in SMV-algebraic theory

Let φ1, . . . , φk be formulas of Łukasiewicz logic and let β : [φi] 7→ βi be a rational-
valued book, that is, let us assume that the βi’s are rational numbers, say βi = ni

mi
. More-

over, let x1, . . . , xk be fresh variables, and consider for each i = 1, . . . , k, the equations

εi : (mi − 1)xi = ¬xi δi : σ(φ) = nixi.

Then we can prove the following:

THEOREM 6.3.1. Let β : [φi] 7→ ni
mi

be a rational book on the Łukasiewicz formulas
φ1, . . . , φk. Then the following are equivalent:

(i) β is coherent.

(ii) The equations εi and δi (for i = 1, . . . , k) are satisfied in some non-trivial SMV-
algebra.

Proof. As in Example 3.2.4, let F be the Lindenbaum algebra of Łukasiewicz logic
over countably-many variables. By Theorem 5.0.4 it is sufficient to prove that (ii) is
equivalent to the existence of a state s on F such that, for all i = 1, . . . , k, s([φi]) = ni

mi
.

(i)⇒ (ii). Let s be a state on F extending β. Recalling the tensor product construc-
tion (see Theorem 6.2.3), let T = [0, 1]Ł ⊗ F and let σ : T → T be defined as in the
proof of Theorem 6.2.3. Since 1⊗ [φi] ∈ [0, 1]Ł⊗F and σ(1⊗ [φi]) = s([φi]), for each
i = 1, . . . , n, it is clear that σ extends s (up to an isomorphism).

Let V be a valuation on 〈T , σ〉 such that V (xi) = 1
mi

for each i = 1, . . . , n (notice
that 1

mi
= 1

mi
⊗ [1] ∈ [0, 1]Ł⊗F , whence V is a valuation on 〈T , σ〉). Then V satisfies

the equations εi because

(mi − 1)V (xi) =
mi − 1

mi
= 1− 1

mi
= V (¬xi).

Moreover, V satisfies the equations δi:

σ(1⊗ [φi]) = 1 · s([φi]) = s([φi]) =
ni
mi

= niV (xi).

Thus the equations εi and δi are satisfied in a non-trivial SMV-algebra as required.
(ii)⇒ (i). Let 〈A, σ〉 be an SMV-algebra and V be a valuation on 〈A, σ〉 satisfying

the equations εi and δi for each i = 1, . . . , k. Without loss of generality, we may
assume that A is finitely (or even countably) generated, so that there is an epimorphism
hV : F → A such that hV ([x]) = V ([x]) for every propositional variable x. Then

(mi − 1)hV ([x]) = ¬(hV ([xi])) and σ(hV ([φi])) = nihV ([xi]).

As in the proof of Theorem 6.2.1, let M be a maximal MV-filter of σ(A) and define,
for each [ψ] ∈ F ,

s([ψ]) = σ(hV ([ψ]))/M.



Chapter XVII: States of MV-algebras 1225

Since quotients preserve identities, one has

s([φi]) = (nihV ([xi]))/M and (mi − 1)(hV ([xi])/M) = ¬(hV ([xi])/M).

Hence the MV-homomorphism ηM : σ(A)/M → [0, 1]Ł maps hV ([xi])/M to 1
mi

and
s([φi]) to ni

mi
, respectively.

It remains to be proved that s is a state of F . First of all it is clear that s([1]) = 1.
As for additivity, let [ψ1], [ψ2] ∈ F such that [ψ1]� [ψ2] = 0. Then

s([ψ1]⊕ [ψ2]) = (σ(hV ([ψ1])⊕ hV ([ψ2])))/M

= (σ(hV ([ψ1])))/M ⊕ (σ(hV ([ψ2])))/M

= s([ψ1])⊕ s([ψ2])

= s([ψ1]) + s([ψ2]),

where the last equality follows from the following fact: if [ψ1] � [ψ2] = 0, then
hV ([ψ1])� hV ([ψ2]) = 0 in A, and so

s([ψ1])� s([ψ2]) = (σ(hV ([ψ1])))� σ(hV ([ψ2]))/M = 0/M = 0

and s([ψ1])⊕ s([ψ2]) = s([ψ1]) + s([ψ2]). This implies that s is a state of F extending
the assessment β. Therefore β is coherent.

7 Conditional probability and Dutch Book argument

One of the main motivations for dealing with conditional probability in the classical
Boolean setting is to quantify the uncertainty degree of an “event given an event”. In this
scenario, given two elements a, b of a Boolean algebra B, the conditional probabilistic
value of the conditional event “a given b”—denoted a|b—is computed with the help of
a given unconditional finitely additive probability measure µ : B → [0, 1] as follows:

µ(a|b) =
µ(a ∧ b)
µ(b)

. (24)

Clearly, the value µ(a|b) is defined only when µ(b) 6= 0. This means that we can
define a conditional probability µ(· | ·) as a partial map on the product B × B via (24).
Every conditional probability satisfies the following fundamental property, which also
motivates the definition of conditional states: whenever b ∈ B is such that µ(b) 6= 0,
then the function µ(· |b) : B → [0, 1] is a finitely additive probability measure.

In order to define conditional states, it is worth noticing that the direct generaliza-
tion of (24) by substituting the operation ∧ with the MV-operation � fails to satisfy
the additivity property of states. Indeed, if a1, a2, b are elements of an MV-algebra A
such that a1 � a2 = 0 and s is a state of A with s(b) > 0, then

s((a1 ⊕ a2)� b)
s(b)

6= s(a1 � b) + s(a2 � b)
s(b)

since � does not distribute over ⊕.
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A possible solution is to introduce a new MV-algebraic operation whose standard
behavior has the features of the usual product between real numbers. The resulting
algebraic structures are called PMV+-algebras.

DEFINITION 7.0.1. A PMV+-algebra is a pair 〈A, ·〉 such that A is an MV-algebra
and · is a binary operation on A satisfying the following properties for all x, y, z ∈ A:

(i) 〈A, ·, 1〉 is a commutative monoid.

(ii) x · (y 	 z) = (x · y)	 (x · z).

(iii) If x · x = 0, then x = 0.

The class of PMV+-algebras forms a quasivariety, which can be generated by the
standard algebra [0, 1]PMV+ = 〈[0, 1]Ł, ·〉, where · is the ordinary product of real num-
bers in [0, 1]. Let A and B be PMV+-algebras. A map h : A → B is a PMV+-
homomorphism if h is an MV-homomorphism and h(a · b) = h(a) · h(b). For every
PMV+-algebra A, we denote byH+(A) the set of homomorphisms of A in [0, 1]PMV+ .
A filter of a PMV+-algebra A is a subset F ofA such that F is a filter of the MV-reduct
A− of A and for every a, b ∈ F , the condition a · b ∈ F holds. By a state of a PMV+-
algebra A we mean a state of its MV-reduct.

REMARK 7.0.2. If A is a PMV+-algebra, it is known that A and its MV-reduct A−

have the same congruences. In particular, Max(A) = Max(A−). Let s be a state
of a PMV+-algebra A. Then, since s is a state of A−, by Theorem 4.0.1 there exists
a unique probability measure µ ∈M(Max(A−)) such that, for every a ∈ A,

s(a) =

∫
Max(A−)

a∗(M) dµ(M) =

∫
Max(A)

a∗(M) dµ(M).

Therefore, states of PMV+-algebras corresponds to integrals with respect to regular
Borel probability measures.

Analogously to the Many-valued Coherence Criterion for MV-algebras, we intro-
duce the following notions. For every PMV+-algebra A and a finite subset A′ =
{e1, . . . , ek} of A, a book on A′ is defined to be a map from A′ into [0, 1]. An as-
sessment β is called coherent if the bookmaker does not lose money in every possible
world w ∈ H+(A).

LEMMA 7.0.3. Let e1, . . . , ek be elements of a PMV+-algebra A and let β : ei 7→ βi
be a book. Then the following are equivalent:

(i) β is coherent.

(ii) β extends to a state of A.

Proof. Adopting the same notation as in Remark 7.0.2, let A− be the MV-reduct of A.
Then the book β (regarded as a partial map onA−) is coherent if and only if there exists a
state of A− that extends it (cf. Theorem 5.0.4) if and only if, by the above Remark 7.0.2,
there is a state of A that extends it.
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Similarly to the Boolean setting, any state s of a PMV+-algebra A defines a con-
ditional state, which can also be regarded as a partial map on A× A by the stipulation:
for every a, b ∈ A,

s(a|b) =
s(a · b)
s(b)

, whenever s(b) > 0. (25)

We may leave s(a|b) undefined otherwise.

PROPOSITION 7.0.4. Let A be any PMV+-algebra, s be a state of A and let b ∈ A
be such that s(b) 6= 0. Then the map s(· |b) : A→ [0, 1] is a state of A.

Proof. We have

s(1|b) =
s(1 · b)
s(b)

= 1.

Let a1, a2 ∈ A be such that a1�a2 = 0. Then (a1 · b)� (a2 · b) = 0 and (a1⊕a2) · b =
(a1 · b)⊕ (a2 · b). Therefore

s(a1 ⊕ a2|b) =
s((a1 ⊕ a2) · b)

s(b)
=
s((a1 · b)⊕ (a2 · b))

s(b)
=
s(a1 · b) + s(a2 · b)

s(b)

= s(a1|b) + s(a2|b).

This means that s(· |b) is a state of the MV-reduct of A and our claim is settled.

7.1 Bookmaking on many-valued conditional events

The classical coherence criterion discussed in Section 5 was extended by de Finetti
[17] to a class {e1|h1, . . . , ek|hk} of conditional events by introducing an additional rule
on which a bookmaker and a gambler must agree: any bet on a conditional event ei|hi
is ruled out in a possible world w, when w falsifies hi, that is, w(hi) = 0.

When moving from classical to many-valued events, it is reasonable to assume that
the truth value w(hi) is neither 0 nor 1. Consider for instance the following example
introduced by Franco Montagna: suppose that we are betting on the conditional event
“The Barcelona soccer team will win the next match, provided that Messi plays”. For
convenience, let us denote by φ the event “the Barcelona soccer team will win” and
by ψ the antecedent of the previous statement: “Messi will play”, so that the above
conditional event can be written as φ|ψ. Assume that, during the soccer match (and
hence in the possible world w), Messi plays the whole match except for the last 30
seconds. It would not make sense to completely invalidate the bet; instead it would be
meaningful to think that the bet on that many-valued conditional event is true to the
degree w(ψ). Thus, if w(ψ) = 1, then the bet is completely valid. If w(ψ) = 0, then
the bet is called off. In all the intermediate cases 0 < w(ψ) < 1 the bet is partially valid
with degree w(ψ). Obviously, in order to cope with the partial validity of bets, we shall
require our book to be complete, meaning that if the bookmaker chooses many-valued
conditional events e1|h1, . . . , ek|hk to assign a betting odd, he will also assign a betting
odd to the antecedent h1, . . . , hk of each conditional event.
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REMARK 7.1.1. In this section many-valued events will be identified with elements of
any PMV+-algebra. Therefore, when we will speak about a many-valued conditional
event, we always refer to an ordered pair 〈ei, hi〉 (denoted by ei|hi) of elements of a
PMV+-algebra.

Formally, let C = {e1|h1, . . . , ek|hk} be a set of many-valued conditional events
and U = {u1, . . . , ul} (with l ≥ k) be a set of many-valued unconditional events such
that for all i = 1, . . . , k, there is j = 1, . . . , l such that hi = uj . Further, let there
be a complete book β such that β(ei|hi) = βi and β(uj) = γj ; if the gambler bets
σi on ei|hi and λj on uj , respectively, then the bookmaker’s balance with respect to
the possible world w is computed as

k∑
i=1

σiw(hi)(βi − w(ei)) +

l∑
i=j

λj(γj − w(uj)).

A many-valued coherence criterion can be formulated in the following way.
Many-valued Conditional Coherence Criterion. Let A be a PMV+-algebra and
let C and U be defined as above. A complete book such that β(ei|hi) = βi and
β(uj) = γj is said to be conditionally coherent if and only if for every choice of
σ1, . . . , σk, λ1, . . . , λl ∈ R, there exists w ∈ H+(A) that does not cause a sure loss,
that is,

k∑
i=1

σiw(hi)(βi − w(ei)) +

l∑
j=1

λj(γj − w(uj)) ≥ 0. (26)

In the rest of this section, we will always assume that βi and γj are rational numbers
and, moreover, we will use the following notation without danger of confusion:

(i) For all i = 1, . . . , k, βi denotes the value that a complete book β assigns to
the conditional events ei|hi (for i = 1, . . . , k), while, for every j = 1, . . . , l, γj
denotes the value β(uj).

(ii) When we will refer to a class C of many-valued conditional events and a class
of many-valued unconditional events U , we will always understand that for each
ei|hi ∈ C there is uj ∈ U such that hi = uj . Therefore, we shall speak about
a conditional book β on C ∪U without loss of generality and in particular, unless
otherwise specified, we will always assume that C = {e1|h1, . . . , ek|hk} and
U = {u1, . . . , ul}.

We are going to characterize complete coherent books in terms of conditional states.
Clearly, since a conditional state is not defined for any conditional event e|h, where
s(h) = 0, we have to ensure that all the antecedents hi’s were assigned positive betting
odds in a complete book β. In this case, i.e., when γi > 0 for all hi’s, we will say
that the complete book β is positive. In what follows we will show that this is not
so restrictive. Nevertheless, for the sake of clarity, let us start by considering the case
of positive complete books.

LEMMA 7.1.2. Let A be a PMV+ algebra and let β be a positive complete book on
C ∪U . Then β avoids sure loss iff β′ : hi 7→ γi, ei ·hi 7→ βiγi (i ≤ k) avoids sure loss.
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Proof. (⇐) We argue contrapositively. Suppose that betting λ1, ..., λk, σ1, . . . , σk on
h1, . . . , hk, e1|h1, . . . , ek|hk causes a sure loss. Then

k∑
i=1

λi(βi − w(hi)) +

k∑
i=1

σiw(hi)(γi − w(ei)) < 0

for every valuation w. Adding and subtracting σiγiβi yield

k∑
i=1

λi(βi − w(hi)) +

k∑
i=1

σi(γiβi − w(ei · hi)) +

k∑
i=1

σiγi(w(hi − βi) < 0,

so that
k∑
i=1

(λi − σiγi)(βi − w(hi)) +

k∑
i=1

σi(γiβi − w(ei · hi)) < 0.

Therefore by betting λi − σiγi on hi and σi on eihi we cause a sure loss and β′ is not
coherent.

(⇒) Conversely, if β′ is not coherent, then there are δi, µi (i = 1, . . . , k) such that

k∑
i=1

δi · (βi − w(hi)) +

k∑
i=1

µi(γiβi − w(ei · hi)) < 0

for every valuation w. Adding and subtracting µiγi(βi − w(hi)) give

k∑
i=1

(δi+µiγi)(βi−w(hi))+

k∑
i=1

µi(γiβi−w(ei) ·w(hi))−
k∑
i=1

µiγi(βi−w(hi)) < 0,

which implies

k∑
i=1

(δi + µiγi)(βi − w(hi)) +

k∑
i=1

µi · w(hi)(γi − w(ei)) < 0.

It follows that betting δi + µiγi on hi and µi on ei|hi causes a sure loss and hence β is
not conditionally coherent.

THEOREM 7.1.3. Let A be a PMV+-algebra and let β a positive complete book on
C ∪ U . Then the following are equivalent:

(i) β is conditionally coherent.

(ii) There is a state s of A such that, for all i = 1, . . . , k, βis(hi) = s(ei · hi) and
γi = s(hi), i.e., for all i = 1, . . . , k, βi = s(ei|hi) and γi = s(hi).

Proof. It follows from Lemma 7.1.2 that β is conditionally coherent if and only if
the book β′ on {ei · hi, hi|i = 1, . . . , k} ⊂ A, which assigns β′(ei · hi) = βiγi and
β′(hi) = γi, is coherent as well. By Lemma 7.0.3, there is a state s of A such that,
for all i = 1, . . . , k, s(ei · hi) = βiγi and s(hi) = γi. Thus s(hi)βi = s(ei · hi) and
the claim is settled.
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Let us now analyze the case of a not necessarily positive complete book β on C∪U .
We will assume that for some hi’s, β(hi) = 0. Without loss of generality, let h1, . . . , ht
(for t < k) be such that β assigns a strictly positive value to them, while β(ht+1) =
· · · = β(hk) = 0. In what follows, we shall denote by β− the complete book obtained
by removing from β all the occurrences of ei|hi for which β(hi) = 0. In other words,
β− will denote the complete book on C ′ ∪U = {e1|h1, . . . , et|ht, u1, . . . , ul} obtained
from β by restriction.

LEMMA 7.1.4. Let A be a PMV+-algebra and β be a complete book on C ∪U . Then:

(i) β is conditionally coherent if and only if so is β− on C ′ ∪ U .

(ii) There is a s state of A such that for all i = 1, . . . , k, s(ei · hi) = β(ei|hi)s(hi)
if and only if there is a state s′ of A such that for all i = 1, . . . , t, s′(ei · hi) =
β−(ei|hi)s′(hi).

Proof. (i) It is easy to see that if β is conditionally coherent, then so is β−. Con-
versely, let us assume β− to be conditionally coherent. Then, since β− is positive, by
Lemma 7.1.2 and Lemma 7.0.3 there are k + l + 1 ≥ t+ l + 1 homomorphisms ws of
A into [0, 1]PMV+ and positive real numbers α1, . . . , αk+l+1 such that

∑k+l+1
s=1 αs = 1

and the following holds:

(c1) For all uj such that for some i = 1, . . . , k, uj = hi and i ≤ t, we have

β−(hi) =

k+l+1∑
s=1

αsws(hi).

(c2) If i > t, then β−(hi) =

k+l+1∑
s=1

αsws(hi) = 0.

(c3) For all i = 1, . . . , t, β−(ei|hi) =

k+l+1∑
s=1

αsws(ei)ws(hi)

k+l+1∑
s=1

αsws(hi)

.

Let σ1, . . . , σk, λ1, . . . , λl be any system of bets on β. Then there exists y with 0 ≤ y ≤
k + l + 1 and such that the homomorphism wy of A into [0, 1]PMV+ satisfies

t∑
i=1

σiwy(hi)(β(ei|hi)− wy(ei)) +

l∑
j=1

λj(β(uj)− wy(uj)) ≥ 0.

By way of contradiction, assume that for all s = 1, . . . , k + l + 1,

t∑
i=1

σiws(hi)(β(ei|hi)− ws(ei)) +

l∑
j=1

λj(β(uj)− ws(uj)) < 0.
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Then, letting

w′(a) =

k+l+1∑
s=1

αsws(a)

we obtain

t∑
i=1

σiw
′(hi)β(ei|hi)−

t∑
i=1

σiw
′(hi)w

′(ei) +

l∑
j=1

λj(β(uj)− w′(uj)) < 0.

On the other hand, from the above (c1), (c3) and the definition of w′, we have

t∑
i=1

σiw
′(hi)β(ei|hi) =

t∑
i=1

σiw
′(hi)w

′(ei) and
l∑

j=1

λj(β(uj)− w′(uj)) = 0,

a contradiction.
Moreover, from (c2) is follows that for all i ≥ t, wy(hi) =

∑k+l+1
s=1 αsws(hi) = 0

and hence

k∑
i=1

σiwy(hi)(β(ei|hi)− wy(ei)) +

l∑
j=1

λj(β(uj)− wy(uj)) ≥ 0

and β is conditionally coherent.
(ii) Since β extends β−, each state extending β extends β− as well. Conversely,

assume that s is a state extending β−. Then, for every i > t, we have s(hi) = 0 and
thus s(ei · hi) = 0. Therefore s satisfies s(ei · hi) = β(ei|hi)s(hi) for all i = 1, . . . , k
and the claim is proved.

The expected characterization theorem follows from Lemma 7.0.3 and 7.1.4.

THEOREM 7.1.5. Let A be a PMV+-algebra and β be a complete book on C ∪ U .
Then the following are equivalent:

(i) β is conditionally coherent.

(ii) There is a state of A such that for all i = 1, . . . , k,

s(ei · hi) = β(ei|hi)s(hi).

(iii) There are homomorphisms w1, . . . , wk+l+1 and positive reals α1, . . . , αk+l+1

such that
∑k+l+1
s=1 αs = 1, and

(a) for all i ≤ t, γi =

k+l+1∑
s=1

αsws(hi),

(b) for all i = 1, . . . , k, β(ei|hi)
k+l+1∑
s=1

αsws(hi) =

k+l+1∑
s=1

αsws(ei)ws(hi).
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8 Historical remarks and further reading

The states of MV-algebras were defined and studied by Mundici in [45] as averaging
processes for truth values in Łukasiewicz logic. Since then the topic attracted a number
of researchers in many-valued logics. In this chapter we made an effort to include state-
of-the-art results and, in the same time, to present self-contained proofs together with
some useful techniques for dealing with states. This approach unavoidably led to omit-
ting some important developments; otherwise the scope of mathematical prerequisites
would become too broad, ranging from piecewise linear topology to geometric mea-
sure theory. Thus many highly interesting parts of the theory are not discussed in this
chapter, such as the rational measure of rational polyhedra, Rényi invariant conditional
in Łukasiewicz logic, and the properties of Lebesgue state. The interested reader is
referred to Mundici’s recent book [48] for an in-depth treatment of those topics.

Three chapters of Handbook of measure theory published in 2002 are related to
states of MV-algebras. Barbieri and Weber [8] studied MV-algebraic measures, which
are bounded additive real functions on MV-algebras. The set of all such functions forms
a Dedekind complete vector lattice such that the state space is the base of a lattice cone
made of bounded additive and positive functions. Probability on MV-algebras is the
chapter [55] by Riečan and Mundici in which an MV-algebraic counterpart of Boolean
probability is thoroughly explored. The notion of a probability MV-algebra, which is a
σ-complete MV-algebra equipped with a σ-order continuous state, is the framework for
developing point-free versions of the central limit theorem, individual ergodic theorem,
and Kolmogorov’s construction of an infinite-dimensional sequence space. Butnariu and
Klement [14] provide a survey on σ-continuous measures over the families of functions
called T -tribes, where T is a t-norm. Since a T -tribe with Łukasiewicz t-norm T is a
σ-complete MV-algebra, Butnariu and Klement deal with σ-states in particular. The
main focus of their work is on integral representations of T -norm-based measures, which
is of chief importance in theory of cooperative games with fuzzy coalitions [13]. A
relatively recent treatment of tribes and their measures can be found in [49] by Navara.

The states of finitely presented algebras have attracted special attention. The results
concerning invariant and faithful states presented in Section 4.2 are only scratching the
surface of a rapidly developing subject—the dynamics of Z-homeomorphisms of the unit
hypercube. The main results in this area include, but are not limited to: Panti’s purely
algebraic characterization of Lebesgue state and his study of Bernoulli automorphisms
of the free finitely generated MV-algebra [51, 52]; the Haar theorem for lattice-ordered
Abelian groups with order-unit, which can be directly applied to MV-algebras [47];
Marra’s characterization of Lebesgue state [37]. The interpretation of state as a proba-
bility operator on formulas (or many-valued events) is discussed also by Marra [38].

Conditional probability over MV-algebras has been studied in several directions.
The definition of conditioning involving the notion of algebraic product (25) was first
used in [30]. PMV+-algebras discussed in Section 7 were introduced in [39] and further
studied in [40]. The approach to de Finetti theorem based on conditional events devel-
oped in Section 7 is based on Montagna’s paper [41]. Further concepts of conditional
probability were developed by Mundici [48, Chapter 15] and Montagna et al. [42].
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The proof of Theorem 3.3.4—the integral representation for finitely presented MV-
algebras—was published in [33]. The core of its proof is the refinement technique,
which is used to recover a unique representing probability measure over all the Schauder
bases. This idea goes back to a construction appearing in Pták’s paper about extension
of states on quantum logics [53].

The algebraic structures we discussed in Section 6, namely SMV-algebras, were in-
troduced in [26] and they have been intensively studied since then. A particular attention
has also been devoted to the case in which the internal state of an MV-algebra A is an
MV-endomorphism of A. The latter structures, called state-morphism MV-algebras,
were introduced by Di Nola and Dvurečenskij in [18]. As we have already mentioned in
Remark 6.1.4, subdirectly irreducible SMV-algebras and subdirectly irreducible state-
morphisms MV-algebras were fully characterized in [21, Theorem 3.4] by Dvurečenskij,
Kowalski, and Montagna.

The chapter was about states of MV-algebras, which are the algebras associated
with Łukasiewicz infinite-valued logic. The systematic development of other many-
valued logics was made possible by the pioneering work of Hájek [28]. The efforts
to study states in other logics than Łukasiewicz are complicated by non-existence of
the natural notion of addition and the discontinuity of logical operations, among other
things. Convincing results were achieved mainly for Gödel and nilpotent minimum
logics by Aguzzoli, Gerla, and Marra; see [2, 3]. The integral representation of states in
Gödel logic was proved by the same authors in [4]. De Finetti style-theorem for the inte-
gral states was exhibited for the whole class of many-valued logics with continuous con-
nectives in [34] by Kühr and Mundici. States on pseudo MV-algebras, non-commutative
generalizations of MV-algebras, were introduced by Dvurečenskij [19]. The same
author studied integral representation for a large class of algebras (including BL-algebras
and effect algebras) [20]. Ciungu devotes several chapters of her book [16] to states
of non-commutative structures, providing extensive bibliography.

The decision problem of coherence for rational books in infinite-valued Łukasiewicz
logic was shown to be decidable by Mundici [46]. The NP-completeness result was
achieved by Bova and Flaminio in [12].

Probability theory and states belong to the colorful mosaic consisting of calculi
for uncertainty modeling and reasoning such as Dempster-Shafer theory or possibility
theory, which are based on non-additive functions on Boolean algebras. Some classes of
uncertainty measures have been generalized to MV-algebras. Since they are not the topic
of this exposition, we confine ourselves to pointing the interested reader to the references
[23–25] for the survey of current results.
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[36] Ioana Leuştean and Antonio Di Nola. Łukasiewicz logic and MV-algebras. In Petr Cintula, Petr Hájek,
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