
Algorithms for single-fault

troubleshooting with dependent

actions∗

Václav Ĺın

Department of Decision-Making Theory

Institute of Information Theory and Automation

Czech Academy of Sciences

e-mail: lin@utia.cas.cz

Abstract

We study the problem of single-fault troubleshooting with dependent
actions. We propose a binary integer programming formulation for the
problem. This can be used to solve the problem directly or to compute
lower bounds of optima using linear programming relaxation. We present
an optimal dynamic programming algorithm, and three greedy algorithms
for computing upper bounds of optima.

1 Introduction

We study single-fault troubleshooting with dependent actions [Heckerman et al.,
1995, Jensen et al., 2001]. The problem is NP-hard [Vomlelová and Vom-
lel, 2003], and it is a straightforward generalization of min-sum set cover and
pipelined-set cover [Feige et al., 2004, Munagala et al., 2005]. These are combi-
natorial problems relevant in several areas other than automated repair.

We propose a binary integer programming formulation for the troubleshoot-
ing problem, and give several classes of additional valid inequalities. This can be
used to solve the problem directly using a general purpose solver, or to compute
lower bounds of optima by linear programming relaxation. We also describe
several greedy algorithms for computing upper bounds of optima. We test the
resulting lower and upper bounds in computational experiments.

Problem statement The troubleshooting problem studied in this paper may
be stated as follows:

• A piece of equipment is faulty and the task is to construct a repair strategy
with the least expected cost.

∗This work was supported by the Czech Science Foundation through grant 13-20012S.

1

• There are m mutually exclusive and collectively exhaustive possible causes
of the failure called faults. The faults are not directly observable. The
equipment failure is caused by exactly one of the faults. Each fault Fi has
nonzero probability of occurrence P (Fi), and

∑m
i=1 P (Fi) = 1.

• There are n repair steps available, called actions, that can possibly remedy
the failure. When performed, each action Aj can succeed or fail to fix the
system failure, and it has a fixed cost c(Aj) and a conditional probability
of success P (Aj | Fi) ≥ 0 for each fault Fi. In terms of probability, the
actions are conditionally independent given the faults. It is assumed that
an action that has failed once will fail again if performed. Hence, it is
assumed that each action is performed at most once.

• The challenge is to find a suitable permutation of the actions A1, . . . , An,
and use the permutation as a repair strategy: the actions are performed in
the prescribed order until some of the actions succeeds (i.e. the equipment
failure is repaired) or all the actions with nonzero probability of success
have been used.

Let us denote by ¬A the event that action A has failed and denote by

ej =

j∧
k=1

¬Aπ(k) , (1)

the information (called evidence) that the first j actions in permutation π have
failed. Now, for a permutation of actions π we define

EC(π) =

n∑
i=1

c(Aπ(i)) · P (ei−1) (2)

ECR(π) = EC(π)−
∑

i=1,...,n
P (Aπ(i)|ei−1)=0

c(Aπ(i)) · P (ei−1) , (3)

where EC is the expected cost of π, and ECR is the expected cost of repair of
π, which is the expected cost of π where the actions with zero probability of
success are skipped.

Our task is to find a permutation of actions minimizing the ECR. For some
problems, a sequence minimizing EC minimizes also ECR. However, this is not
a general rule as shown by Example 1.

Example 1. We exhibit a troubleshooting problem where there are permutations
π1 and π2 such that permutation π1 minimizes ECR and ECR(π1) < ECR(π2),
permutation π2 minimizes EC and EC(π1) > EC(π2). In the problem we have
two faults and two actions and the parameters are

A1 A2

c(A) 4 7
F1 F2

P (F) 1/2 1/2

F1 F2

P (A1 | F) 1 0
P (A2 | F) 1 1/2

Let π1 = 〈A2, A1〉 and π2 = 〈A1, A2〉. The expected costs are:

π2 π1
EC 7.5 8
ECR 7.5 7

Special cases When the outcomes of actions are deterministic, i.e. the prob-
ability P (A succeeds | F is present) is either zero or one for all combinations of
action A and fault F , then the problem reduces to the pipelined set cover prob-
lem Munagala et al. [2005]. When it is further assumed that all the action cost
and fault probabilities are uniform, the problem is equivalent to the min-sum
set cover problem Feige et al. [2004].

Contribution and structure of the paper The main contribution of the
paper is a binary integer programming formulation for single fault troubleshoot-
ing with dependent actions. The formulation is useful in two ways:

1. The formulation can be used for solving the troubleshooting problem di-
rectly with any general purpose integer programming solver.

2. Even if the integer program at hand is too hard to solve to optimality,
we may nonetheless use it to compute lower bounds of optima by linear
programming relaxation. These bounds may be used in special purpose
branch & bound algorithms for troubleshooting (such as the algorithm
given by Vomlelová and Vomlel [2003]).

The binary integer programming formulation is described in Section 5. In Sec-
tion 4 we describe three simple greedy algorithms for solving the problem. These
algorithms are useful because the search for an optimal permutation of actions
by branch & bound algorithms is often greatly facilitated by having a good
upper bound of the optimum. The paper concludes with brief discussion of
computational experience in Section 6.

2 Notation

The set of all faults is F = {F1, . . . , Fm}, the set of all actions isA = {A1, . . . , An}.
For an action A, the set of all faults that can be repaired by action A is F(A);
similarly, A(F) is the set of actions that may repair fault F :

F(A) = {F ∈ F : P (A | F) > 0} ,

A(F) = {A ∈ A : P (A | F) > 0} .

Let π be a permutation of the actions. With the notation just introduced and
using the assumptions of mutually exclusive faults and conditional independence
of actions given faults, the expected cost may be written as

EC(π) =
∑
A∈A

c(A) ·
∑
F∈F

P (F) ·
∏

B∈A(F)
π(B)<π(A)

P (¬B|F) . (4)

When we perform an action A and the action fails, we nevertheless obtain
some information. In particular, the marginal probability distribution P (F)
changes to P (F | ¬A). As mentioned above, we call this information evidence.
For consistency, we define e0, the void initial evidence that we have before any
of the actions has been executed. We define

A(e) = {A ∈ A : P (A | e) > 0} .

It is assumed that once failed action will fail again if performed. In terms of
probability, P (A | ¬A) is zero, and hence the set A(e) does not contain any of
the actions that are included in e.

3 Dynamic programming

A dynamic programming approach to troubleshooting was first proposed by
Vomlelová and Vomlel [2003]. The problem studied in this paper can be solved
by dynamic programming using recurrence

ECR?(e) = min
A∈A(e)

[
c(A | e) + P (¬A | e) · ECR?(e ∧ ¬A)

]
, (5)

where the minimum on the right hand side equals zero if taken over an empty set.
Now, ECR?(e0) is the optimal expected cost of the troubleshooting problem.

4 Greedy algorithms

Greedy polynomial-time algorithms may be used to construct permutations of
actions that are not guaranteed to be optimal but experience shows that very
often they are optimal or “nearly optimal”. We shall describe three such algo-
rithms in this section.

Algorithm Updating P/C Perhaps the most natural greedy algorithm is
one called Updating P/C [Jensen et al., 2001] At ith step, i = 1, . . . , n, the
algorithm selects an action A ∈ A(ei−1) maximizing the ratio

P (A | ei−1)

c(A)
.

For minimization of EC, Kaplan et al. [2005] proved that Updating P/C has
a guaranteed approximation factor: it never returns a sequence with expected
cost greater than four times the optimum. By the complexity-theoretic results
of Feige et al. [2004], that is most likely the best guaranteed approximation
factor possible.

Algorithm DP-greedy Another greedy algorithm is motivated by the dy-
namic programming recurrence (5). We shall call the algorithm DP-greedy.
At ith step, the algorithm selects an action A ∈ A(ei−1) minimizing

c(A) + P (¬A | ei−1) · ẼC(ei−1 ∧ ¬A) ,

where ẼC(e) denotes an estimate of the expected cost of optimal sequence of the
remaining actions from A(e). The estimate is computed by the Updating P/C
algorithm. Although seemingly different, algorithm DP-greedy is equivalent
to a greedy algorithm proposed by Langseth and Jensen [2001].1

Algorithm I-greedy The last greedy algorithm uses an information-theoretic
criterion for selection of the hopefully best action given evidence e. We call it
I-greedy. It is inspired by the ID3 algorithm [Quinlan, 1986]. Let H(F | e)
be the Shannon entropy of marginal distribution P (F | e), that is

H(F | e) = −
∑
F∈F

P (F | e) · logP (F | e) ,

and let I(A | e) be the information gain of performing action A, i.e. the expected
decrease of H(F | e) induced by performing A:

I(A | e) = H(F | e)−
[
P (A | e) ·H(F | e ∧A) + P (¬A | e) ·H(F | e ∧ ¬A)

]
.

Given evidence e, it seems desirable to select an action maximizing I(A | e)/c(A).
However, we do not want the selection criterion to be biased towards actions
with high entropy H(F | e ∧ A) since we are not interested in the entropy of
P (F) in the case that A suceeds. To this end, we assume H(F | e∧A) to be zero
for all A and e, and we select at each step an action A ∈ A(ei−1) maximizing

H(F | e)− P (¬A | ei−1) ·H(F | ei−1 ∧ ¬A)

c(A)
. (6)

5 Integer linear programming formulation

We shall formulate an integer linear program encoding the troubleshooting
problem. For background information about integer programming we refer to
[Wolsey, 1998]. For linear programming, the classic reference is [Dantzig, 1998].2

To encode a permutation of actions from the set A, we use binary variables
dA,B for every pair of distinct actions A,B ∈ A. Given a permutation π of the

1The proof is to be found in [Ĺın, 2015].
2 The (binary) integer programming problem is this: given an r-element vector c, an

s-element vector b and an (r × s)-matrix A, find an r-element vector x minimizing cTx
subject to constraints x ∈ X ∩ {0, 1}r where X = {x ∈ <r : Ax ≥ b}. The set X is a
formulation for the set of feasible solutions. Lower bound of the optimum can be obtained
by a linear programming relaxation: we solve the linear programming problem cTx → min
subject to constraints x ∈ X, x ≥ 0. The linear programming relaxation can be computed in
polynomial time, whereas binary integer programming is NP-hard.

actions, we have dA,B = 1 if action A precedes action B in the permutation π,
otherwise dA,B = 0. Variables dA,B should encode a linear ordering relation
on A. That means that the relation is asymmetric and transitive To enforce
the requirement of asymmetry, we introduce equation (7) for each ordered pair
of distinct actions A,B. To enforce the requirement of transitivity, we add
inequality (8) for every ordered triple of pairwise distict actions A,B,C.

dA,B = 1− dB,A . (7)

dA,B + dB,C ≤ dA,C + 1 . (8)

We now proceed to formulate the expected cost of action sequence as a linear
function. For simplicity, we begin by EC and turn to ECR later. Assuming
that a fixed permutation π is encoded by variables dA,B introduced above, we
can write (4) as:

EC =
∑
A∈A

c(A) ·
∑
F∈F

P (F) ·
∏

B∈A(F)\{A}
dB,A=1

P (¬B | F) . (9)

(Whenever the product in (9) is taken over an empty set of factors, we assume
that the product equals one. That is

∏
B∈∅ P (¬B | F) = 1.) Minimizing (4)

is equivalent to minimizing (9) subject to the constraints (7) and (8). To ex-
press (9) as a linear function, we introduce a binary variable xF,A,B for each
fixed combination of fault F , action A and a set of actions B ⊆ A(F) \ {A}.
The value of xF,A,B is defined as

xF,A,B =
(∏
B∈B

dB,A

)
·
(∏
B∈A(F)\B

B 6=A

dA,B

)
. (10)

In words, variable xF,A,B equals one if and only if all the actions B ∈ B pre-
cede action A, and all the remaining actions from A(F) are preceded by A.
Associated to each variable xF,A,B is a coefficient

QF,A,B = c(A) · P (F) ·
∏
B∈B

P (¬B | F) .

For B = ∅, we have QF,A,B = c(A) · P (F). For any fixed fault F and action A,
exactly one of the variables xF,A,B equals one. With this observation, we may
replace the nonlinear objective (9) by a linear function

EC =
∑
A∈A

∑
F∈F

∑
B⊆A(F)
B63A

QF,A,B · xF,A,B . (11)

The number of summands in (11) is exponential in the size of sets A(F). How-
ever, we can assume that in practical applications, the size |A(F)| is bounded
from above by a reasonably small constant.

To express definition (10) in terms of linear inequalities, we observe that the
definition implies for each fixed combination F,A,B:

xF,A,B ≥ 1 +
∑
B∈B

(dB,A − 1) +
∑

B∈A(F)\B
B 6=A

(dA,B − 1). (12)

Bounding the variables xF,A,B from above is not necessary since all the coeffi-
cients in (11) are nonegative. In case that A(F) \ {A} is an empty set, we have
xF,A,∅ = 1. To summarize, for minimization of EC we have a minimization
linear program with objective function (11) and constraints (12), (7), (8).

To minimize ECR rather than EC, we need to add to the formulation ad-
ditional variables and constraints. We say that an action Ai is dominated in
permutation π if its success probability P (Aπ(i) | ei−1) is zero. In the linear
model, we may define additional “correction” variable wF,A,B with coefficient
‘−QF,A,B’ for every variable xF,A,B. Logically, the variable is defined

wF,A,B ⇐⇒ xF,A,B ∧
[∧
G∈F(A)

∨
B∈A(G)
B 6=A

P (B|G)=1

dBA

]

In words, variable wF,A,B equals one if and only if variable xF,A,B equals one
and action A is dominated. The linear objective function is then

ECR =
∑
xF,A,B

QF,A,B · xF,A,B −
∑

wF,A,B

QF,A,B · wF,A,B (13)

where the sums extend over all the x- and w-variables. To express the definition
of w by linear inequalities, we observe that only upper bound for the w-variables
is needed (since their coefficients are negative), and it is sufficient to introduce
linear constraints

wF,A,B ≤ xF,A,B (14)

(∀G ∈ F(A)) wF,A,B ≤
∑

B∈A(G)
B 6=A

P (B|G)=1

dB,A (15)

To keep the linear relaxation tight, we do not add to the model variables w
that either cannot ever equal one or have zero coefficient Q. To be included in
the linear programming formulation, the following conditions must be satisfied
for variable wF,A,B:

1. Action A can be dominated. That means that for every fault G ∈ F(A)
there is an action B ∈ A(G) \ {A} that can solve fault G perfectly, i.e.
P (B | G) = 1.

2. The coefficientQF,A,B is nonzero. That means that for every action B ∈ B,
the probability P (¬B | F) is nonzero.

Moreover, we do not add to the model any variable wF,A,B such that the action
A can solve fault F (in our notation A ∈ A(F)). Indeed, consider a variable
wF,A,B with action A ∈ A(F). If it has nonzero coefficient QF,A,B, then it
means that action A is not dominated, as it is not preceded by any action B
with P (B | F) = 1.

5.1 Classes of additional valid inequalities

Linear programming relaxation is obtained from the integer program by replac-
ing the integrality requirement dA,B ∈ {0, 1} by 0 ≤ dA,B ≤ 1 for all the d-
variables and likewise for all the x- and w-variables. In general, objective value
of linear programming relaxation is a lower bound of the objective value of the
minimization integer program. To make the bound as tight as possible, we may
add to the linear model additional valid inequalities. That is, inequalities that
are satisfied by all feasible integer solutions.

The first class of valid inequalities is based on the observation that for any
fixed combination of a fault F and an action A, exactly one of the variables
xF,A,B equals one, i.e. ∑

B⊆A(F)
B63A

xF,A,B = 1 . (16)

Another class of valid inequalities is based on observing that given fault F
and a fixed permutation of actions, there is exactly one action A ∈ A(F) that
is not preceded by any other action B ∈ A(F). That is, for every fault F we
have: ∑

A∈A(F)

xF,A,∅ = 1 . (17)

We observe that if action B precedes action A, and action A precedes all
the actions from A(F), then also action B precedes all the actions from A(F).
Hence, for any fixed combination of fault F and distinct actions A and B we
have:

xF,A,∅ + dB,A ≤ xF,B,∅ + 1 . (18)

Another idea for valid inequalities is based on the fact that if an action is
dominated in optimal sequence, then so should be its successors. Therefore, for
all distinct actions A and B neither of which belongs to A(F), we have

wF,A,∅ + dA,B ≤ wF,B,∅ + 1 . (19)

For any fixed triple F,A,B, a combination of (10) and (14) yields inequalities

wF,A,B ≤ dB,A for every B ∈ B (20)

wF,A,B ≤ dA,B for every B ∈ A(F) \ B \ {A} . (21)

Another class of valid inequalities that we devise is inspired by a heuristic
function due to Vomlelová and Vomlel [2003]. For any given fault F we can find
a permutation πF of all the actions minimizing

z(π) =
∑
A∈A

c(A) ·
∏
B∈A

π(B)<π(A)

P (¬B | F) .

The minimizing permutation πF is found by ordering the actions in A so that
the ratios P (A | F)/cA are nonincreasing. With this observation, we can construct
constraints (22) for each fault F :∑

A∈A

∑
B⊆A(F)
B63A

QF,A,B · xF,A,B ≥ P (F) · z(πF) . (22)

The heuristic function of Vomlelová and Vomlel [2003] can be expressed by a
single inequality:∑

xF,A,B

QF,A,B · xF,A,B −
∑

wF,A,B

QF,A,B · wF,A,B ≥
∑
F∈F

P (F) · z(πF) . (23)

The sums in (23) are taken over all the x- and w-variables that exist in the
linear programming formulation.

Fixing partial order of actions in advance In some cases, we can fix a
partial order of some of the actions before starting to search for an optimal
sequence, thereby reducing the number of sequences that need to be considered.
In particular, we may use the following proposition.3

Proposition 1. Let s be an optimal sequence of actions. Let there be two
distinct actions A and B in s such that:

• the sets F(A) and F(B) are disjoint,

• there is no action C with set F(C) insersecting F(A) ∪ F(B).

Further, assume that action A precedes action B in sequence s (the two actions
are not necessarily adjacent). Then P (A)/c(A) ≥ P (B)/c(B).

We may use Proposition 1 to construct a partial ordering of actions satisfying
the conditions stated in the proposition. Once such an ordering is constructed,
we may fix the corresponding precedence variables dA,B to appropriate values.

3Proposition 1 is a straightforward generalization of a theorem proved by Jensen et al.
[2001]. The proof is to be found in [Ĺın, 2015].

Cutting planes procedure The basic integer programming formulation con-
tains inequalities (12),(7),(8), (14) and (15). The formulation may be strenght-
ened by adding additional valid equalities and inequalities mentioned above.
However for computational reasons, we do not add them all at once, but rather
in an iterative fashion. The additional constraints are conventionally called cut-
ting planes. The procedure of adding cutting planes can be outlined as follows:

1. Construct the initial integer programming formulation and compute its re-
laxation by replacing the integrality requirements v ∈ {0, 1} by 0 ≤ v ≤ 1
for every variable v of the formulation.
Let X denote the obtained linear programming formulation, and let x
denote its solution vector found by linear programming.

2. For each class of valid inequalities or equalities4 listed in Section 5.1:

(a) Investigate whether some inequalities of the class are violated by the
current solution vector x.

(b) Add the violated inequalities to X and solve by linear programming.

(c) If the addition of violated inequalities in the previous step lead to
increase in the objective value, keep the inequalities in X. Otherwise,
remove them.

(d) Remove from the formulation cutting planes that are not satisfied
with equality (i.e they have nonzero “slack value”).

3. Repeat the previous step until the objective value does not increase, or
the number of iterations exceeds some predetermined parameter, or x is
an integral vector.

A more detailed description of the procedure is to appear in [Ĺın, 2015].

6 Computational experience

In this last section we collect results of a small computational study. The algo-
rithms described in the paper were run on nine problems. One of the problems
was generated, the other were extracted from real world troubleshooting mod-
els. Full details of the models cannot be given for confidentiality reasons, so we
provide only some basic characteristics in Table 1. More details can be provided
upon request.

We investigate tightness of the upper bounds computed by greedy algorithms
DP-greedy, Updating P/C and I-greedy. The tightness is measured by ra-
tio of the upper bound to the optimal ECR. The optima are computed by
dynamic programming and/or by integer programming. The results are in Ta-
ble 2. In the same table are ratios of lower bounds to optimal ECR. The lower
bounds are computed by the heuristic function of Vomlelová and Vomlel [2003]

4In the following, we say just “inequalities” instead of “inequalities or equalities”.

c(A) P (F) P (A | F) 6= 0
|A| µ σ |F| µ σ % µ σ

1 25 6,840 3,923 26 0,038 0,037 8,800 0,886 0,125
2 13 24,231 30,868 12 0,083 0,055 9,600 0,941 0,066
3 7 10,429 11,588 6 0,167 0,158 23,800 0,898 0,175
4 13 28,154 31,945 13 0,077 0,093 15,380 0,950 0,050
5 10 1,000 0,000 10 0,100 0,000 27,000 0,929 0,051
6 14 83,000 264,406 13 0,077 0,056 24,720 0,931 0,092
7 20 10,900 7,840 26 0,039 0,033 6,920 0,930 0,200
8 13 34,690 40,400 12 0,083 0,078 20,510 0,963 0,092
9 11 26,450 35,708 11 0,091 0,118 15,700 0,935 0,068

Table 1: For each problem, we give the number of actions |A| and number of
faults |F|. We give mean µ and standard deviation σ for action costs c(A) and
fault probabilities P (F). For probability distribution P (A | F) we give the
percentage (%), mean and standard deviation of nonzero entries.

DP-g. Up. P/C I-g. heur. LP LP+cuts cuts used
1 1,000 1,000 1,003 0,590 0,470 0,687 (22)
2 1,005 1,006 1,018 0,563 0,973 0,973 —
3 1,000 1,000 1,000 0,867 0,796 0,867 (23)
4 1,000 1,000 1,024 0,619 0,742 0,861 (16), (17), (18)
5 1,000 1,047 1,047 0,436 0,379 0,562 (22)
6 1,000 1,000 1,022 0,856 0,883 0,936 (17), (18)
7 1,001 1,010 1,014 0,648 0,913 0,926 (18)
8 1,000 1,000 1,000 0,630 0,417 0,750 (17), (18)
9 1,000 1,000 1,019 0,699 0,861 0,892 (22)

Table 2: Tightness of bounds of ECR. On the left are ratios of upper bounds
to optimal ECR. On the right are ratios of lower bounds to optimal ECR.

heur. LP LP+cuts
1 0,577 0,564 0,822
2 0,563 0,973 0,973
3 0,818 0,787 0,942
4 0,619 0,742 0,861
5 0,436 0,379 0,562
6 0,856 0,918 0,998
7 0,609 0,983 0,983
8 0,619 0,539 0,827
9 0,699 0,861 0,892

Table 3: Tightness of lower bounds of EC.

(column “heur.”), by linear programming relaxation without cutting planes (col-
umn “LP”) and by linear programming relaxation with cutting planes involved
(column “LP+cuts”). The rightmost column indicates which inequalities were
used as cutting planes. In Table 3 we give similar results for the lower bounds
when EC is optimized rather than ECR. We see that the greedy algorithms
provide solutions that are always either optimal or very close to optimal. The
algorithm DP-greedy performs very well and finds an optimal solution in most
cases5. As far as the lower bounds are concerned, adding cutting planes to the
basic linear programming formulation leads to a tighter bound in all cases but
one. In general, lower bounds computed by the cutting planes procedure are
the strongest. In one case however, they are no better than the bounds pro-
vided by the simple heuristic proposed by Vomlelová and Vomlel [2003]. We
also note that the linear programming relaxation provides tighter bounds when
optimizing EC rather than ECR. This is natural, since the w-variables in (13)
generally decrease the value of the relaxation.

Acknowledgement

I thank Jǐŕı Vomlel and Thorsten Ottosen for their help. I would like to ac-
knowledge using the PuLP library for Python and CLP/CBS solvers. All these
tools are part of the COIN-OR project [Lougee-Heimer, 2003].

References

George B. Dantzig. Linear programming and extensions. Princeton University
Press, 1998.

Uriel Feige, László Lovász, and Prasad Tetali. Approximating Min Sum Set
Cover. Algorithmica, 40(4):219–234, 2004.

David Heckerman, John S. Breese, and Koos Rommelse. Decision-theoretic
troubleshooting. Communications of the ACM, 38(3):49–57, 1995.

Finn Verner Jensen, Uffe Kjærulff, Brian Kristiansen, Helge Langseth, Claus
Skaanning, Jǐŕı Vomlel, and Marta Vomlelová. The SACSO methodology for
troubleshooting complex systems. AI EDAM, 15(4):321–333, 2001.

Haim Kaplan, Eyal Kushilevitz, and Yishay Mansour. Learning with attribute
costs. In Proceedings of the thirty-seventh annual ACM symposium on Theory
of computing, pages 356–365. ACM, 2005.

Helge Langseth and Finn Verner Jensen. Heuristics for two extensions of basic
troubleshooting. In IN: Seventh Scandinavian conference on Artificial Intel-
ligence, SCAI’01, Frontiers in Artificial Intelligence and applications, IOS,
2001.

5Without providing a proof that the solution is in fact optimal.

Václav Ĺın. Forthcoming thesis, 2015.

Robin Lougee-Heimer. The Common Optimization INterface for Operations
Research: Promoting open-source software in the operations research com-
munity. IBM Journal of Research and Development, 47(1):57–66, 2003.

Kamesh Munagala, Shivnath Babu, Rajeev Motwani, and Jennifer Widom.
The pipelined set cover problem. In Thomas Eiter and Leonid Libkin, edi-
tors, ICDT, volume 3363 of Lecture Notes in Computer Science, pages 83–98.
Springer, 2005. ISBN 3-540-24288-0.

J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,
1986.

Marta Vomlelová and Jǐŕı Vomlel. Troubleshooting: NP-hardness and solution
methods. Soft Computing, 7(5):357–368, 2003.

Laurence A. Wolsey. Integer programming. Wiley, New York, 1998.

	Introduction
	Notation
	Dynamic programming
	Greedy algorithms
	Integer linear programming formulation
	Classes of additional valid inequalities

	Computational experience

