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The formation of deformation bands with the typically alternating sign of the
misorientation across their boundaries is interpreted as spontaneous deforma-
tion instability caused by anisotropy of hardening. To analyse the nature of the
fragmentation, a model of a rigid-plastic crystal domain deformed by symmetric
double slip in a plane-strain compression is considered. The basic reason for
the deformation band existence is that a local decrease in number of active slip
systems in the bands is energetically less costly than a homogeneous deformation
by multislip. However, such model of the bands predicts their extreme orientation
and their width tends to zero. This trend is modified by hardening caused by a
build up of the band boundaries and by a dislocation bowing (Orowan) stress.
The model provides an explanation of observed orientation of the bands, their
width and the significant change in the structural morphology seen as the band
reorientation occurs at large strains. The predictions are in a favourable agreement
with the available observations.

Keywords: deformation substructure; rigid-plastic crystal plasticity; spontaneous
deformation instability; band orientation; band width

1. Introduction

Deformation bands are the basic microstructural elements in metal single crystals and
polycrystals, where the dominating deformation mechanism is a dislocation glide. The de-
formation bands are detected in a form of elongated misoriented domains (cell blocks (CBs),
microbands (MBs), lamellae, misoriented regions) separated by roughly parallel families
of geometrically necessary boundaries (GNBs). While the deformation bands have been
observed for decades, their importance as a potentially most valuable tool for understanding
the mechanism of plastic deformation has only come to light relatively recently (the reviews,
e.g. [1–4]). From the continuum mechanics point of view, the deformation and shear bands
are spontaneous deformation instabilities [5,6]; Biot [5] called them the internal buckling.
The nature of the shear and deformation bands is different. The shear bands arise from
a material softening (including geometrical softening [7]). The deformation bands are a
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consequence of anisotropy of hardening. The anisotropy causes that it is energetically less
costly to flow the material through the crystal lattice buckled by the deformation bands with
a decreased number of the active slip systems than to flow it through a lattice deformed
homogeneously by multislip.

The inner structure built in the deformation bands to facilitate the plastic flow depends
on the character of slip. In cell-forming metal single crystals and polycrystals (medium
to high stacking fault energy crystalline materials with easy cross-slip), at moderate strain
(von Mises strain ε ∼ 0.3–0.7 in rolled Al), most often the deformation band substructure
consists of one or two sets of the extended sharp planar GNBs with a specific crystallographic
alignment between which fairly equiaxed cells are formed [1,4,8], Figure 1 The deformation
bands termed cell blocks are defined as a contiguous group of cells in which the same set
of glide systems operate.

As observed by Hughes [9], in the rolled Al–Mg, the framework for a crystal domain
subdivision in non-cell-forming metals is analogous to that observed in the cell-forming
metals. The principal difference is that the inner substructure of the deformation bands
(termed misoriented regions) consists of the dislocations organised into a Taylor lattice
containing multiple Burgers vectors and having the alternating misorientation along the
[1 1 1] slip plane. Unlike the rather sharp GNBs, in the cell-forming metals the GNBs
observed in the Al–Mg are diffuse.

A typical microstructural evolution during rolling of fcc medium to high stacking fault
energy metals has been analysed in detail by Hughes and Hansen in [10,11]. The deforma-
tion microstructures evolved in high purity nickel cold-rolled from 0.5 to 4.5 von Mises
effective strain were observed and analysed. The special emphasis was focused on factors
that contribute to the transition from structures characteristic of small to medium strain
microstructures to those characteristic to large strain microstructures. The observations
reported in [10,11] can be summarised as follows.

At small strains, the GNBs bounding CBs are long dense dislocation walls (DDWs) with
a specific macroscopic orientation with respect to the rolling direction (RD). The spacing
between the DDWs decreases with increasing strain by the creation of new DDWs within the
CBs and the misorientations across DDWs increase. The requirement of strain compatibility
across the DDWs is met through further subdivision at the DDWs. Subdivision occurs by
creating thin plate-like CBs at the DDWs. The new CBs have been defined as microbands.
The thickness of the MBs ranges from 0.1 to 0.4 µm.

At intermediate strain, in addition to the MBs and DDWs, there have been observed
bands of intense local crystallographic slip labelled as S-bands. They intersect parallel
groups of MBs creating on them a string of “S”-shaped perturbations. The passage of
regularly distributed S-bands causes a large-scale reorganisation of the original MBs and
CBs microstructure to a lamellar structure oriented at shallow angles to the RD. The
transition from a microstructure composed of MBs and DDWs to one composed of lamellae
occurs gradually over a very large strain range from an effective strain of 0.5–3. At the very
high effective strain of 4.5, no remaining MBs were observed. At large strains (ε > 2),
the lamellae with more or less alternating rotations dominate the microstructure. The angle
between the lamellae and the RD decreases with the increasing degree of deformation being
only a few degrees after 90% cold rolling. However, the lamellae are never parallel to the
rolling plane [10]. The lamellae are grouped in the bands which have a width of 0.5-3 µm.
At very high strains, the spacing between the deformation-induced boundaries can reach
the order of 100 nm.
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Philosophical Magazine 3623

Figure 1. (a) The electron micrograph from a plane containing the rolling and normal directions of
pure aluminium; cold-rolled 10%; (b) the sketch of the microstructure [12].

An example of the dislocation microstructure developed during rolling in a cell-forming
metal is shown in Figure 1 [12]. The microstructure is subdivided by the GNBs marked
A, B, C, …bounding CBs containing dislocation cells marked a, b, c, …; the RD is marked
by RD. The numbers indicate the alternating misorientation across the GNBs. The detailed
characterisation of the dislocation composition within the GNBs nearly aligned with the two
activated slip planes in pure aluminium cold-rolled 10% was presented by Hong et al. [8,13]
(at larger strains individual dislocations were not clearly visible). The dislocations with all
six Burgers vectors of the<1 1 0>/2 type expected for fcc crystals were observed, however,
the dislocations from the four most active slip systems dominated. It was found that most of
the dislocations were well organised into a reasonably flat two-dimensional network. The
measurements were done in the polycrystalline grains oriented nearly symmetrically with
respect to the rolling plane and the RD (the rotated cubic orientation). The orientation of
the two active f.c.c. slip planes symmetrically oriented with respect to the rolling plane in
the plane-strain approximation is ±55◦. From the mechanics point of view, the grains can
be considered approximately as exposed to a plain strain compression carried by the two
symmetrical sets of coplanar slip systems oriented ±35◦ with respect to the direction of
compression analysed in the present paper.

According to Harren et al., experiments on Al–Cu single crystals exposed to a plane-
strain compression [14], the observed (1 1 0)[0 0 1] geometry coincides with a stable state
of symmetric slip on the four slip systems as detected by Hong et al. [8,13]: the directions
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[1 0 1̄]/2 and [0 1 1̄]/2 in the (1 1 1) plane and the directions [1 0 1]/2 and [0 1 1]/2 in the
(1 1 1̄) plane. The net shearing systems associated with this symmetric state are then the
[1 1 2̄] in the (1 1 1) and the [1 1 2] in the (1 1 1̄). In order to simulate the compression tests
of the single crystals, Harren et al. [14] employed a two-dimensional single crystal model
with two considered slip systems (1 1 1)[1 1 2̄] and (1 1 1̄)[1 1 2]. The orientation of the slip
systems with respect to the compression axis isφ = 35◦. The experimental observations and
the computed deformation response have been in a close agreement. Inspired by Harren’s
et al. successful approach [14], we use the idealised model of the two-dimensional plane-
strain compression in modelling of some observed properties of the deformation bands. The
plane-strain model has been employed already in the previous publications [15–17] in the
attempts to analyse the formation of the cell substructure. Here, we use mainly the papers
[18–20] recalled in the next Section as a starting point of our considerations.

The modelling is based on the mechanics of incremental deformations proposed by
Biot [5]. Biot’s theory provides rigorous and completely general equations governing the
dynamics and stability of solids and fluids under an initial stress in the context of small
perturbations. The method allows using the linear theory of the incremental deformations
even for the analysis of advance stages of deformation. The main idea of the method is to
expose the crystal domain in a given deformation state of a stress σ̄ and a strain ε to an
incremental, generally inhomogeneous deformation mode and to evaluate the incremental
work needed to carry the deformation. The lowest incremental work indicates the preferred
mode which will dominate the evolving deformation substructure. We employ Biot’s theory
of instability modes of orthotropic materials, where the orthrotropy is carried by symmetric
double slip with distinguished latent hardening.

Biot [5], in his analysis, was probably the first who treated the deformation bands (his
instability of the first kind) as a consequence of material anisotropy.Acomprehensive review
of continuum mechanic approaches to the deformation banding has been given by Petryk
and Kursa [21]. A constitutive framework for elastic-plastic finite deformation has been
formulated by Hill [22], Hill and Rice [23], and widely applied in the study of formation
of shear bands e.g., [7,24,25]. The model of deformation banding developed by Ortiz et al.
[26,27] is based on incremental minimisation of the pseudo-elastic energy. They assumed
that the corresponding energy densities undergoing latent hardening are non-convex with
energy preference for single slip. Such incremental energy potential exists locally if the
deformation field is split into compatible domains of single slip on different slip systems.
In computations, such splitting was enforced by assuming infinite latent hardening [28].
However, in general, for multiple slip, the governing rate equations cannot be cast in a
variational form as the hardening matrix may be non-symmetric.

In some of most advanced theoretical investigations, Petryk et al. [21,29–32] aimed
to clarify formulation and justification of the incremental energy criterion for deformation
banding in crystals deformed locally by multislip. In the criterion for incipient deformation
banding, the key role is played by symmetrisation of the hardening submatrix restricted
to the active slip systems in the energy minimisation solution. Additionally, the second-
order minimisation has been extended to a finite time step in order to enable numerical
calculation of the initial modes of deformation banding and tracing deformation paths under
external control. In view of this, an attempt has been made to simulate the deformation
band pattern under tension with the focus on predicting three distinct microstructure types
observed in three different domains of the tensile axis orientation [33,34]. The simplified
model introduced in the next Sections presents an essence of the energetic approach of
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Petryk–Kursa’s type. We employ the simplest approach to reveal mechanisms responsible
for deformation banding and their observed features as described above. We use the original
Biot’s model [5] modified for crystal plasticity and enriched with the length scale effects. The
orthotropy of the model induced by the assumption of symmetric double slip guarantees the
symmetry of the hardening matrix, which enables a variational formulation and the energy
minimisation process.

Two other attempts to interpret some features of deformation bands have been proposed.
Mahesh [35] suggested a hypothesis based on the three physical principles that determine
the preferred CB boundary orientation in the rigid-plastic model of an arbitrarily oriented
grain of a polycrystal: (i) a uniform state of stress prevails throughout the grain; (ii)
the CBs are disoriented so as to minimise the power of plastic deformation; and (iii)
the CB boundaries are oriented so as to minimise plastic incompatibility between the
neighbouring CBs. The predicted orientations and disorientations have been compared
favourably with those reported in the experimental literature. Winther [36,37] calculated
the dislocation configuration in the GNBs and its misorientation by means of the principle
of low-energy dislocation structures assuming the boundaries free of long-range stresses.
Following Leffers [38,39], the misorientations across the boundaries were evaluated using a
continuum mechanics condition that at the boundaries between the neighbouring CBs with
different slip system activities must remain in contact.

In the next Section, a symmetric double slip model of a spontaneous formation of the
deformation bands is presented in a variational form suitable for an energetic consideration.
In the Section 2.1 we adopt the rigid-plastic, rate-independent approximation, which turns
out to be the optimal viewpoint pointing to the essential features of the formation of the
deformation bands. The model is constructed in two steps. A simple version of the model
based on the standard hardening rule, Section 2.2, reveals the conditions for the formation of
the deformation bands. In the next step, except for modification of the hardening rule (the
equations (23) and (24) in the Section 2.3), which incorporates additionally a hardening
caused by the incremental work needed to build up the boundaries and to overcome the
dislocation bowing stress, we follow the classical crystal plasticity framework. The results
provide an interpretation of the band orientation, their width, the misorientation across the
band boundaries, their dislocation composition and the band reorientation occurring at large
strains. A preliminary version of the model has been outlined in [40].

2. Rigid-plastic model of symmetric double slip

We consider a plane-strain deformation of an infinitely extended rigid-plastic crystal domain
in the coordinate system (x, y), Figure 2. The plane-strain compression simulating a rolling
process is assumed to be homogeneous up to a certain deformation level. The deformation
increment at this point can be either homogeneous again, or else, it can be inhomogeneous.
The aim of this analysis is to determine under which conditions the deforming crystal domain
prefers an inhomogeneous increment in the form of deformation bands. The considered
symmetric double-slip compression with the symmetry axis coinciding with the y coordinate
axis is a convenient two-dimensional idealisation of a crystal domain symmetrically oriented
with respect to the normal direction of the rolling plane (rotated cubic orientation), as seen
in Figure 2. The angle of the slip planes with respect to the y axis is φ = 35◦.
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3626 J. Kratochvíl and M. Kružík

Figure 2. Symmetric double slip in plane-strain compression.

2.1. Kinematics

The incremental deformation representing a deviation from the original symmetric double
slip is expressed through an incremental displacement vector û(x, y). The displacement
gradient ∇ û can be decomposed into a plastic part, which represents the material flow
carried by dislocations and an elastic part. In the rigid-plastic approximation, the elastic part
reduces to an increment of a rigid rotation of the crystal lattice ω̂

∗. For small increments the
decomposition reads ∇ û = β̂ + ω̂

∗, where the increment of the plastic distortion β̂ caused
by incremental slips γ̂ (1)(x, y) and γ̂ (2)(x, y) on the two considered slip systems, Figure
2, reads

β̂ =
2∑

i=1

γ̂ (i)s(i) ⊗ m(i) , (1)

s(1) = (sin φ, cosφ) and s(2) = (− sin φ, cosφ) represent the slip directions, and m(1) =
(− cosφ, sin φ) and m(2) = (cosφ, sin φ) are the unit slip plane normals; ±φ is the
orientation angle of the slip planes with respect to the symmetry axis of the compression.

The incremental strain ε̂(x, y) superposed upon the current homogeneous strain ε is
defined as ε̂ =

(
∇ û + (∇ û

)T
)
/2. For the model considered one can deduce from (1)

ε̂xx = −ε̂yy = − sin 2φ
(
γ̂ (1) + γ̂ (2)

)
/2 , ε̂xy = − cos 2φ

(
γ̂ (1) − γ̂ (2)

)
/2 . (2)

The increments of the lattice rotation ω̂∗, representing the lattice misorientation, is related
to the increments of the material rotation ω̂ = ω̂xy = (

∂y ûx − ∂x û y
)
/2 and the plastic

rotation ω̂p = (
γ̂ (1) − γ̂ (2)

)
/2 as ω̂∗ = ω̂ − ω̂p. In general, the elastic and plastic parts

of the incremental deformation ∇ û may be individually incompatible. The incremental
density of the geometrically necessary dislocations (GNDs) required for the deformation
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Philosophical Magazine 3627

Figure 3. Scheme of two sets of deformation bands perpendicular to the vectors ±ξ , L is the band
width.

to remain compatible is characterised by the increment of the dislocation density tensor
α̂ = curl β̂ = −curl ω̂∗ that reveals the relation between the misorientation of the crystal
lattice ω̂

∗ and the dislocation density of GNDs measured by the tensor α̂. Here, and in the
sequel, the curl of a tensor is defined as the curl of rows of the tensor. The tensor α̂ can be
resolved into the dislocation incremental densities α̂

(i), i = 1, 2, of GNDs of the individual
slip systems,

α̂ = α̂
(1) + α̂

(2) =
2∑

i=1

curl β̂
(i) =

2∑
i=1

curl
(
γ̂ (i)s(i) ⊗ m(i)

)
. (3)

The tensors α̂
(i) specify the GNBs dislocation composition in the plane-strain approxima-

tion; in the coordinate system of Figure 2, the matrices of the density tensor increments α̂
(i)

are reduced to the single non-zero components

α̂(1) = (sin φ ∂x + cosφ ∂y)γ̂
(1), α̂(2) = (− sin φ ∂x + cosφ ∂y)γ̂

(2). (4)

As for boundary conditions, we consider an infinitely extended crystal domain and
assume periodicity in x and y directions of all the incremental fields. For instance,

ε̂(x, y) = ε̂(x + Lx , y + L y) , (5)

where Lx and L y are the length of one period in the corresponding directions. Since the
lengths Lx and L y can be extended to infinity, the periodicity is only a formal requirement.
It enables us to get rid of the boundary terms that would otherwise appear when applying
Green’s theorem in the integral formulation (18).

Next, we introduce the stream function ψ by the relations ûx = ∂yψ , û y = −∂xψ

which guarantee incompressibility tr ε̂ = 0. We look for an inhomogeneous, kinematically
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admissible deformation increment, which can be constructed from the stream function ψ
in the form

ψ = F(x + ξ y) , (6)

which represents an inhomogeneous simple shear parallel to the planes x + ξ y = constant.
The shear inhomogeneity can be interpreted as a deformation band-like pattern perpen-
dicular to the direction ξ = tan θ , where θ is the angle between the x axis and the
normal to the bands, Figure 3.1 In view of the linearity of the problem at hand, any linear
combination of the stream functions of the type (6) with different profiles F and directions
ξ is kinematically admissible. The kinematically admissible strain and rotation are derived
by means of the stream function ψ and the kinematic relations ε̂ =

(
∇ û + (∇ û

)T
)
/2 and

ω̂ =
(
∇ û − (∇ û

)T
)
/2 (F

′′
represents the second derivative with respect to the argument

x + ξ y)

ε̂xx = −ε̂yy = ξF
′′
, ε̂xy = 1

2

(
ξ2 − 1

)
F

′′
, ω̂ ≡ ω̂xy = 1

2

(
ξ2 + 1

)
F

′′
. (7)

Kinematically admissible crystallographic slip increments then result from (2),

γ̂ (1) =
(

1 − ξ2

2 cos 2φ
− ξ

sin 2φ

)
F

′′
, γ̂ (2) =

(
ξ2 − 1

2 cos 2φ
− ξ

sin 2φ

)
F

′′
, (8)

and using (4) we get for the increments of the dislocation densities

α̂(1) = (sin φ + ξ cosφ)

(
1 − ξ2

2 cos 2φ
− ξ

sin 2φ

)
F

′′′
, (9)

α̂(2) = (− sin φ + ξ cosφ)

(
ξ2 − 1

2 cos 2φ
− ξ

sin 2φ

)
F

′′′
.

The increment of the alternating lattice misorientation ω̂∗ and the incremental plastic rotation
ω̂p are expressed as

ω̂∗ =
(
ξ2 + 1

)
cos 2φ + ξ2 − 1

2 cos 2φ
F

′′
, ω̂p =

(
γ̂ (1) − γ̂ (2)

)
/2 =

(
1 − ξ2

2 cos 2φ

)
F

′′
. (10)

2.2. The simple model

The simple version of the model partly analysed in [18,40] is Biot’s original model [5]
adopted to crystal plasticity of the plane-strain symmetric double slip. The model provides
the basic result of the energetic approach: the existence of the deformation bands. As it will
be shown at the end of this Section, the predicted bands in the simple case have extremal
properties: the orientation is perpendicular to the direction of the compression and their
width tends to zero.

The stress σ in the deforming crystal domain expressed in a reference frame which
rotates with the crystal lattice consists of three contributions

σ = σ̄ + σ̂ + ω̂
p
σ̄ + σ̄

(
ω̂

p)T
. (11)

σ̄ is the applied homogeneous stress, which, in a given state of the plastic regime has a
character of a pre-stress. In the considered case of the plane-strain compression, the stress
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σ̄ has a single component, σ̄ < 0, in the y direction as shown in Figure 2. The term
ω̂

p
σ̄ + σ̄

(
ω̂

p)T accounts for the geometrical hardening/softening, i.e. for a change in the
stress due to the rotation of the pre-stress tensor with respect to the crystal lattice. The
incremental stress σ̂ is related to the incremental slips ˆ̂γ (i) by the constitutive equations.

The slip increments are induced by the increments in the resolved shear stresses τ̂ (i) =
s(i) · σ̂ m(i), i = 1, 2, that result as

τ̂ (1) = − sin 2φ
(
σ̂xx − σ̂yy

)
/2−cos 2φσ̂xy , τ̂

(2) = − sin 2φ
(
σ̂xx − σ̂yy

)
/2+cos 2φσ̂xy .

(12)
In the rate-independent approximation, the resolved shear stress equals the flow stress in
the plastic regime. This is accounted for the hardening rule representing the constitutive
equations of the simple model,

τ̂ (1) = h γ̂ (1) + qh γ̂ (2) , τ̂ (2) = qh γ̂ (1) + h γ̂ (2) . (13)

The entries are the self-hardening coefficient h and the latent (cross) hardening coefficient
qh. The latent-to-active hardening ratio q is a measure of the hardening anisotropy. It is one
of the key parameters of the model.

The equations (2), (11)–(13) lead to the incremental constitutive relations for an or-
thotropic, incrementally-linear rigid-plastic solid in the form proposed by Biot [5], namely

σ̂xx − σ̂yy = 2Hxx
(
ε̂xx − ε̂yy

)
, σ̂xy = 2Hxy ε̂xy , (14)

where the instantaneous hardening coefficients are

Hxx = h(1 + q)

2 sin2 2φ
, Hxy = h(1 − q)+σ̄ cos 2φ

2 cos2 2φ
. (15)

The incremental stress σ̂ has to satisfy the condition of the equilibrium for a pre-stressed
domain [5] expressed in the terms of the (objective) corotational derivative of the Cauchy
stress increment

∂x σ̂xx + ∂y σ̂xy + σ̄ ∂yω̂ = 0 , (16)

∂x σ̂xy + ∂y σ̂yy + σ̄ ∂x ω̂ = 0 .

For the purpose of the energy considerations, the problem is cast in terms of a variational
formulation.

We utilise the principle of virtual displacements,
∫

divσ̂ · δû = 0, that is∫
�

((
∂x σ̂xx + ∂y σ̂xy + σ̄ ∂yω̂

)
δûx + (

∂x σ̂xy + ∂y σ̂yy + σ̄ ∂x ω̂
)
δû y

)
dV = 0 , (17)

where � is the crystal domain in the xy plane and δû(x, y) is an arbitrary virtual displace-
ment field. By using Green’s theorem and the chosen periodic boundary conditions we get
the weak form of the equilibrium equation (16)∫

�

(
σ̂xxδε̂xx + 2

(
σ̂xy + σ̄ ω̂

)
δε̂xy + σ̂yyδε̂yy

)
dV = 0 . (18)

Introducing the constitutive relation (14) into (18), expressing ε̂xx , ε̂yy, ε̂xy and ω̂
through the stream function, the relations (7) and using the symmetry of hardening (13),
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0
ξ

2.0 3.01.00.5 2.51.5

J

−20

−10

−30

−40

Figure 4. Graph of the reduced energetic functions J̄(ξ), (the full line); ξ characterises the band
orientation. The dashed line represents the reduced function where the pre-stress σ̄ = 0; it
demonstrates a destabilising effect of σ̄ ; as seen, for σ̄ = 0 the range of the stability J̄(ξ) > 0
has been extended.

the weak form of the equilibrium (18) can be expressed as an extreme of the functional J
requiring its first variation to be zero, δJ = 0,

J = 1

2

∫
�

(
4Hxxξ

2 + Hxy

(
ξ2 − 1

)2 − σ̄

2

(
1 − ξ4

)) (
F

′′)2
dV . (19)

The inhomogeneous incremental deformation defined by F(x +ξ y) 	= 0, the equation (6), is
now assumed to be such a deviation from a homogeneous increment, that the corresponding
strains vanish on average. A homogeneous increment can be formally represented by
F(x + ξ y) = 0. The functional (19) thus now represents an energy difference between the
homogeneous and inhomogeneous deformation increments. The inhomogeneous deforma-
tion increment is energetically favourable if the functional (19) becomes negative, J < 0. If
a kinematically possible deformation exists that fulfils this condition, then the homogeneous

deformation is unstable and a pattern is formed. Since
(

F
′′)2

in (19) is positive, the sign of J

is determined by the sign of the energetic function 4Hxxξ
2+Hxy

(
ξ2 − 1

)2 −σ̄ (
1 − ξ4

)
/2.

In view of (15) this function may become negative for h > 0 and q > 1, i.e. a dominant
latent hardening, further assisted by the compression σ̄ . This is demonstrated by the graph

of the reduced energetic function J̄(ξ) = J(ξ)/Hxx
∫ (

F
′′)2

, the full line in Figure 4,

J̄(ξ) = 2ξ2 + K
(

1 − ξ2
)2 + S

(
1 − ξ4

)
, (20)

where

K = Hxy/2Hxx = h(1 − q)+ σ̄ cos 2φ

2h(1 + q)
tan2 2φ , S = σ̄

4Hxx
= σ̄

2h(1 + q)
sin2 2φ.

(21)
The graphs of J̄(ξ) were evaluated for φ = 35◦, the self-hardening h = 400 MPa,

q = 1.5 and the compressive flow stress σ̄ = −500 MPa deduced from the stress–strain
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diagram of nickel at the moderate strain ε = 0.5 in [4] (Fig. 14). In view of the symmetry
of J̄(ξ) with respect to the origin, we discuss only the case ξ > 0. In the central part, the
function J̄ > 0, so that the forming of a pattern would be energetically costly. On the other
hand, in the other parts there is the energy gain in forming the pattern. The inhomogeneous
incremental deformation with ξ → ∞ is the most energetically favourable. It corresponds
to the deformation band-like pattern perpendicular to the y-axis, θ → π/2 (parallel to the
RD).

Note that such solution satisfies compatibility, but not necessarily the stress equilibrium
(16). The equilibrium is guaranteed only for 2ξ2 + K (1−ξ2)2 +S(1−ξ4) = 0, which is the
characteristic equation of the weak form of the stress equilibrium δJ = 0. These solutions
are represented by the cross section points on ξ axis in Figure 4. In the paper [18] it has been
proved for S = 0 that these equilibrium solutions are just marginally stable or energetically
neutral indicating a tendency to reach the solution ξ → ∞ as shown in Figure 4.

To estimate a length scale of the pattern, we consider the deformation banding inspired
by a band substructure observed in the cell-forming metals, i.e. the periodically arranged
deformation bands perpendicular to the direction ξ separated by the sharp GNBs. The bands
of the width L are assumed to be homogeneously sheared, i.e. F

′′ = ±(a/L), where a is an
amplitude of the incremental displacement. Under these assumptions, the functional (19)
integrated over the crystal domain � becomes a function

J (ξ, L) = 1

2

(
4Hxxξ

2 + Hxy

(
ξ2 − 1

)2 − σ̄
2

(
1 − ξ4

))
a2

L2
V , (22)

where V is the volume of the crystal domain �. As will be shown in the next Section 2.3,
the function (22) is a special case of more general energetic function (29) if the length-scale
effects are neglected. The function (22) indicates that for a given amplitude a the fastest
growth of the pattern is reached for L → 0.

That the deformation bands tend to be oriented perpendicularly to the compression
direction and to have a zero width was discovered by Biot [5]. He noted ([5] p.199):

This conclusion may seem paradoxical, but there are inherent limitations in the validity of
the theory for very small wavelengths. It is, of course, not valid in the atomic scale. Then
non-linearity also enters into play. The result therefore indicates that the buckling wavelength
will tend to be the smallest compatible with the small-scale physics of the medium.

In our consideration, in Section 2.3 a proposed small-scale physics is the resistance of the
GNBs to slip and the work needed to overcome the dislocation bowing stress.

2.3. The model enriched with length-scale effects

To describe more realistically the deformation bands orientation, their reorientation and
their width the model has to be enriched with additional features. The shrinking width of
the bands decreases the space for the dislocation glide, hence, their bowing stress grows
causing a line tension (Orowan) strengthening. To build up the GNBs requires additional
work needed to overcome the boundary resistance to slip. These effects can be incorporated
in the model by a modification of the hardening rule.
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3632 J. Kratochvíl and M. Kružík

The proposed rule consists of two parts: a bulk part τ̂ (i)V and a boundary part τ̂ (i)B . The
bulk part is assumed in the form

τ̂
(1)
V = (h + hbow) γ̂

(1) + qh γ̂ (2) , τ̂
(2)
V = qh γ̂ (1) + (h + hbow) γ̂

(2) , (23)

where a hardening term hbow is added to the self-hardening part of the standard rule (13).
The reason is that the dislocation bowing hinders the active slip, but causes no additional
latent hardening. We employ a standard form of the line tension strengthening hbow =
2 sin βc Gb/d , where the critical angle βc characterises the penetrability of obstacles and d
is the distance between obstacles causing the dislocation bowing. G is the shear modulus
and b the magnitude of the Burgers vector. In the present context the prominent obstacles
are most probably the cell boundaries formed within the deformation bands. The cell size
changes in a monotonic way with the changing width of the bands. Therefore, the distance
d is identified with the band width L . In the present model, we assume a partial penetrability
of the boundaries assuming that hbow = Gb/L .

The boundary part of the modified hardening rule represents a complex problem: at
boundaries dislocations can be reflected, absorbed or desorbed and/or transmitted directly.
Here we employ a phenomenological approach. There are two possibilities: the GNBs can
be modelled using gradients of dislocation densities or to treat the GNBs as planar interfaces.

In general, work hardening is controlled by dislocation interactions. The interactions are
non-local and they should be expressed in an integral form. In the statistical considerations
[20] only two types of interaction terms of the expansion of such integrals have been retained:
the standard local hardening (13) that depends on the so-called statistically distributed
dislocations and a non-local hardening which expresses that the resistance to the dislocation
motion depends also on the arrangement of the dislocations. The gradients of the GND
density increments α̂(i), i = 1, 2, given by (3) or (9) can be taken as simplified characteristics
of the changes in that arrangement. The dislocation density gradients could be suitable for
a simulation of the diffuse GNBs as observed in non-cell-forming metals [9] (a gradient
version of the hardening rule will be analysed in a forthcoming paper). For the sharp GNBs
in cell-forming metals considered here, it seems to be more realistic to treat the GNBs as
planar interfaces.

The GNBs as interface objects are characterised by a matrix of the boundary part of the
flow rule in an analogy to the standard anisotropic hardening (13)

τ̂
(1)
B = h̃ �γ̂ (1) + q̃ h̃ �γ̂ (2) , τ̂

(2)
B = q̃ h̃ �γ̂ (1) + h̃ �γ̂ (2) . (24)

The terms in (24) can be interpreted as a part of the flow stress increments needed to
penetrate a cluster of the GNDs of the same (h̃) or the other slip system (q̃ h̃). The jumps
�γ̂ (i), i = 1, 2, represent the difference in the slip increments across the GNBs between
the neighbouring bands. �γ̂ (i) are proportional to the net increments of the corresponding
densities of the dislocations absorbed at the GNBs.

To get a modified energy functional Jc, one can follow the procedure represented by
(17)–(19), where in (19) the increments ε̂ and σ̂ are expressed through (2) and (12) in terms
of the increments γ̂ (i) and τ̂ (i). Then, employing the flow rules (23) and (24), we get
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Jc = 2
∫
�

{(
h + hbow

)[(
γ (1)

)2 +
(
γ (2)

)2] + 2qh γ (1)γ (2)

+ σ̄

2

(
γ (1) − γ (2)

)(
γ (1) − γ (2) + ω

)}
dV

+ 2
∫

A

{
h̃
[(
�γ (1)

)2 +
(
�γ (2)

)2] + 2q̃ h̃
(
�γ (1)

)(
�γ (2)

)}
dA , (25)

where dV is a volume element of the crystal domain � and dA a surface element of the set
A of GNBs contained in the domain.2

Similarly, as in the case of the simple model, we assume that the set of the deformation
modes to be optimised is restricted to structures arising from superposition of one or two
periodically arranged sets of parallel deformation bands perpendicular to the directions ξ
and −ξ , Figure 3. In further considerations, a single set of the bands with the orientation ξ
is considered.3 In each band the increments γ̂ (1), γ̂ (2) and ω̂∗ are supposed to be uniform.
Slip is adjusted such that in the direction perpendicular to the bands the incremental slips
alternate and is averaged to zero, i.e.�γ̂ (i) = 2γ̂ (i). The width L > 0 of the bands is taken
to be the same for all the bands.

Upon introducing the stream function using relations (8) evaluated for the considered
microstructure ξ of Figure 3 with �γ̂ (i) = 2γ̂ (i), the functional (25) becomes

Jc = 1

2

(
4 [Hxx + Bxx ] ξ2 + [

Hxy + Bxy
] (
ξ2 − 1

)2 − σ̄

2

(
1 − ξ4

))∫
�

(
F

′′)2
dV

+
(

4H̃xxξ
2 + H̃xy

(
1 − ξ2

)2
)∫

A

(
F

′′)2
dA , (26)

where Hxx and Hxy are given by (15), and

H̃xx = h̃(1 + q̃)

2 sin2 2φ
, H̃xy = h̃(1 − q̃)

2 cos2 2φ
, Bxx = hbow

2 sin2 2φ
, Bxy = hbow

2 cos2 2φ
. (27)

The functional (26) for the neglected length-scale effects, hbow = 0 and ĥ = 0 is reduced
to the functional (19) of the simple model.

In view of that the area A of all GNBs in the volume V of � is V/L , the shear strain
in the bands F

′′ = ±(a/L), where a is an amplitude of the incremental displacement and
that we assume hbow = Gb/L the functional Jc becomes the energetic function

Jc(ξ, L) = 1

2

(
4Hxxξ

2 + Hxy

(
ξ2 − 1

)2 − σ̄

2

(
1 − ξ4

))
a2

L2
V

+
(

4
[

H̃xx + Bxx

]
ξ2 +

[
H̃xy + Bxy

] (
1 − ξ2

)2
)

a2

L3
V . (28)

Note that the function (28) for hbow = 0 and ĥ = 0 is identical to J (L , ξ) of the length-scale
estimate (22) of the simple model.

The reduced energetic function J̄c(L , ξ) = Jc/Hxx V a2 can be expressed as

J̄c (ξ, L) = 1

L2

[
2ξ2 + K

(
1 − ξ2

)2 + S
(

1 − ξ4
)]

+ 2

L3

[
Mξ2 + N

(
1 − ξ2

)2
]
,

(29)
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3634 J. Kratochvíl and M. Kružík

where K and S are given by (21) and

M = 2
H̃xx + Bxx L/2

Hxx
= 2h̃(1 + q̃)+ Gb

h(1 + q)
, (30a)

N = H̃xy + Bxy L/2

2Hxx
= 2h̃(1 − q̃)+ Gb

4h(1 + q)
tan2 2φ . (30b)

The minimum of the reduced energetic function J̄c(L , ξ) with respect to the width L
and the orientation ξ indicates the most favourable structure formed. The conditions of the
minimum are: ∂ J̄c/∂L = 0 and ∂ J̄c/∂

(
ξ2

) = 0.
For the band orientation ξ evaluated by the minimisation of J̄c the dislocation compo-

sition of GNBs is given by (9) where F
′′′

is of the form of δ-function. If the orientation
of the boundaries would coincide with the one of the slip planes, e.g. ξ > 0 requiring
ξ = − tan φ, both α̂(i) are zero. This is understandable as the shear deformation is carried
fully by compatible slip γ̂ (2). The misorientation across GNBs can be evaluated from (10)
with F

′′ = ±a/L; the amplitude a is not specified by the present rate independent version
of the model, a rate dependent version would indicate a growth of a.

3. Results and discussion

The minimisation of the reduced energetic function J̄c(L , ξ) expressed by (29) is an easy
task.4 To estimate values of the parameters K , S,M and N for a material in a given strain
stage is more difficult. As seen from (21) and (30) these parameter are controlled by: the
self-hardening h, the latent-to-self hardening ratio q (the anisotropy factor), the flow stress
σ̄ , the shear modulus G, the magnitude of the Burgers vector b, the boundary slip resistance
h̃ and the slip resistance anisotropy q̃ . For a given material at a given strain, h and σ̄ can
be estimated from the stress–strain diagram. At small strains, the value of the ratio q is
usually taken q ∼ 1.4; to our knowledge, for medium and large strains q is not known.
One can only safely assume that q > 1, as for all strains a local decrease in the number
of the active slip systems controlled by q is energetically favourable. G and b are known
constants, however, the assumption that the line tension strengthening hbow = Gb/L which
modifies h is a result of an intuition rather than a rationally deduced consequence of the
bowing mechanism. We have not found any guideline for an estimate of the slip resistance
coefficients h̃ and q̃ , therefore, they enter the model as fitting parameters. Attempts to
quantify the grain boundary interface mechanisms faced analogical problems [41]).

To demonstrate the predictive ability of the model two examples are presented: the
deformation bands formed in Ni at the moderate strain ε = 0.5 and at the large strain
ε = 2.5. Due to several simplifying assumptions numerical data predicted by the model are
just indicative.

At the moderate strain ε = 0.5 the self-hardening h = 400 MPa and the compressive
flow stress σ̄ = −500 MPa were deduced for Ni from the stress–strain diagram in [4]
(Fig. 14); for nickel G ∼ 70 GPa and b = 0.25 nm, i.e. Gb = 17 MPa µm; we use the
hardening anisotropy ratio q = 1.5. A few illustrative values of the boundary resistance
h̃ and the resistance anisotropy q̃ employed as the fitting parameters are listed in Table
1 together with the values of the angle θroll and the band width L which correspond for
these values to the minimum of the reduced energetic function J̄c. The graph of J̄c(ξ)

for L=1 µm , h̃=145 MPa µm and q̃ = 2.5 is plotted as an example in Figure 5 for the
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Figure 5. (colour online) Graph of the reduced energetic function J̄c(L , ξ) evaluated for L = Lmin.

Table 1. Model parameters of the deformation band structure at moderate strains ε = 0.5.

θroll L [µm] h̃ [MPa µm] q̃

30◦ 1.2 −172 2.57
30◦ 1 −145 2.53
30◦ 0.8 −117 2.50
25◦ 1.2 −357 1.80
25◦ 1 −249 1.79
25◦ 0.8 −241 1.79

Table 2. Model parameters of the deformation band structure at large strains ε = 2.5.

θroll L [µm] h̃ [MPaµm] q̃

10◦ 0.3 −963 1.065
10◦ 0.2 −627 1.059
10◦ 0.1 −318 1.045
5◦ 0.3 −4214 1.014
5◦ 0.2 −2812 1.013
5◦ 0.1 −1410 1.011

comparison to the graph of the simple model in Figure 4. The values of the band width L
and the inclination angle θroll correspond roughly to the measured values presented in [42]
L ∼ 1.5 µm (deduced from the graph Figure 3 in [42]) and the observed θroll ∼ 30◦ [10].
In the example of the moderate strain, h̃ and q̃ are the factors controlling the orientation and
the width of the bands. As can be deduced from Table 1 the boundary resistance h̃ influences
mainly the width L and the resistance anisotropy q̃ controls the inclination angle θroll.
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The negative sign of ĥ seen in Tables 1 and 2 indicates that the boundary part of the
hardening rule (24) represents a back stress. This is understandable as the excess dislocations
in the GNBs produce long-range stresses. An analogical situation arose in the attempt [43]
to explain the high anisotropy and the stress–strain behaviour observed in metallic films
having strongly non-equiaxed grains (an analogy of the quasi-parallel deformation bands
with extended planar GNBs). To explain these observations, the authors of [43] had to
introduced in the flow rule a back stress (an analogy of ĥ) and a strong anisotropy factor
(an analogy of q̂).

The dislocation composition of the GNBs is represented by α̂(i) given by (9). In the
example ε = 0.5 the orientation of the GNBs deviates from the orientation of the nearest
slip system (characterised by −φ = −35◦ and α̂(2)) by 25◦. The evaluated composition
ratio

∣∣α̂(1)∣∣ / ∣∣α̂(2)∣∣ = 11.5 indicates that the composition is dominated by the dislocations
from the other slip system (φ = 35◦ and α̂(1)). For comparison the ratio |α̂(1)|/|α̂(2)| of
the coplanar densities can be deduced from unique experimental data presented in [13]
(Table 2 and Figure 11) for Al reduced by rolling 10% (ε ∼ 0.1). The experimentally
determined averaged composition ratio is ∼10 for the deviations ∼5◦, it decreases to ∼1 at
the deviations ∼15◦, and then it becomes less than 1.

At the large strain ε = 2.5 we use the self-hardening h = 60 MPa and the compressive
flow stress σ̄ = −700 MPa deduced for Ni from [4] (Fig. 14) and the hardening anisotropy
ratio q = 1.5. A few illustrative values of the fitting parameters h̃ and q̃ are listed in Table
2 together with the values of the angle θroll and the band width L for the minimum of
the reduced energetic function J̄c. The shape of the graph of J̄c(L , ξ) for L = Lmin, not
presented here, is similar to the graph in Figure 5 only the minimum value is shifted to
higher value of ξ . The predicted values of the band width L and the inclination angle θroll
correspond roughly to the observed trend of a decreasing band width and the reorientation of
the bands toward the RD. The higher values of h̃ and q̃ approaching 1 indicate an increasing
resistance of the boundaries and its isotropy contributing to the tendency to orient the bands
parallel to the RD ξ → ∞ and to reach a zero width. As a consequence, the controlling
factor at the large strain becomes the bowing stress represented by hbow which prevents
these extremes. The dislocation composition of the GNBs at θroll = 10◦ represented by the
ratio

∣∣α̂(1)∣∣ / ∣∣α̂(2)∣∣ ∼ 2.
A comparison of Tables 1 and 2 reveals a significant change of ĥ and q̂ with increasing

strain. The change is probably caused by the observed formation of the MBs at the boundaries
which replace the original DDWs. This transformation could cause radical changes in
mechanical properties of the modified GDBs indicated by the change in ĥ and q̂ . As
a consequence, the CBs are transformed into the energetically more favourable lamellar
structure. Moreover, according to the observations [10], the S-bands play in a mechanism
of the CBs-lamellae transformation a key role. The symmetry of the MBs and the S-bands
with respect to the compression axis indicated in the sketch in Fig. 14 in [10] suggests that
the MBs and S-bands are a pair of the equally energetically favourable deformation bands
of the orientations ±ξ , Figure 3, as predicted by the presented model.

It is interesting to note that the shape of the reduced energetic function at the minimum
is rather flat, as seen in Figure 5. This indicates that the deformation bands of the width L
and the orientation ξ close to the values at the minimum may appear. This corresponds to
the observed scatter in these parameters.
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4. Summary

Positive aspects:

• The model represents a unified approach which provides an explanation of the process
of the fragmentation in the form of the deformation bands. The model points to the
main ingredients which control the fragmentation mechanism: the anisotropy of the
hardening matrix, the anisotropic resistance of the boundaries to slip and the bowing
stress.

• The deformation bands (internal buckling) are spontaneously formed due to strong
anisotropy caused by the slip nature of plastic deformation.

• The proposed model predicts in the plain-strain approximation the band orientation,
their width and the dislocation composition of the band boundaries.

• The significant change in the structural morphology with increasing strain, i.e. the
reorientation of the bands from ∼30◦ to nearly 0◦ with respect to the RD, is interpreted
as the transition from the boundary control bands formation to the bowing stress
control.

• Due to the line character of glide dislocations accompanied by the line tension, the
bands cannot be exactly parallel to the RD and their width cannot reach zero.

Drawbacks and open questions:

• The coefficients h̃ and q̃ representing the energy contribution of the boundaries serve
as the fitting parameters. The assumption that the line tension strengthening hbow =
Gb/L modifies the self-hardening h is rather intuitive.

• The model does not explain the observed transformation of the DDWs to the MBs.
• The role of the inner structure of the bands (cells, Taylor lattice) and the sharp or

diffuse shapes of the boundaries remains an open problem.
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Notes

1. The parameter ξ could be equally well placed by its inverse at x resulting in an equivalent
formulation. The chosen form of the stream function (6) leads to a direct connection of ξ to the
orientation of the deformation bands θroll with respect to the RD, θroll = π/2 − arctan ξ .

2. Expressing formally the boundary part in terms of δ-function at the positions of the GNBs the
functional Jc can be formulated as a single volume integral over �.

3. A generalization to two sets is straightforward; a probable reason that two criss-crossing sets
are less frequently observed is an interaction between sets not covered by the present linearised
model.

4. By MATHEMATICA (http//www.wolfram.com) the values of Lmin and ξmin at the minimum
can be reach even in an analytical but rather complicated form.
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