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Abstract. We investigate a variational theory for magnetoelastic solids un-
der the incompressibility constraint. The state of the system is described by

deformation and magnetization. While the former is classically related to the
reference configuration, magnetization is defined in the deformed configura-

tion instead. We discuss the existence of energy minimizers without relying on

higher-order deformation gradient terms. Then, by introducing a suitable pos-
itively 1-homogeneous dissipation, a quasistatic evolution model is proposed

and analyzed within the frame of energetic solvability.

1. Introduction. Magnetoelasticity describes the mechanical behavior of solids
under magnetic effects. The magnetoelastic coupling is based on the presence of
small magnetic domains in the material. In the absence of an external magnetic field
these magnetic domains are randomly oriented but when exposed to an external
magnetic field they become aligned along the field and their rotations induce a
deformation of the specimen. As the intensity of the magnetic field is increased,
more and more magnetic domains orientate themselves so that their principal axes of
anisotropy are collinear with the magnetic field in each region and finally saturation
is reached. We refer to e.g. [6, 11, 13, 16] for a discussion on the foundations of
magnetoelasticity.

The mathematical modeling of magnetoelasticity is a vibrant area of research,
triggered by the interest on so-called multifunctional materials. Among these one
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has to mention rare-earth alloys such as TerFeNOL and GalFeNOL as well as fer-
romagnetic shape-memory alloys as Ni2MnGa, NiMnInCo, NiFeGaCo, FePt, FePd,
among others. All these materials exhibit so-called giant magnetostrictive behavior
as reversible strains as large as 10% can be activated by the imposition of relatively
moderate magnetic fields. This strong magnetoelastic coupling makes them relevant
in a wealth of innovative applications including sensors and actuators.

Following the modeling approach of James & Kinderlehrer [17], the state of
a magnetostrictive material is described by its deformation y : Ω → R3 from the
reference configuration Ω ⊂ R3 and by its magnetization m : Ωy → R3 which is
defined on the deformed configuration Ωy := y(Ω) instead. This discrepancy, often
neglected by restricting to small deformation regimes, is particularly motivated here
by the possible large deformations that magnetostrictive materials can experience.

We shall here be concerned with the total energy E defined as

E(y,m) =

∫
Ω

W (∇y,m ◦ y) + α

∫
Ωy

|∇m|2 +
µ0

2

∫
R3

|∇um|2. (1)

Here, W stands for the elastic energy density, the second term is the so-called
exchange energy and α is related to the typical size of ferromagnetic texture. The
last term represents magnetostatic energy, µ0 is the permittivity of void, and um is
the magnetostatic potential generated by m. In particular, um is a solution to the
Maxwell equation

∇ · (−µ0∇um + χΩym) = 0 in R3, (2)

where χΩy is the characteristic function of the deformed configuration Ωy. We shall
consider E under the a.e. constraints

det∇y = 1, |m| = 1, (3)

which correspond to incompressibility and magnetic saturation (here properly resca-
led).

The aim of this paper is twofold. At first, we concentrate on the static problem.
By assuming that W is polyconvex and p-coercive in ∇y for p > 3 we check that
E admits a minimizer. This result is to be compared with the discussion in Ry-
bka & Luskin [27] where weaker growth assumptions on W but a second-order
deformation gradient is included. Indeed, magnetization is defined on the deformed
configuration, which is unknown. Therefore, we need to transform the corresponding
integral terms back to the reference (i.e. fixed) configuration. Obviously, Jacobian
determinants enter the game. Requirements on their integrability and convergence
made the authors of [27] to introduce a second-order deformation gradient, whose
physical interpretation is, however, often questionable. In this direction, we shall
mention also the PhD thesis by Liakhova [18], where the the dimension reduction
problem to thin films under the a-priori constraint 0 < α < det∇y < β is consid-
ered. This perspective has been numerically investigated by Liakhova, Luskin, &
Zhang [19, 20]. More recently, the incompressibility case has been addressed by a
penalization method from the slightly compressible case by Bielsky & Gambin [3],
still by including a second-order deformation gradient term. We also mention the
two-dimensional analysis by DeSimone & Dolzmann [12] where no gradients are
considered and the existence of a zero energy state is checked by means of convex
integration techniques. Our discussion on the static problem is reported in Section
2.

A crucial aspect of our contribution is that, by directly imposing the incompress-
ibility constraint, we can avoid the introduction of higher-order gradient terms. On
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the one hand, the incompressibility constraint entails a direct control on the deter-
minant of the deformation gradient and it hence allows for the efficient reformulation
of the exchange energy as an integral on the reference configuration. On the other
hand, given our coercivity setting, the incompressibility constraint turns out to be
weakly closed. Note that the incompressibility constraint seems to be a widely ac-
cepted restriction in the literature; see e.g. [13]. Let us point out that a closely
related static model on nematic elastomers was recently analyzed by Barchiesi &
DeSimone in [2].

A second focus of the paper is that of proposing a quasi-static evolution exten-
sion of the static model. This is done by employing a dissipation distance between
magnetoelastic states which combines magnetic changes with the actual deforma-
tion of the specimen. Note that the rate-independence of this evolution seems well
motivated for a fairly wide range of frequencies of external magnetic fields. We
also ensure that the elastic deformation is one-to-one at least inside the reference
configuration allowing for possible frictionless self-contact on the boundary. Let us
mention that some models of rate-independent magnetostrictive effects were devel-
oped in [4, 5] in the framework magnetic shape-memory alloys and in [25, 26] for
bulk ferromagnets.

We tackle the problem of ensuring the existence of quasi-static evolutions in
the framework of energetic solvability of rate-independent problems à la Mielke
[23, 24]. We restrict ourselves to the isothermal situation. In particular we assume
that the process is sufficiently slow and/or the body thin in at least one direction
so that the released heat can be considered to be immediately transferred to the
environment. By relying on the classical theory of energetic solutions [21] we prove
that the implicit incremental time discretization of the problem admits a time-
continuous quasi-static evolution limit. Details are given in Section 3.

2. Energy. Let the reference configuration Ω ⊂ R3 be a bounded Lipschitz domain.
Let us assume from the very beginning

p > 3

and consider deformations y ∈ W 1,p(Ω;R3) ⊂ C(Ω;R3) where the bar denotes set
closure. We impose homogeneous boundary conditions by prescribing that y = 0
on Γ0 ⊂ ∂Ω where Γ0 has a positive surface measure. Magnetization, representing
the density of magnetic spin moments, is assumed to be defined on the open set
Ωy := y(Ω)\y(∂Ω) and to have a fixed norm 1 (note that our problem is isothermal),
namely, m : Ωy → S2.

The incompressibility constraint reads det∇y = 1 almost everywhere in Ω. In
particular, this entails invertibility of y a.e. in Ω through the Ciarlet-Nečas condition
[9] which in our situation reads |Ωy| = |Ω|. Indeed, we have that

|Ωy| =
∫

Ωy

1 =

∫
Ω

det∇y = |Ω|.

We shall define the sets

y ∈ Y := {y ∈W 1,p(Ω;R3) | det∇y = 1 in Ω, y = 0 on Γ0, |Ωy| = |Ω|}
m ∈My := {m ∈W 1,2(Ωy;R3); |m| = 1 in Ω}.

Note that, as p > 3, the set Y is sequentially closed with respect to the weak
topology of W 1,p(Ω;R3). This indeed follows from the sequential continuity of
the map y 7→ det∇y from W 1,p(Ω;R3) to Lp/3(Ω) (both equipped with the weak
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convergence), the weak closedness of the Ciarlet-Nečas condition [8, 9], and from
the compactness properties of the trace operator.

For the sake of brevity, we shall also define the set Q as

Q := {(y,m) | (y,m) ∈ Y×My} .
Moreover, we say that {(yk,mk)}k∈N Q-converges to (y,m) ∈ Q as k → ∞ if the
following three conditions hold

yk ⇀ y in W 1,p(Ω;R3), (4a)

χΩykmk → χΩym in L2(R3;R3), (4b)

χΩyk∇mk ⇀ χΩy∇m in L2(R3;R3×3). (4c)

Eventually, we say that a sequence {(yk,mk)}k∈N ⊂ Q is Q-bounded if

sup
k∈N

(‖yk‖W 1,p(Ω;R3) + ‖∇mk‖L2(Ωyk ;R3×3)) <∞.

By following an argument from [27, Lemma 3.5], here simplified by the incom-
pressibility assumption, we can show that Q-bounded sequences are Q-sequentially-
precompact.

Proposition 1. Every Q-bounded sequence admits a Q-converging subsequence.

Proof. Let (yk,mk) be Q-bounded. The compactness in the y-component, i.e. (4a),
follows from the weak closure of Y.

Assume (without relabeling the subsequence) that yk ⇀ y in W 1,p(Ω;R3) and
fix ε > 0. For Ωy, we introduce the set Ωy

ε := {z ∈ Ωy; dist(z, ∂Ωy) > ε}. As p > 3
we have that W 1,p(Ω;R3) ↪→ C(Ω̄;R3) compactly. This in particular entails that
Ωy

ε ⊂ Ωyk for k sufficiently large. Hence, we infer that∫
Ωy

ε

|∇mk|2 ≤
∫

Ωyk

|∇mk|2 <∞ .

Taking into account that |mk| = 1 we get (again for a non-relabeled subsequence)
that mk ⇀ m in W 1,2(Ωy

ε ;R3). Here the extracted subsequence and its limit m
could depend on ε. On the other hand, as {Ωy

ε}ε>0 exhausts Ωy, we have that m
is defined almost everywhere in Ωy. By following the argument in [27, Lemma 3.5]
we exploit the decomposition

‖χΩykmk − χΩym‖L2(R3;R3)

≤‖(χΩyk − χΩy
ε
)mk‖L2(R3;R3) + ‖χΩy

ε
(mk −m)‖L2(R3;R3)

+ ‖(χΩy
ε
− χΩy )m‖L2(R3;R3). (5)

We now check that the above right-hand side goes to 0 as k → ∞ and ε → 0. As
to the first term, since Ωy is compact we have that for any ε > 0 there exists an
open set Oε such that Oε ⊃ Ωy and |Oε \Ωy| < ε. The uniform convergence yk → y
yields that Ωyk ⊂ Oε for k sufficiently large. Therefore, |Ωyk \ Ωy

ε | can be made
arbitrarily small if ε is taken small enough, and the first term on the right-hand
side of (5) converges to 0 as k → ∞ and ε → 0. The second term on the right-
hand side of (5) goes to 0 with k → ∞ as mk → m strongly in L2(Ωy

ε ;R3). As
|m| = 1 almost everywhere, the third term on the right-hand side of (5) is bounded
by ‖χΩy−χΩy

ε
‖L2(R3;R3) which goes to 0 as ε→ 0. This shows the convergence (4b).

A similar argument can then be used to show that

χΩyk∇mk ⇀ χΩy∇m in L2(R3;R3×3) ,



EXISTENCE RESULTS FOR INCOMPRESSIBLE MAGNETOELASTICITY 2619

namely convergence (4c).

Remark 1. Notice that the proof of the strong convergence of {χΩykmk} still holds
if we replace Ω by some arbitrary measurable subset ω ⊂ Ω. Keeping in mind that
det∇yk = det∇y = 1 almost everywhere in Ω, for all k ∈ N, and that all mappings
yk and y are invertible, we calculate∫

ω

mk ◦ yk =

∫
R3

χyk(ω)mk →
∫
R3

χy(ω)m =

∫
ω

m ◦ y.

This shows mk ◦ yk ⇀ m ◦ y in L2(Ω;R3). As the L2 norms converge as well, we
get strong convergence in L2(Ω;R3). Eventually, as mk takes values in S2 one has
that mk ◦ yk ⇀m ◦ y in Lr(Ω;R3) for all r <∞ as well.

The following result is an immediate consequence of the linearity of the Maxwell
equation (2).

Lemma 2.1. Let χΩykmk → χΩym in L2(R3;R3) and let umk
∈ W 1,2(R3) be the

solution of (2) corresponding to χΩykmk. Then umk
⇀ um in W 1,2(R3) where um

is the solution of (2) corresponding to χΩym.

Let us finally enlist here our assumptions on the elastic energy density W .

∃c > 0 ∀F,m : −1/c+ c|F |p ≤W (F,m), (6a)

∀R ∈ SO(3) : W (RF,Rm) = W (F,m), (6b)

∀F,m : W (F,m) = W (F,±m), (6c)

∀F,m : W (F,m) = Ŵ (F, cof F,m), (6d)

where Ŵ : R3×3 × R3×3 × R3 → R is a continuous function such that Ŵ (·, ·,m) is
convex for every m ∈ S2. In particular, we assume material frame indifference (6b)
and invariance under magnetic parity (6c). Recall that for F ∈ R3×3 invertible,
one has cofF defined as cofF := (detF )F−>. In the present incompressible case
detF = 1 we simply have cofF := F−>. Eventually, assumption (6d) corresponds
to the polyconvexity of the function W (·,m) [1]. Assumptions (6) will be considered
in all of the following, without explicit mention.

Theorem 2.2 (Existence of minimizers). The energy E is lower semicontinuous
and coercive with respect to Q-convergence. In particular, it attains a minimum
on Q.

Proof. Owing to the coercivity assumption (6a), one immediately gets that E sub-
levels are Q-bounded, hence Q-sequentially compact due to Proposition 1.

The magnetoelastic term in E is weakly lower semicontinuous because of the as-
sumptions (6) on W , see [1, 14]. The exchange energy term in E is quadratic hence
weakly lower semicontinuous. The magnetostatic term is weakly lower semicontin-
uous by Lemma 2.1. The existence of a minimizer follows from the direct method,
e.g. [10].

For the sake of notational simplicity in all of this section no external forcing
acting on the system was considered. It is however worth mentioning explicitly
that the analysis extends immediately to the case of the linear perturbation of the
energy E given by including the term

−
(∫

Ωy

h ·m+

∫
Ω

f · u+

∫
Γt

g · u
)
.



2620 MARTIN KRUŽÍK, ULISSE STEFANELLI AND JAN ZEMAN

The first term is the so-called Zeeman energy and h ∈ L1(Ωy;R3) represents an
external magnetic field. Moreover, f ∈ Lq(Ω;R3) is a body force, and g ∈ Lq(Γt;R3)
is a traction acting on Γt where Γt ⊂ ∂Ω is relatively open, ∂Γ0 = ∂Γt (the latter
two boundaries taken in ∂Ω), and 1/p+ 1/q = 1.

Eventually, we could replace the homogeneous Dirichlet boundary condition y =
0 on Γ0 with some suitable non-homogeneous condition without difficulties.

3. Evolution. Let us now turn to the analysis of a quasi-static evolution driven
by E. In order to do so, one has to discuss dissipative effects as well. Indeed,
under usual loading regimes, magnetically hard materials experience dissipation.
On the other hand, the dissipation mechanism in ferromagnets can be influenced by
impurities in the material without affecting substantially the stored energy. This
allows us to consider energy storage and dissipation as independent mechanisms.

Our, to some extent simplified, standpoint is that the amount of dissipated energy
within the phase transformation from one pole to the other can be described by a
single, phenomenologically given number (of the dimension J/m3=Pa) depending on
the coercive force Hc [7]. Being interested in quasistatic, rate-independent processes
we follow [22, 23, 24] and define a so-called dissipation distance between to states
q1 := (y1,m1) ∈ Q and q2 := (y2,m2) ∈ Q by introducing D : Q×Q→ [0; +∞) as
follows

D(q1, q2) :=

∫
Ω

Hc|m1(y1(x))−m2(y2(x))|dx.

Here, the rationale is that although the system dissipates via magnetic reorientation
only, elastic deformation also contributes to dissipation as m lives in the deformed
configuration.

Assume, for simplicity, that the evolution of the specimen during a process time
interval [0, T ] is driven by the time-dependent loadings

f ∈ C1([0, T ];Lq(Ω;R3)),

g ∈ C1([0, T ];Lq(Γt;R3)),

h ∈ C1([0, T ];L1(R3;R3)),

so that we can write a (time-dependent) energy functional E : [0, T ]×Q→ (−∞,∞)
as

E(t, q) := E(q)−
(∫

Ωy

h(t) ·m+

∫
Ω

f(t) · u+

∫
Γt

g(t) · u
)
. (7)

Our aim is to find an energetic solution corresponding to the energy and dissipa-
tion functionals (E ,D) [23, 24], that is an everywhere defined mapping q : [0, T ]→ Q
such that

∀ t ∈ [0, T ], ∀ q̃ ∈ Q : E(t, q(t)) ≤ E(t, q̃) +D(q(t), q̃), (8a)

∀ t ∈ [0, T ] : E(t, q(t)) + Var(D, q; 0, t) = E(0, q(0)) +

∫ t

0

∂tE(θ, q(θ)) dθ, (8b)

where we have used the notation

Var(D, q; s, t) := sup

J∑
i=1

D(q(ti−1), q(ti))

the supremum being taken over all partitions of [s, t] in the form {s = t0 < t1 <
... < tJ−1 < tJ = t}. Condition (8a) is usually referred to as the (global) stability of
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state q at time t. For the sake of convenience we shall call stable (at time t) a state
fulfilling (8a) and denote by S(t) ⊂ Q the set of stable states. The scalar relation
(8b) expresses the conservation of energy instead. We shall now state the existence
result.

Theorem 3.1 (Existence of energetic solutions). Let q0 ∈ S(0). Then, there exist
an energetic solution corresponding to (E ,D), namely a trajectory q := (y,m) :
[0, T ] → Q such that q(0) = q0 and (8) are satisfied. Additionally, q is uniformly
bounded in Q and m ◦ y ∈ BV (0, T ;L1(Ω;R3)).

Sketch of the proof. This argument follows the by now classical argument for ex-
istence of energetic solutions. As such, we record here some comments referring
for instance to [15, 21] for the details. Starting from the stable initial condi-
tion q0 ∈ S(0) we (semi)discretize the problem in time by means of a partition
0 = t0 < t1 < . . . < tN = T of [0, T ] such that the diameter maxi(ti − ti−1)→ 0 as
N →∞. This gives us a sequence qNk such that qN0 := q0 and qNk , 1 ≤ k ≤ N , is a
solution to the following minimization problem for q ∈ Q

minimize E(tk, q) +D(q, qNk−1). (9)

The existence of a solution to (9) follows from Theorem 2.2 combined with the lower
semicontinuity of D. In particular, Remark 1 implies that the dissipation term in
(9) is continuous with respect to the weak convergence in Q. We now record that
minimality and the triangle inequality entail that the obtained solutions are stable,
i.e., qNk ∈ S(tk) for all k = 0, . . . , N . Let us define the right-continuous piecewise
interpolant qN : [0, T ]→ Q as

qN (t) :=

{
qNk if t ∈ [tk−1, tk) if k = 1, . . . , N,

qNN if t = T .

Following [21] we can establish for all N ∈ N the a-priori estimates

‖yN‖L∞(0,T );W 1,p(Ω;R3) ≤ C, (10a)

‖χΩyN∇mN‖L∞((0,T );L2(R3;R3)) ≤ C, (10b)

‖χΩyNmN‖L∞((0,T );L∞(R3;R3)) ≤ C, (10c)

‖mN ◦ yN‖BV (0,T ;L1(Ω;R3)) ≤ C. (10d)

These a-priori estimates (derived using coercivity of the energy and boundedness
of m) together with a suitably generalized version of Helly’s selection principle [24,
Cor. 2.8] entail that, for some not relabeled subsequence, we have qN → q pointwise
in [0, T ] with respect to the weak topology of Q. This convergence suffices in order to
prove that indeed the limit trajectory is stable, namely q(t) ∈ S(t) for all t ∈ [0, T ].
Indeed, this follows from the lower semicontinuity of E and the continuity of D due
to (4b).

Moreover, by exploiting minimality we get that

E(tk, q
N
k ) +D(qNk , q

N
k−1)− E(tk−1, q

N
k−1) ≤

∫ tk

tk−1

∂tE(θ, qNk−1) dθ .

Taking the sum of the latter on k we readily check that the one-sided inequality in
relation (8b) holds for t = T .

The converse energy inequality (and hence (8b) for all t ∈ [0, T ]) follows from
the stability q(t) ∈ S(t) of the limit trajectory by [21, Prop. 5.6].
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Note that the previous existence result can be adapted to the case of time-
dependent non-homogeneous Dirichlet boundary conditions by following the corre-
sponding argument developed in [15]. Besides suitable temporal smoothness of the
Dirichlet data, one also needs to assume that the Kirchhoff stress is controlled by
the energy density W (·,m). See [15, Formula (1.6)] for further details.
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