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Abstract Inspired by similar definition in subdifferential theory, we define limiting sub-
level set and limiting normal operator maps for quasiconvex functions. These maps satisfy
important properties as semicontinuity and quasimonotonicity. Moreover, calculus rules
together with necessary and sufficient optimality conditions for constrained optimization
are established.
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1 Introduction

The theory of subdifferential, in particular limiting subdifferential, has been widely devel-
oped for lower semicontinuous functions in the last decades. This tool has proved to be very
useful in optimization since it allows calculus rules and necessary optimality conditions at
the same time, see [10]. For convex optimization, such necessary optimality conditions turn
out to be also sufficient.
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In this paper, however, we focus on the class of quasiconvex functions being important in
many applications, e.g., mathematical economics. For this class the subdifferential does not
provide sufficient optimality conditions, not even in the local sense. Some work has already
been done to find a proper first order tool for quasiconvex analysis benefiting from convex-
ity of the sublevel sets of quasiconvex functions. The basic idea is to deal with the normal
cone to convex-valued sublevel set map instead of the normal cone to epigraph of the func-
tion in question. Such approach was pioneered in [6] where the notions of normal operator
and strict normal operator were first introduced. The first operator is upper semicontinuous
and the other quasimonotone, however, none of them fulfills both these important properties
together. On that account, a unifying approach based on adjusted normal operator was intro-
duced in [4]. It is upper semicontinuous and quasimonotone at the same time. Moreover, as
the strict normal operator, it is capable of full characterization of the optimality conditions
for quasiconvex optimization. However, it is hard to find proper calculus rules for adjusted
normal operator owing to its non-local nature and this reduces its applicability. Finally let
us quote also the concept of quasiconvex subdifferential defined as a mixture of subdiffer-
ential and normal operator in [8], where also several calculus rules for particular cases were
derived.

Our aim in this paper is to adapt the normal operator in such a way that all the above
quoted properties are satisfied and, at the same time, some calculus rules are provided for
the class of lower semicontinuous quasiconvex functions. To this end, we introduce a notion
of limiting sublevel set, and consequently limiting normal operator as its point-wise polar.
We show that such normal operator is outer semicontinuous and quasimonotone at the same
time. We employ the concept of outer semicontinuity instead of upper semicontinuity as it
fits better the case of unbounded cone-valued maps [11]. Then we establish calculus rules
for the two main operations being stable for the class of quasiconvex functions. Namely
for the composition of a quasiconvex and a non-decreasing function, and the computation
of maximum of finite family of quasiconvex functions. Moreover necessary and sufficient
optimality conditions (local and global) are provided following recent works [4, 9]. We also
establish a clear relationship between limiting normal operator and limiting subdifferential.

The organization of this paper is as follows. Section 2 contains notation, introduction
and several preliminary results. Section 3 is the core of the paper. The concepts of limiting
sublevel set and limiting normal operator maps are developed there, together with respec-
tive semicontinuity and optimality conditions. In Section 4, calculus rules are presented,
and finally we established relationship between limiting normal operator and limiting
subdifferential in Section 5.

2 Preliminaries

Let us first introduce the basic elements of modern variational analysis. For simplicity, we
deal only with finite-dimensional case and finite valued functions.

The following notation will be used. Given a set C ⊂ R
m, the conic hull is denoted as

cone{C} ≡ ⋃
λ≥0 λC, then set C is called a cone if C = cone{C}. The convex hull of set C is

denoted by conv{C}. Next, for sets A, B ⊂ R
m we define A+B ≡ {a +b : a ∈ A, b ∈ B},

and for any point x ∈ R
m symbol dist(A, x) ∈ R stands for inf{‖a − x‖ : a ∈ A}. Finally

the (negative) polar cone C◦ of set C ⊂ R
m is

C◦ ≡ {
y ∈ R

m : 〈y, x〉 ≤ 0, ∀x ∈ C
}
.
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It is a convex closed cone. For any nonempty subset C ⊂ R
m, it holds

C◦◦ ≡ (
C◦)◦ = conv{cone{C}} (1)

according to bipolar theorem. Thus, for a closed convex cone K ⊂ R
m we have K◦◦ = K .

Now, for a set-valued map M : Rm ⇒ R
n we define outer limit and inner limit of M at a

point x̄ ∈ R
m as

Limsup
x→x̄

M(x) ≡ {
y ∈ R

n : ∃ xk → x̄, ∃ yk ∈ M(xk), yk → y
}

and
Liminf

x→x̄
M(x) ≡ {

y ∈ R
n : ∀ xk → x̄, ∃ yk ∈ M(xk), yk → y

}
,

respectively. Let us observe that if M is cone-valued then Limsupx→x̄ M(x) and
Liminfx→x̄ M(x) are cones.

A set-valued map M : Rm ⇒ R
n is said to be:

– outer semicontinuous at x̄ ∈ R
m if Limsupx→x̄ M(x) ⊂ M(x̄);

– inner semicontinuous at x̄ ∈ R
m if Liminfx→x̄ M(x) ⊃ M(x̄).

Note that M is outer semicontinuous at x̄ if and only if Limsupx→x̄ M(x) = M(x̄) while,
when M is closed-valued, it is inner semicontinuous at x̄ if and only if Liminfx→x̄ M(x) =
M(x̄) . Note that actually the outer semicontinuity of a set-valued map corresponds to the
fact that its graph is closed, and that the inner semicontinuity is often referred to as lower
semicontinuity; for more details see [11, Theorem 5.7].

Let us finally recall classical definitions of tangent and normal cone to a subset at a given
point: for any closed subset C ⊂ R

m and x̄ ∈ C the tangent cone TC(x̄) to C at point x̄ is

TC(x̄) ≡ Limsup
λ↘0

C − x̄

λ
, (2)

and the limiting normal cone NC(x̄) to C at x̄ is given by

NC(x̄) ≡ Limsup
x→

C
x̄

TC(x)◦ (3)

where x →
C

x̄ means x → x̄ with x ∈ C. Note that whenever C is a closed subset then the

map x �→ NC(x) is outer semicontinuous on C. In order to work with nonsmooth functions
f : Rm → R, one of the most popular approaches is to define the so-called limiting subdif-
ferential ∂f (x) of f at x ∈ R

m as follows ∂f (x) ≡ {v ∈ R
m : (v,−1) ∈ Nepif (x, f (x))}.

If moreover the considered function is not Lipschitz at x then it is convenient to define the
singular subdifferential ∂∞f (x) ≡ {v ∈ R

m : (v, 0) ∈ Nepif (x, f (x))}. Calculus and
properties of these subdifferentials are widely developed in [10]. Finally, let us observe that
for any x ∈ R

m and any lower semicontinuous f : Rm → R, it holds

cone{∂f (x)} ∪ ∂∞f (x) = ProjRm

(
Nepif (x, f (x))

)
, (4)

where ProjRm is a canonical projection onto R
m, see [11, Theorem 8.9].

Let us recall from [1, Theorem 1.1.8] the following interesting relationship between
polarity and semicontinuity of set-valued maps.

Proposition 1 [1, Theorem 1.1.8] For all set-valued maps M : Rm ⇒ R
n and all x̄ ∈ R

m

one has

Liminf
x→x̄

M(x) ⊂
(

Limsup
x→x̄

M(x)◦
)◦

. (5)
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Note that we do not assume closed-valuedness of the set-valued map M as only finite-
dimensional case is considered, for details see [11, Proposition 4.4].

Corollary 1 If M : Rm ⇒ R
n is inner semicontinuous at x̄ then the polar map x �→ M(x)◦

is outer semicontinuous at x̄.

Proof From the inner semicontinuity of M we have M(x̄) ⊂ Liminfx→x̄ M(x). By applying
polarity to both sides of (5) and using bipolar relation (1) it holds

Limsupx→x̄ M(x)◦ ⊃ M(x̄)◦ ⊃ (
Limsupx→x̄ M(x)◦

)◦◦

= conv
{
cone

{
Limsupx→x̄ M(x)◦

}}

= conv
{
Limsupx→x̄ M(x)◦

} ⊃ Limsupx→x̄ M(x)◦.
Thus all inclusions are equalities and so M◦ is outer semicontinuous at x̄.

3 Limiting Approach to Quasiconvex Analysis

3.1 Classical Sublevel Approaches

As observed in [4–6], the derivative and the subdifferential map (in any sense of nonsmooth
analysis) does not take into account that a function is quasiconvex. Let us recall that a
function f : Rm → R is said to be quasiconvex if for any x ∈ R

m the sublevel set Sf (x)

defined by

Sf (x) ≡ {y ∈ R
n : f (y) ≤ f (x)}

is a convex subset of Rm. The subdifferentials, being based on the epigraph of the function,
do not take advantage of this convexity of the sublevel sets. On the contrary, the recent
developement of quasiconvex analysis, see e.g. [2, 7, 9], is focused on the sublevel set map
and its associated normal operator. The present work follows this line. The normal operator
of a function f is a set-valued map Nf : Rm ⇒ R

m defined as the point-wise polar to the
(shifted) sublevel set of f , that is

Nf (x) ≡ (
Sf (x) − x

)◦
.

It is well known that the gradient map of a differentiable quasiconvex function is quasi-
monotone [12, Proposition 4.12]. This quasimonotonicity property also holds true for the
normal operator Nf of a lower semicontinuous function [2, Proposition 5.10]. Let us recall
that a map M : Rm ⇒ R

m is quasimonotone if implication

〈
x�, y − x

〉
> 0 ⇒ 〈

y�, y − x
〉 ≥ 0

holds for all x, y ∈ R
m, x� ∈ M(x), y� ∈ M(y).

Next, we observe that the set-valued map Sf is closed-valued providing that f is lower
semicontinuous on R

m. Another “sublevel set map” is the so-called strict sublevel set map
S<

f defined as follows
S<

f (x) ≡ {y ∈ R
m : f (y) < f (x)}.

In this paper we will intensively use its closed-valued variant defined at all x ∈ R
m as

S̄<
f (x) ≡ S<

f (x). Note that quasiconvexity of a function f is characterized by convex-

valuedness of the map Sf (·) (or the map S̄<
f (·)). But in opposite to Sf , the closed strict
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sublevel map can have empty values. In fact, condition S̄<
f (x) = ∅ directly characterizes

global minimum of f .

Lemma 1 (Inner semicontinuity of S̄<
f ) For a lower semicontinuous function f , the closed

strict sublevel set map S̄<
f is inner semicontinuous on R

m.

Proof Without loss of generality we can assume that x̄ ∈ R
m is such that S̄<

f (x̄) is not

empty and we have to show S̄<
f (x̄) ⊂ Liminfx→x̄ S̄<

f (x). First consider any y ∈ S<
f (x̄) and

take arbitrary sequence xn → x̄. We search for a sequence (yk) converging to y and sat-
isfying yk ∈ S̄<

f (xk) for all k large enough. From lower semicontinuity of f there exists
some k0 ∈ N such that f (y) < f (xk) for all k > k0, which may be equivalently writ-
ten as y ∈ S<

f (xk). Thus we shown S<
f (x̄) ⊂ Liminfx→x̄ S̄<

f (x). To complete the proof
we apply closure on both sides of this inclusion and recall that inner-limit is closed by
definition.

Contrary to S̄<
f , the level set map Sf is not inner semicontinuous in general. As an example

consider function f (x) ≡ min {0, x}. Then Sf (0) = R but Liminfx→0 Sf (x) = R
−. Then

the outer semicontinuity of Nf at 0 may be in jeopardy, see Corollary 1. Indeed, Nf is not
outer semicontinuous at 0. Note that such a lack of outer semicontinuity of Nf for a general
quasiconvex function f was already observed in [6].

Similarly as for the sublevel set, one can consider the strict normal operator map N<
f

associating to any x �∈ argmin f , the set

N<
f (x) ≡

(
S̄<

f (x) − x
)◦

.

According to [6, Proposition 2.1], gph N<
f is closed, that is N<

f is outer semicontinuous.
There are, however, well-known examples of lower semicontinuous quasiconvex functions
such that Nf is not outer semicontinuous and N<

f is not quasimonotone, see [6, Example
2.2] and [4, Example 2.1], respectively.

Thus a new concept of sublevel set, the adjusted sublevel set and the associated adjusted
normal operator has been considered in [4, 5] to overcome this difficulty: for any function
f : Rm → R the adjusted sublevel set Sa

f (x) at a point x ∈ R
n is

Sa
f (x) ≡

{
Sf (x) ∩ B(S<

f (x), ρx) if x �∈ argmin f,

Sf (x) otherwise,

where argmin f denotes a set of global minimizers of function f , and

Na
f (x) ≡

(
Sa

f (x) − x
)◦

,

where B(A, ρ) denotes closed set {y ∈ R
m : dist(A, y) ≤ ρ} and ρx ≡ dist(S<

f (x), x).

Note that ρx = 0 is equivalent to x ∈ S̄<
f (x) and therefore Sa

f (x) = S̄<
f (x). For any function

f : Rm → R and any x ∈ R
m one has

S̄<
f (x) ⊂ Sa

f (x) ⊂ Sf (x).

Note that for any lower semicontinuous quasiconvex function f all these sublevel set maps
are closed- and convex-valued while all the introduced normal operators are cone-, closed-
and convex-valued by definition. In addition, for lower semicontinuous quasiconvex func-
tion the adjusted normal operator is outer semicontinuous and quasimonotone as shown
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in [3, 4]. Moreover, this operator also affords additional properties like a sufficient global
optimality condition, see [4, Proposition 4.1].

3.2 Limiting Sublevel Set

Even though the adjusted normal operator is the first normal operator satisfying both quasi-
monotonicity and outer semicontinuity, it lacks calculus rules because of its non-local
nature. This has been our ultimate motivation for the introduction of the new notions of
limiting sublevel set and limiting normal operator.

Definition 1 (Limiting sublevel set) For a lower semicontinuous function f : Rm → R we
define the limiting sublevel set map Sl

f : Rm ⇒ R
m as follows

Sl
f (x̄) ≡ Liminf

x→x̄
Sf (x), ∀x̄ ∈ R

m.

Note the limiting sublevel set map Sl
f is closed-valued by definition. We further observe

that the lower limit in the above definition may be restricted as follows.

Lemma 2 Let f : Rm → R be a lower semicontinuous function, then

Sl
f (x̄) = Liminf

x−→x̄
Sf (x̄)

Sf (x). (6)

Proof For a given point x̄ we rewrite the right-hand side of (6) as

R(x̄) ≡
{

y ∈ R
n : ∀ xk −→ x̄

Sf (x̄)

∃ yk → y s.t.∀kyk ∈ Sf (xk)

}

.

From definition we have Sl
f (x̄) ⊂ R(x̄) and we will complete the proof by showing the

opposite inclusion.
First, note that R(x̄) ⊂ Sf (x̄). Indeed, taking any y ∈ R(x̄) and considering sequence

(xk) such that xk = x̄ for all k, there exists a sequence (yk) such that yk → y with yk ∈
Sf (x̄) for all k. Thus also y ∈ Sf (x̄) since this set is closed.

Now, consider arbitrary y ∈ R(x̄) and x̃k → x̄. To verify y ∈ Sl
f (x̄) we have to find

yk → y such that yk ∈ Sf (x̃k). Put xk ≡ x̃k when x̃k ∈ Sf (x̄) and xk ≡ x̄ otherwise. Since
y ∈ R(x̄) we know that there exists a sequence (yk) such that yk → y and yk ∈ Sf (xk).
To complete the proof we realize f (xk) = min{f (x̃k), f (x̄)} ≤ f (x̃k) for all k, thus also
yk ∈ Sf (x̃k).

The limiting definition, inspired by the similar concept of limiting subdifferential, see e.g.
[10], turns out to have the following very easy and natural equivalent explicit formulation
for any lower semicontinuous function.

Theorem 1 (Explicit formula for Sl
f (x)) Let f be a lower semicontinuous function and

x ∈ R
m. Then

Sl
f (x) =

{
S̄<

f (x) if x ∈ S̄<
f (x),

Sf (x) otherwise.

In particular one always has S̄<
f (x) ⊂ Sa

f (x) ⊂ Sl
f (x) ⊂ Sf (x).
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Note that x ∈ S̄<
f (x) means that x is not a local minimum of f . Thus Theorem 1 can be

equivalently rephrased as “Sl
f (x) = Sf (x) if x is a local minimum of f and Sl

f (x) = S̄<
f (x)

otherwise”.

Proof First, observe that according to the definition and since f is lower semicontinuous,
one has Sl

f (x̄) = Liminfx→x̄ Sf (x) ⊂ Sf (x̄) for any x̄ ∈ R
m. Moreover if x̄ ∈ R

m is

such that x̄ �∈ S̄<
f (x̄) then, there exists open neighbourhood U of x̄ such that for all x ∈ U

we have f (x) ≥ f (x̄). This is equivalent to Sf (x) ⊃ Sf (x̄) for all x ∈ U and thus
Sl

f (x̄) = Sf (x̄).
Now take any z ∈ S<

f (x̄) and any sequence (xk) converging to x̄. By lower semiconti-
nuity of f , one immediately has f (xk) > f (z) for k large enough, implying z ∈ Sf (xk).
Thus finally z ∈ Sl

f (x̄). And since Sl
f (x̄) is closed by definition, we immediately have

S̄<
f (x̄) ⊂ Sl

f (x̄).

Finally let us consider x̄ ∈ R
m and y ∈ Sl

f (x̄) such that x̄ ∈ S̄<
f (x̄). Thus there exists

a sequence (x̃k) converging to x̄ with f (x̃k) < f (x̄) for all k. By expressing Sl
f (x̄) in the

following way

Sl
f (x̄) =

⋂

xk→x̄

Liminf
k→∞ Sf (xk),

see, e.g. [11, Equation 5(1)], we can deduce the existence of a sequence (yk) converging to
y and such that yk ∈ Sf (x̃k) for any k. In other words

f (yk) ≤ f (x̃k) < f (x̄)

and so yk ∈ S̄<
f (x) implying y ∈ S̄<

f (x) as S̄<
f (x) is closed by definition. And the proof of

this equivalent definition of the limiting sublevel set is complete.
To prove the stated inclusions we observe in the definition of Sa

f (x) that ρx = 0 provided

x̄ ∈ S̄<
f (x̄), thus Sa

f (x) = S̄<
f (x) = Sl

f (x). Otherwise, we see ρx > 0 and so Sa
f (x) ⊂

Sf (x) = Sl
f (x).

As for the classical sublevel set Sf and strict sublevel set S<
f , the convexity of the limit

sublevel set characterizes the quasiconvexity of a lower semicontinuous function.

Lemma 3 (Characterization of quasiconvexity in terms of Sl
f ) Let f : R

m → R be a

lower semicontinuous function. Then f is quasiconvex if and only if Sl
f (x) is convex for all

x ∈ R
m.

Proof Convexity of Sl
f (x) for a quasiconvex function f is due to definition since lower

limit of convex sets is convex. Now let us show that the convexity of Sl
f (x) for all x ∈ R

m

is a sufficient condition for quasiconvexity of f . Assume, for a contradiction, that Sl
f (x)

is convex for all x ∈ R
m and that f is not quasiconvex. Then, there exists some x̄ ∈

R
m such that sublevel set Sf (x̄) is not convex. In such a case convexity of Sl

f (x̄) implies

Sl
f (x̄) = S̄<

f (x̄) due to Theorem 1, thus there exists x̃ ∈ Sf (x̄)\ S̄<
f (x̄). Then, f (x̄) = f (x̃)

implies S̄<
f (x̄) = S̄<

f (x̃) and so x̃ �∈ S̄<
f (x̃). Finally, by using Theorem 1 again, we obtain

Sl
f (x̃) = Sf (x̃) = Sf (x̄), a contradiction with convexity of Sl

f (x̃).
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Corollary 2 (Inner semicontinuity of Sl
f ) For any lower semicontinuous function f , the

limiting sublevel set map Sl
f is inner semicontinuous.

Proof We have to show that Sl
f (x̄) = Liminfx→x̄ Sl

f (x) for all x̄ ∈ R
m. First, consider such

x̄ ∈ R
m that x̄ ∈ S̄<

f (x̄). We have

Sl
f (x̄) = S̄<

f (x̄) = Liminf
x→x̄

S̄<
f (x) ⊂ Liminf

x→x̄
Sl

f (x)

where Theorem 1, Lemma 1 and Theorem 1 again were used respectively.
Now, we have to deal with such point x̄ ∈ R

m that x̄ �∈ S̄<
f (x̄). Then Sl

f (x̄) = Sf (x̄)

using Theorem 1, and there exists an open neighbourhood U of x̄ such that for all x ∈ U we
have f (x) ≥ f (x̄). Moreover, this consideration is valid also for all x ∈ U such that f (x) =
f (x̄), i.e., Sl

f (x) = Sf (x) = Sf (x̄) for such points. Finally, for points x ∈ U satisfying

f (x) > f (x̄), we have Sf (x̄) ⊂ S̄<
f (x) ⊂ Sl

f (x) using Theorem 1 again. Thus, for all

points x ∈ U it holds Sf (x̄) = Sl
f (x̄) ⊂ Sl

f (x) and so Sl
f (x̄) = Liminfx→x̄ Sl

f (x).

For any x, y ∈ R
m and any function f one clearly has x ∈ Sf (y) or y ∈ Sf (x). As shown

in the following lemma, the limiting sublevel set inherits of the same property providing
that the function is lower semicontinuous whereas it is not true for the closed strict sublevel
set S̄<

f .

Lemma 4 For x, y ∈ R
m and any lower semicontinuous function f it holds y ∈ Sl

f (x) or

x ∈ Sl
f (y).

Proof Consider y �∈ Sl
f (x). Using Theorem 1 we have also y �∈ S̄<

f (x) and so f (y) ≥ f (x).

For f (y) > f (x) we immediately obtain x ∈ S̄<
f (y) ⊂ Sl

f (y). Variant f (x) = f (y)

deserves more effort. Since y �∈ Sl
f (x), there exists a sequence (x̃n) converging to x and ε >

0 such that dist(Sf (x̃n), y) > ε for all n. Now, we take arbitrary sequence (yn) converging
to y. For n large enough we have |yn − y| ≤ ε, and so we know that yn �∈ Sf (x̃n). This
implies x̃n ∈ Sf (yn) and the proof is finished as x̃n converges to x ∈ Sl

f (y).

3.3 Limiting Normal Operator

The previous theory of limiting sublevel set was build for general lower semicontiunous
functions. In the sequel, we assume quasiconvexity of function f in addition. Note that this
assumption will be relaxed in Section 5.

Definition 2 (Limiting normal operator) For quasiconvex lower semicontinuous function
f the limiting normal operator is a set-valued map Nl

f : Rm ⇒ R
m defined as

Nl
f (x) ≡

(
Sl

f (x) − x
)◦

, ∀x ∈ R
m.

As for a quasiconvex function f set Sl
f (x) is convex and x ∈ Sl

f (x) for all x, we fur-

ther observe
(
Sl

f (x) − x
)◦ =

(
TSl

f (x)(x)
)◦

due to [11, Theorem 6.9]. Therefore, the
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above introduced limiting normal operator is a local notion. An alternative definition of the
limiting normal operator can be given in terms of upper limit of normal operator.

Theorem 2 For any quasiconvex lower semicontinuous function f it holds

Nl
f (x) = Limsup

x→x̄

Nf (x). (7)

Proof Applying Proposition 1 to the set-valued map M(x) = Sf (x)− x and observing that
Liminfx→x̄

{
Sf (x) − x

} = Liminfx→x̄

{
Sf (x)

} − x̄ we obtain

Sl
f (x̄) − x̄ ⊂

(

Limsup
x→x̄

(
Sf (x) − x

)◦
)◦

.

Thus using the bipolar formula (1) we have

Nl
f (x̄) ⊃ conv

{

Limsup
x→x̄

Nf (x)

}

⊃ Limsup
x→x̄

Nf (x).

To show the opposite inclusion, that is
(
Sl

f (x̄) − x̄
)◦ ⊂ Limsup

x→x̄

(
Sf (x) − x

)◦ (8)

we use Theorem 1. First consider x̄ such that x̄ �∈ S̄<
f (x̄). Then inclusion (8) reduces

to
(
Sf (x̄) − x̄

)◦ ⊂ Limsupx→x̄

(
Sf (x) − x

)◦ which always holds true. A more effort is
needed to show (8) provided that x̄ ∈ S̄<

f (x̄). Using Theorem 1 we rewrite (8) as
(
S̄<

f (x̄) − x̄
)◦ ⊂ Limsup

x→x̄

(
Sf (x) − x

)◦
.

Using x̄ ∈ S̄<
f (x̄) and lower semicontinuity of f we find a sequence (xk) with limit x̄

such that (f (xk)) is an increasing sequence converging to f (x̄). One can easily show that
S<

f (x̄) = ⋃∞
k=1 Sf (xk). Thus S̄<

f (x̄) = cl
⋃∞

k=1 Sf (xk) and so using [11, Excercise 4.3] the

sequence of sets (Sf (xk)) converges to S̄<
f (x̄) in the Painlevé-Kuratowski sense. Now take

arbitrary

w ∈
(
S̄<

f (x̄) − x̄
)◦

, (9)

or, equivalently, w ∈ NS̄<
f (x̄)(x̄) or x̄ = ProjS̄<

f (x̄)(w + x̄) since S̄<
f (x̄) is a convex closed

set. Then again due to closedness and convexity of Sf (xk) for all k, we may define x̃k ≡
ProjSf (xk)

(w + x̄) which is equivalent to wk ∈ (
Sf (xk) − x̃k

)◦ for all k with wk given
by wk ≡ w + x̄ − x̃k . Now, thanks to the Painlevé-Kuratowski convergence of sequence
(Sf (xk)) and according to [11, Proposition 4.9] we have

lim
k→+∞ x̃k = ProjS̄<

f (x̄)(w + x̄) = x̄.

Thus we found sequences (x̃k) and (wk) converging to x̄ and w, respectively, such that
wk ∈ (

Sf (xk) − x̃k

)◦ for any k. However, we have also wk ∈ (
Sf (x̃k) − x̃k

)◦ observing
Sf (x̃k) ⊂ Sf (xk) since x̃k ∈ Sf (xk). Thus

w ∈ Limsup
x→x̄

(
Sf (x) − x

)◦

and the proof is done since w ∈
(
S̄<

f (x̄) − x̄
)◦

was chosen arbitrarily in (9).
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Let us conclude this section by showing that the newly defined limiting normal opera-
tor satisfies at the same time quasimonotonicity, outer semicontinuity and -necessary and
sufficient- optimality conditions, providing that the considered function is quasiconvex and
lower semicontinuous.

Theorem 3 Let f : Rm → R be a lower semicontinuous quasiconvex function. Then

(i) Nf (x) ⊂ Nl
f (x) ⊂ Na

f (x) ⊂ N<
f (x), ∀x ∈ R

m,

(ii) Nl
f is quasimonotone,

(iii) Nl
f is outer semicontinuous.

The statement (i) of the previous theorem may be well illustrated on a simple exam-
ple. Consider, for instance, the quasiconvex lower semicontinuous function f : Rm → R

defined by f (x) = 1 if x1 ∈]0, 1] and f (x) = x1 otherwise.

Proof Statement (i) is a direct consequence of Theorem 1. Now from (i) and quasimono-
tonicity of Na

f , see [4, Proposition 3.3], we immediately deduce (ii) since any operator
included in a quasimonotone operator is quasimonotone. The proof of (iii) is due to
Theorem 2.

Now consider the minimization problem

min f (x) subject to x ∈ K, (10)

where K ⊂ R
m is nonempty subset of R

m and f : R
m → R is quasiconvex. Then,

necessary and sufficient optimality conditions may be stated as follows.

Theorem 4 (Necessary optimality conditions) Let f : Rm → R be a lower semicontinuous
quasiconvex function, K be a nonempty convex set and x̄ ∈ K be a solution to (10) which
is not a local minimum of f . Then it holds

0 ∈ Nl
f (x̄) \ {0} + NK(x̄).

Proof First we note that Nl
f (x̄) = N<

f (x̄) according to Theorem 1. Thus the necessary
condition follows directly from [9, Theorem 3.1 (iii)] since f is quasiconvex and x̄, being
an element of S̄<

f (x̄), cannot be a local minimizer of f on R
m.

Since definition of limiting normal operator is of a local nature, the respective first order
sufficient conditions lead naturally to local solutions of the concerned optimization problem.

Theorem 5 (Sufficient optimality conditions) Let f : Rm → R be a continuous quasicon-
vex function, K be a nonempty subset of Rm and x̄ ∈ K . Then x̄ a is local solution to (10)
if one of the following hypotheses is satified:

(i) point x̄ is a solution of the Stampacchia variational inequality defined by Nl
f (·) \ {0}

and K;
(ii) set K is convex and 0 ∈ Nl

f (x̄) \ {0} + NK(x̄).

Let us recall that a point x ∈ K is a solution of the Stampacchia variational inequality
defined by a set-valued map F and a set K if there exists x∗ ∈ F(x) such that 〈x∗, y −x〉 ≥
0, for any y ∈ K .
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Proof There are two alternatives. Either x̄ �∈ S̄<
f (x̄), thus x̄ is a local minimizer of f on

R
m, and so it is also local solution to (10), or x̄ ∈ S̄<

f (x̄) holds. Then we have Nl
f (x̄) =

N<
f (x̄) = Na

f (x̄) as a consequence of Theorem 1 and definition of Na
f (x̄). The conclusion

in case (i) follows from [5, Proposition 3.2]. Now whenever K is a convex set then both
conditions of (i) and (ii) clearly coincide.

Let us observe that, except for the case of the minimization of a convex function with
respect to a convex set, first order tools like derivative or subdifferential do not provide
sufficient optimality conditions, even if the objective function is quasiconvex (consider, e.g.,
f (x) = x3, K = [−1, 1], and x̄ = 0 solution to Stampacchia variational inequality defined
by ∇f and K). However, we may derive necessary and sufficient conditions for global
optimality in the terms of Nl

f by combining Theorem 4 and Theorem 5 (ii) as follows.

Proposition 2 (Global optimality conditions) Let f : Rm → R be a continuous quasicon-
vex function, K be a nonempty convex set and x̄ ∈ K which is not a local minimum of f .
Then

x̄ is a global solution to (10) ⇔ x̄ is a local solution to (10)

⇔ 0 ∈ Nl
f (x̄) \ {0} + NK(x̄).

Proof The only thing that remains to be proved is that, under the assumptions of the above
proposition, global and local concepts of solution of (10) coincide. Indeed, if there exists
y ∈ K such that f (y) < f (x̄) then, by quasiconvexity of f , f (z) ≤ f (x̄) for any z ∈ [x̄, y].
Now if x̄ is a local minumum of f on K , one can find z̄ ∈]x̄, y[ such that f (x̄) = f (z̄) >

f (z), for any z ∈]z̄, y]. Now since x̄ is not a local minimum of f and f is continuous, one
can find a sequence (x̄k) converging to x̄ with f (x̄k) < f (x̄) converging to f (x̄). If we
denote by

yk = z̄ + ‖z̄ − y‖
‖z̄ − x̄‖ (z̄ − x̄k) ,

then again by continuity of f , f (yk) < f (x̄) = f (z̄) for k large enough. But since z̄ ∈
]x̄k, yk[ and f (x̄k) < f (z̄) this is a contradiction with quasiconvexity of f .

4 Calculus Rules for Limiting Normal Operator

In order to apply the limiting normal operator to applications in quasiconvex analysis an
important issue is to dispose of efficient calculus rules. In the class of quasiconvex functions,
the stable operations are the composition with a non-decreasing function and maximum of
a family of quasiconvex functions. This is the reason why, in this section, we deal only with
these two operations.

Let {fi : Rm → R}i∈I be a finite family of continuous quasiconvex functions and define

g(x) ≡ max
i∈I

fi(x).

Clearly g is finite, quasiconvex and continuous on R
m. For any x, the index set of active

functions reads I (x) ≡ {i ∈ I : fi(x) = g(x)}.
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Theorem 6 (Limiting normal operator to maximum) Let {fi : R
m → R}ı∈I be a finite

family of continuous quasiconvex functions and g be defined as above. Then

Nl
g(x̄) ⊂

∑

i∈I (x̄)

Nl
fi

(x̄)

if the following constraint qualification is satisfied at x̄ ∈ R
m

⎧
⎨

⎩
∀

i∈I (x̄)
vi ∈ Nl

fi
(x̄) and

∑

i∈I (x̄)

vi = 0

⎫
⎬

⎭
=⇒ ∀

i∈I (x̄)
vi = 0. (11)

Let us recall that following [10], condition (11) means that the convex sets {Sl
fi

(x̄)}i∈I (x̄)

can not be separated. Equivalently we may say that x̄ is not an extremal point of the system
{Sl

fi
(x̄)}i∈I (x̄), see [10, Corollary 2.4 and Theorem 2.8]. To prove Theorem 6 the following

lemma is of use.

Lemma 5 Consider the setting of Theorem 6, then for any i ∈ I (x̄) it holds

Sl
fi

(x̄) ⊂ Liminf
x−→x̄
Sg (x̄)

{
y ∈ R

m : fi(y) ≤ g(x)
}
. (12)

Proof For any x ∈ R
m we have fi(x) ≤ g(x) and so

Liminf
x−→x̄
Sg (x̄)

{
y ∈ R

m : fi(y) ≤ g(x)
} ⊃ Liminf

x−→x̄
Sg (x̄)

{
y ∈ R

m : fi(y) ≤ fi(x)
}
.

Now, for any i ∈ I (x̄) we may use Sfi
(x̄) ⊃ Sg(x̄) and Lemma 2 to obtain

Liminf
x−→x̄
Sg (x̄)

{
y ∈ R

m : fi(y) ≤ fi(x)
} ⊃ Liminf

x−→x̄
Sfi

(x̄)

{
y ∈ R

m : fi(y) ≤ fi(x)
} = Sl

fi
(x̄).

Proof of Theorem 6 We have Sg(x) = ⋂
i∈I {y ∈ R

m : fi(y) ≤ g(x)} for a fixed x ∈ R
m

and therefore, taking (6) into account

Sl
g(x̄) = Liminf

x−→x̄
Sg (x̄)

{
⋂

i∈I

{
y ∈ R

m : fi(y) ≤ g(x)
}
}

.

Using calculus rule for inner limit of finite intersection, e.g. [11, Theorem 4.32 (c)], Sl
g(x̄) ⊃

A(x̄) ∩ B(x̄) where

A(x̄) ≡ Liminf
x→x̄
Sg (x̄)

⎧
⎨

⎩

⋂

i∈I (x̄)

{
y ∈ R

m : fi(y) ≤ g(x)
}
⎫
⎬

⎭

and

B(x̄) ≡ Liminf
x→x̄
Sg (x̄)

⎧
⎨

⎩

⋂

i �∈I (x̄)

{
y ∈ R

m : fi(y) ≤ g(x)
}
⎫
⎬

⎭
,

provided that the convex sets A(x̄) and B(x̄) cannot be separated. To show this, let us
observe that for any i �∈ I (x̄) there exists, thanks to the continuity of the functions fi and
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g, a convex neighbourhood Ui of x̄ such that fi(x) < g(x) for any x ∈ Ui . Thus we have
Ui ⊂ {y ∈ R

m : fi(y) ≤ g(x)} for any i �∈ I (x̄) and any x ∈ Ui . The latter implies that
U = ∩i �∈I (x̄)Ui is a convex neighbourhood of x̄ included in B(x̄). As a consequence, A(x̄)

and B(x̄) cannot be separated since x̄ ∈ A(x̄). Moreover Sl
g(x̄) ⊃ A(x̄) ∩ U and thus

Nl
g(x̄) ⊂ ((A(x̄) ∩ U) − x̄)◦ = (A(x̄) − x̄)◦ . (13)

Next, Lemma 5 together with (11) imply that the respective limit sets in the definition of
A(x̄) can not be separated. Thus using [11, Exercise 4.32 (c)] and Lemma 5 again we have

A(x̄) ⊃
⋂

i∈I (x̄)

Liminf
x→x̄
Sg (x̄)

{
y ∈ R

m : fi(y) ≤ g(x)
} ⊃

⋂

i∈I (x̄)

Sl
fi

(x̄). (14)

Finally, by combining (13) with (14) we get

Nl
g(x̄) ⊂

(⋂
i∈I (x̄)

(
Sl

fi
(x̄) − x̄

))◦ = N∩i∈I (x̄)

(
Sl

fi
(x̄)

)(x̄)

⊂ ∑
i∈I (x̄) N(

Sl
fi

(x̄)
)(x̄)

= ∑
i∈I (x̄)

(
Sl

fi
(x̄) − x̄

)◦

= ∑
i∈I (x̄) Nl

fi
(x̄)

according to [11, Theorem 6.42] using (11) again.

For any function g : Rm → R defined as g ≡ θ ◦ f where f is a lower semicontinuous
quasiconvex function and θ : R → R is an increasing function it holds Nl

g(x) = Nl
f (x)

due to Sl
g(x) = Sl

f (x), which is valid for any x ∈ R
m. For the more general case of the

composition with a non-decreasing function the chain rule is as follows.

Theorem 7 (Chain rule for limiting normal operator) Consider a lower semicontinuous
quasiconvex function f : Rm → R, a non-decreasing lower semicontinuous function θ :
R → R, and their lower semicontinuous quasiconvex composition g ≡ θ ◦ f . Then the
limiting normal operator Nl

g(x̄) at any point x̄ ∈ R
m satisfies

Nl
g(x̄) ⊂ Nl

f (x̄).

This inclusion becomes equality provided θ is increasing or x̄ ∈ S̄<
g (x̄).

Proof For any x ∈ R
m and y ∈ Sf (x), one immediately has g(y) ≤ g(x) since θ is non-

decreasing. Thus Sf (x) ⊂ Sg(x) for any x and consequently Sl
f (x̄) ⊂ Sl

g(x̄) and Nl
g(x̄) ⊂

Nl
f (x̄). Analogously, for any y �∈ S<

f (x) we obtain y �∈ S<
g (x), thus S<

f (x) ⊃ S<
g (x) and so

N<
g (x̄) ⊃ N<

f (x̄).
The equality for the case of increasing θ was already discussed before the statement of

the theorem. Finally, let us assume that x̄ ∈ S̄<
g (x̄). In this case N<

g (x̄) = Nl
g(x̄). Thus,

together with Theorem 3 (i) and the two inclusion stated above, we complete the proof
having N<

f (x̄) ⊂ N<
g (x̄) = Nl

g(x̄) ⊂ Nl
f (x̄) ⊂ N<

f (x̄).

5 Relationship with Limiting Subdifferential

An important question is the relationship between the limiting normal operator and the
limiting subdifferential, since many interesting properties of the latter one can be found in
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literature. One can wonder if the limiting normal operator of a quasiconvex function can be
deduced from the respective limiting subdifferential. It is indeed natural to expect such a
relationship, see, e.g., [11, Proposition 10.3], stating (in our notation) that

Nf (x̄) ⊂ cone{∂f (x̄)} ∪ ∂∞f (x̄) (15)

holds for a proper lower semicontinuous quasiconvex function f at any point x ∈ R
m such

that 0 �∈ ∂f (x). Moreover, inclusion (15) becomes equality if f is additionally regular.
In the forthcoming Theorem 8 it will be shown that the cone generated by the limiting

subdifferential is included in the limiting normal operator. This inclusion becomes equality
only at non stationary points, as emphasized by a very simple example given in Remark 1.
Note that such points are usually not of interest for optimization purposes.

To prove such a relationship a generalized definition of the limiting normal operator is
considered for a lower semicontinuous (possibly non quasiconvex) function. To this end we
have to employ the concept of f -attentive convergence, which is essential in the analysis
of lower semicontinuous functions. Recall that for a function f : Rm → R we say that a
sequence (xn) converges to x f -attentively, denoted by xn →

f
x, if xn converges to x and

limn→∞ f (xn) = f (x).

Thus the norm topology is finer than the topology of f -attentive convergence, however, they
coincide provided that f is continuous. Note that the limiting subdifferential ∂f (x) is outer
semicontinuous only with respect to f -attentive convergence, see [11, Proposition 8.7 and
example below].

Definition 3 (Limiting normal operator) For a lower semicontinuous function f we define
the limiting normal operator Nl

f : Rm ⇒ R
m at point x̄ ∈ R

m as

Nl
f (x̄) ≡ Limsup

x→
f

x̄

(
TSf (x)(x)

)◦
. (16)

Note that Nl
f is outer semicontinuous with respect to f -attentive topology by definition for

all lower semicontinuous functions. The next lemma proves that for a quasiconvex lower
semicontinuous function f this definition is equivalent to the previous one, see Definition 2.

Lemma 6 For a lower-semicontinuous quasiconvex function f the following equality holds

Limsup
x→x̄

(
Sf (x) − x

)◦ = Limsup
x→

f
x̄

(
TSf (x)(x)

)◦
. (17)

Proof Since f is quasiconvex, it holds
(
TSf (x)(x)

)◦ = (
Sf (x) − x

)◦ at any x, see e.g. [1].
Thus, one inclusion in (17) is direct due to definition of outer limit, and we will complete
the proof showing

L(x̄) := Limsup
x→x̄

(
Sf (x) − x

)◦ ⊂ Limsup
x→

f
x̄

(
Sf (x) − x

)◦ =: R(x̄).

Take y ∈ L(x̄), then there exist sequences (xn) and (yn) converging to x̄ and y, respectively,
such that yn ∈ (

Sf (x) − x
)◦ for all n. Now denoting τ := Liminfxn→x̄ f (xn) we have

τ ≥ f (x̄) due to lower semicontinuity of f . For the case of τ = f (x̄) there exists a
subsequence of (xn) converging f -attentively to x̄, and so y ∈ R(x̄).
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Thus, we may further assume that τ > f (x̄) without loss of generality. Therefore
we have f (xn) > f (x̄) for n large enough. This implies Sf (x̄) ⊂ Sf (xn) and so
yn ∈ (

Sf (xn) − xn

)◦ ⊂ (
Sf (x̄) − xn

)◦. Further, we take any z ∈ Sf (x̄) and rewrite the
previous formula as 〈yn, z − xn〉 ≤ 0. Now, letting n → ∞ we obtain 〈y, z − x̄〉 ≤ 0 for
any z ∈ Sf (x̄) and so the proof is finished since y ∈ (

Sf (x̄) − x̄
)◦ ⊂ R(x̄).

Now, the concept of limiting normal operator will be compared to the classical and inten-
sively studied subdifferential notions. Note that the condition for equality in the following
theorem is substantially weaker than in the case of normal operator (15), where regularity
of f is moreover assumed.

Theorem 8 (Relationship between subdifferential and Nl
f ) For a lower semicontinuous

function f : Rm → R we have

cone{∂f (x̄)} ∪ ∂∞f (x̄) ⊂ Nl
f (x̄), (18)

where equality holds provided 0 �∈ ∂f (x̄).

The previous theorem is, of course, valid also for f being additionally quasiconvex when
Definition 2 of Nl

f may be used according to Lemma 6. This theorem indicates to which

extent Nl
f may bring some novelty when compared with ∂f and ∂∞f . In this sense both

approaches are equivalent except for (M-)stationary points, i.e. points x such that 0 ∈ ∂f (x).
Nevertheless, it is important to notice that such stationary points can be very common for
quasiconvex functions since they can have many “flat parts” out of the global minimum.

Remark 1 A strict inclusion in the Theorem 8 can be easily illustrated even for a quasi-
convex function. Consider function f (x) = x3 at x = 0. Then we have Nl

f (0) = [0, ∞)

whereas ∂f (0) = ∂∞f (0) = {0}. In such a case we may say that Nl
f is more informative

than ∂f .

To prove Theorem 8, the following lemma will be helpful.

Lemma 7 Let L : Rm → R
n be a linear function and M : Rk ⇒ R

m be a cone-valued
outer semicontinuous set-valued map. Then, for any x̄ ∈ Rm

L(M(x̄)) ⊂ Limsup
x→x̄

L(M(x)). (19)

This inclusion is an equality if L−1(0) ∩ M(x̄) = {0}.

Proof Let (xk) be any sequence converging to x̄. According to [11, Theorems 4.26 and
4.27] one has

L

(

Limsup
xk→x̄

M(xk)

)

⊂ Limsup
xk→x̄

L(M(xk)),

with condition of equality adopted to the case of linear map L and cone-valued outer semi-
continuous map M as L−1(0)∩M(x̄) = {0}. Now the conclusion follows from [11, formula
5(1)] since
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L(M(x̄)) = L
(⋃

xk→x̄ Limsupk→∞ M(xk)
)

= ⋃
xk→x̄ L

(
Limsupk→∞ M(xk)

)

⊂ ⋃
xk→x̄ Limsupk→∞ L(M(xk))

= Limsupx→x̄ L(M(x)),

thus the proof is completed.

To clarify the relationship of Nl
f and ∂f , one more technical lemma is needed.

Lemma 8 For a lower semicontinuous function f it holds

Nepif (x̄, f (x̄)) = Limsup
x→

f
x̄

(
Tepif (x, f (x))

)◦
. (20)

Proof We denote the right-hand side of (20) as

R(x̄) ≡ Limsup
x→

f
x̄

(
Tepif (x, f (x))

)◦
. (21)

From the definition of Nepif (x̄, f (x̄)) it follows that R(x̄) ⊂ Nepif (x̄, f (x̄)). Thus, we
need to show that y ∈ Nepif (x̄, f (x̄)) implies y ∈ R(x̄) to complete the proof. For
such y there exist sequences (xn, zn) →

epif
(x̄, f (x̄)) and (yn) → y such that yn ∈

(
Tepif (xn, zn)

)◦ for all n. Since Limsupn→∞ f (xn) ≤ f (x̄) due to f (xn) ≤ zn, we have
also xn →

f
x̄ using lower semicontinuity of f . Observing epif − (xn, f (xn)) ⊂ epif −

(xn, zn) and thus Tepif (xn, f (xn)) ⊂ Tepif (xn, zn), we conclude yn ∈ (
Tepif (xn, zn)

)◦ ⊂
(
Tepif (xn, f (xn))

)◦, thus showing y ∈ R(x̄) and finishing the proof.

Now, we may prove the concluding theorem of this article.

Proof of Theorem 8 For any x we observe (Sf (x)−x)×R
+ ⊂ epi(f )−(x, f (x)) and thus

also TSf (x)(x) × R
+ ⊂ Tepif (x, f (x)) (see e.g. [1, Table 4.3]). Then

(
TSf (x)(x)

)◦ × R
− ⊃

(
Tepif (x, f (x))

)◦, see, e.g. [1, Table 4.5]. Next, on both sides we apply outer limit when x

tends to x̄ f -attentively obtaining

Nl
f (x̄) × R

− ⊃ Limsup
x→

f
x̄

(
Tepif (x, f (x))

)◦ = Nepif (x̄, f (x̄)).

where also Lemma 8 is used. By projecting this inclusion canonically from R
m × R to R

m

and by using (4) we complete the proof of (18).
The opposite inclusion is more complex. Assuming 0 �∈ ∂f (x̄) and recalling outer semi-

continuity of the limiting subdifferential with respect to f -attentive convergence, there
exists neighbourhood U of x̄, open in f -attentive topology, such that 0 �∈ ∂f (x) for all
x ∈ U .

Then, for any x ∈ U we may adopt [11, Proposition 10.3] to the used notation obtaining(
TSf (x)(x)

)◦ ⊂ cone{∂f (x)}∪ ∂∞f (x). We rewrite the right hand side according to (4) and
apply outer limit with regards to x converging to x̄ f -attentively thus obtaining

Nl
f (x̄) = Limsup

x→
f

x̄

(
TSf (x)(x)

)◦ ⊂ Limsup
x→

f
x̄

ProjRm

(
Nepif (x, f (x))

)
. (22)
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Now since f is lower semicontinuous the map x �→ Nepif (x, f (x)) is outer semicontinuous
with respect to norm convergence and thus also with respect to f -attentive conver-
gence, which is weaker than norm convergence. Since additionally ProjRm is linear and
Nepif (x, f (x)) is cone-valued, we may apply Lemma 7 to right-hand side of (22). More-
over, the condition for equality is satisfied as Proj−1

Rm(0) ∩ Nepif (x̄, f (x̄)) = {0} using the
assumption 0 �∈ ∂f (x̄) once more. Thus (22) turns into Nl

f (x̄) ⊂ ProjRm(Nepif (x̄, f (x̄)))

proving our statement using (4).
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