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Abstract

It is shown that any connected matroid having a

non-trivial cluster of BN variables as its ground

set induces a facet-defining inequality for the

polytope(s) used in the ILP approach to globally

optimal BN structure learning. The result applies

to well-known k-cluster inequalities, which play

a crucial role in the ILP approach.

1 INTRODUCTION

The motivation for this theoretical paper is learning

Bayesian network (BN) structure. Some hidden connection

of the theory of matroids to a recent trend in optimal BN

structure learning is revealed; specifically, matroids are

related to the application of integer linear programming
(ILP) methods in this area. To explain the motivation, in

this introductory section, the latest developments in the ILP

approach to learning BN structure are recalled. Matroid

theory is also briefly mentioned and the structure of the rest

of the paper is described.

1.1 ILP APPROACH TO LEARNING

The usual score-based approach to BN structure learning

consists in maximizing a scoring criterion G �→ Q(G,D),
where G is an acyclic directed graph and D the observed

database (Neapolitan, 2004). The valueQ(G,D) says how

much the BN structure defined by the graph G fits the

database D. Nevertheless, some researchers are used to

identify the BN structure with the respective equivalence

class of graphs and prefer to talk about learning the class.

Since the classic heuristic greedy equivalence search (GES)

algorithm (Chickering, 2002) is known not to guarantee to

find a globally optimal BN structure, researches started to

look for alternative methods. One of them was based on

the idea of dynamic programming (Silander, Myllymäki,

2006), which, however, was limited in the number of BN

variables (= nodes of the graph) because of the exponential

growth of memory demands.

This limitation has been overcome by the ILP approach

based on family-variable vector representation of the

graphs suggested independently in (Jaakkola, Sontag,

Globerson, Meila, 2010) and (Cussens, 2010). An impor-

tant technical step to overcome the limitation was the idea

of the reduction of the search space developed by de Cam-

pos and Ji and published in a later journal paper (2011).

Jaakkola et al. (2010) introduced an important class

of cluster-based inequalities approximating the respective

family-variable polytope and came with a method of grad-

ual adding these special constraints. Cussens (2010) first

applied the family-variable vector representation in the re-

stricted context of pedigree learning. However, his next

paper (Cussens, 2011), which was inspired by (Jaakkola

et al., 2010), dealt with general BN structure learning and

came with a standard cutting plane approach offering a

more efficient way of adding the (cluster) inequality con-

straints, based on solving a special simple sub-ILP prob-

lem. Moreover, his experiments with general-purpose cut-

ting planes, the so-called Gomory cuts, lead him to the idea

to introduce a wider class of k-cluster inequalities, where

k is a natural number less than the cardinality of the cluster.

Bartlett and Cussens (2013) extended later the cutting plane

method to a more general branch-and-cut approach; they

included a lot of fine improvements and achieved much

better running times. One of the morals of their paper

was that using additional facet-defining inequalities for the

family-variable polytope can speed up the computation.

An alternative ILP approach based on characteristic-imset
representation of BN structures appeared in (Hemmecke,

Lindner, Studený, 2012); its motivational sources date back

to the method of imsets from (Studený, 2005). Unlike the

family-variable vectors, the characteristic imsets uniquely

correspond to BN structures. However, although this ILP

approach is also feasible, the computational experiments

reported in (Studený, Haws, 2014) have not resulted in bet-

ter running times in comparison with the 2013-year version

of GOBNILP software (Cussens and Bartlett, 2015).
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Our recent manuscript (Cussens, Haws, Studený, 2015)

has been devoted to the comparison of the facet-defining

inequalities for the family-variable polytope and for the

characteristic-imset polytope. Note that the facet-defining

inequalities appear to be the most useful ones in the cutting

plane approach to solving ILP problems; see the reasons in

§ 9.1-9.2 of (Wolsey, 1998). In (Cussens et al., 2015), we

established a one-to-one correspondence between extreme
supermodular set functions and certain facet-defining in-

equalities for both polytopes. An important special case

of such facet-defining inequalities are the above mentioned

k-cluster constraints, which can be transformed to the

characteristic-imset context.

1.2 MATROID THEORY

The theory of matroids had been formed in the 1930’s as

an abstract theory of independence and since then became

one of important topics in combinatorial optimization. The

reader is referred to Oxley’s book (1992) for numerous

examples of how matroids pervade various branches of

discrete mathematics and for how they appear to be useful

in computer science.

In (Cussens et al., 2015) we observed an interesting relation

of the above mentioned k-cluster inequalities to the so-

called connected uniform matroids, which gives an elegant

interpretation to those inequalities.

In this paper, I extend our former observation and, using

an old result by Nguyen (1978) from matroid theory, show

that any connected matroid over a cluster of BN variables

involving at least two variables induces a facet-defining in-

equality both for the family-variable polytope and for the

characteristic-imset polytope.

In my opinion, this theoretical result broadens the class of

available facet-defining inequalities which can be used in

the cutting plane approach to solving ILP problems arising

in the optimal BN structure learning area.

1.3 PAPER STRUCTURE

In § 2 formal definitions of basic concepts are given: from

the area of BN structure learning, the theory of polytopes,

and matroid theory. The next § 3 then recalls a few obser-

vations on the cone of supermodular set functions and the

results from (Cussens et al., 2015), (Nguyen, 1978) that are

needed. These allows one to formulate and prove the main

result in § 4. An illustrating example is given in § 5. The

conclusions and the discussion are in § 6.

2 BASIC CONCEPTS

Let N be a finite set of BN variables; to avoid a trivial case,

assume n := |N | ≥ 2. In statistical context, the elements

of N correspond to random variables; in graphical context,

they correspond to nodes of (acyclic directed) graphs. Its

subsets C ⊆ N with |C| ≥ 2, called clusters in this paper,

will serve as ground sets of the matroids discussed here.

2.1 STRUCTURE LEARNING CONCEPTS

The symbol DAGs (N) will denote the collection of all

acyclic directed graphs over N , which means the graphs

having N as the set of nodes. Given G ∈ DAGs (N) and

a ∈ N , the symbol paG(a) := { b ∈ N : b → a in G},
is the parent set of the node a. A well-known equivalent

definition of acyclicity of a directed graph G over N is the

existence of a total order a1, . . . , an of nodes in N such

that, for every i = 1, . . . , n, paG(ai) ⊆ {a1, . . . , ai−1};
we say then the order and the graph are consonant.

A BN model is a pair (G,P ), where G ∈ DAGs (N)
and P a probability distribution on the joint sample space

XN :=
∏

a∈N Xa, the Cartesian product of individual non-

empty finite sample spaces Xa for variables a ∈ N , which

factorizes according to G. An equivalent characterization

of the factorization property is that P is Markovian with

respect to G, which means it satisfies the conditional inde-

pendence restrictions determined by G (Lauritzen, 1996).

The BN structure defined by G is formally the class of

Markovian probability distributions with respect to G.

Different graphs over N could be Markov equivalent,
which means they define the same BN structure. The

classic graphical characterization of equivalent graphs by

Verma and Pearl (1991) states that two graphs are Markov

equivalent if and only if they have the same adjacencies and

immoralities. Recall that an immorality in G ∈ DAGs (N)
is an induced subgraph of G of the form a→ c← b, where

the nodes a and b are not adjacent in G. Markov equiva-

lence of G,H ∈ DAGs (N) will be denoted by G ∼ H .

The task of learning the BN structure is to determine it on

the basis of an observed (complete) database D, which is

a sequence x1, . . . , xm, m ≥ 1 of elements of the joint

sample space XN . This is often done by maximizing some

quality criterion, also called a score or a scoring criterion,

which is a bivariate real function (G,D) �→ Q(G,D),
where G ∈ DAGs (N) and D a database. Examples of

such criteria are Schwarz’s (1978) Bayesian information

criterion (BIC) and Bayesian Dirichlet equivalence (BDE)

score (Heckerman, Geiger, Chickering, 1995). The reader

is referred to (Neapolitan, 2004) for the definition of a

relevant concept of statistical consistency.

A crucial technical assumption from the computational

point of view (Chickering, 2002) is that Q should be

additively decomposable, which means, it has the form

Q(G,D) =
∑
a∈N

qD(a | paG(a)) , (1)

where the summands qD(∗ | ∗) are called local scores. All

criteria used in practice satisfy this requirement.
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Given an observed database D, the goal is to maximize

G �→ Q(G,D). Since the aim is learn the BN structure, a

natural assumption is that the criterion Q to be maximized

is score equivalent (Bouckaert, 1995), which means, for

every database D and G,H ∈ DAGs (N),

Q(G,D) = Q(H,D) whenever G ∼ H.

Most of the criteria used in practice satisfy that.

2.2 POLYTOPES FOR LEARNING

We recall a few basic concepts from polyhedral geometry;

see (Barvinok, 2002) or (Ziegler, 1995) for more details.

Below we deal with the Euclidean real vector spaces R
Γ,

where Γ 
= ∅ is a non-empty finite index set. Given two

vectors v, w ∈ R
Γ, their scalar product will be denoted by

〈v, w〉Γ :=
∑
i∈Γ

vi · wi ,

or just by 〈v, w〉 if there is no danger of confusion.

A polytope P is the convex hull of finitely many vectors

from R
Γ; we only consider non-empty P. The dimension

of P, denoted by dim(P), is the dimension of its affine

hull, which is nothing but a translate of a linear subspace.

The maximal number of affinely independent vectors in P
is then dim(P) + 1.

Given o ∈ R
Γ and u ∈ R, a linear inequality 〈o, v〉 ≤ u

for v ∈ R
Γ is called valid for P if it holds for any v ∈ P.

The inequality is then called tight for a vector w ∈ P if

〈o, w〉 = u. Given such valid linear inequality for P the

corresponding face of P is its subset F ⊆ P of the form

F = { v ∈ P : 〈o, v〉 = u }.

One usually deals with valid inequalities that are tight for

at least one vector w ∈ P in which case F 
= ∅. Then

we will name the respective inequality face-defining. The

function v ∈ R
Γ �→ 〈o, v〉 is typically a linear objective

to be maximized; with little abuse of terminology we will

then call o ∈ R
Γ an objective.

A facet of a polytope P is its face of the dimension

dim(P) − 1. The corresponding inequality will be then

called facet-defining. Given a (non-empty) facet F ⊆ P of

a full-dimensional polytope P in R
Γ, its facet-defining in-

equality is unique up to a positive multiple (of both o ∈ R
Γ

and u ∈ R). A well-known fundamental result in poly-

hedral geometry is that every full-dimensional polytope P
with non-empty facets is specified as the set of vectors

v ∈ R
Γ satisfying all facet-defining inequalities for P.

Thus, P is a bounded polyhedron and the facet-defining in-

equalities provide its minimal description in terms of in-

equalities.

2.2.1 Family-Variable Polytope

The index set for our family-variable vectors will be

Υ := { (a |B) : a ∈ N & ∅ 
= B ⊆ N \ {a} } .

Given G ∈ DAGs (N), the symbol ηG will denote the

family-variable vector encoding it:

ηG(a |B) =
{

1 if B = paG(a),
0 otherwise,

for (a |B) ∈ Υ.

The family-variable polytope is defined as the convex hull

of the collection of all such vectors:

F := conv ({ ηG ∈ R
Υ : G ∈ DAGs (N) }) .

Clearly, dim(F) = |Υ| = n · (2n−1 − 1).
One can re-write (1) in terms of ηG in this way:

Q(G,D) =
∑
a∈N

∑
B⊆N\{a}

qD(a |B) · ηG(a |B), (2)

which allows one to interpret Q as (the restriction of) a

linear function of ηG. In particular, the maximization

of Q over DAGs (N) turns into the task to maximize a

linear function with the objective o(a |B) = qD(a |B)
for (a |B) ∈ Υ over the family-variable polytope F. In

other words, the local scores become the components of

the respective objective vector o ∈ R
Υ.

The assumption of score equivalence ofQ then implies the

respective objective satisfies, for every G,H ∈ DAGs (N),

G ∼ H ⇒ 〈o, ηG〉Υ = 〈o, ηH〉Υ . (3)

Thus, if (3) holds for o ∈ R
Υ we will say that it is a score

equivalent objective, abbreviated as an SE objective.

Given a cluster C ⊆ N , |C| ≥ 2, of BN variables and a

natural number k = 1, . . . , |C| − 1 the inequality

k ≤
∑
a∈C

∑
B⊆N\{a} : |B∩C|<k

ηG(a |B)

is valid for any G ∈ DAGs (N): as the induced subgraph

GC is acyclic, the first k nodes in a total order of nodes in

C consonant with GC have at most k − 1 parents in C. In

particular, the inequality is valid for any η ∈ F in place of

ηG and one can transform it into a standardized form:

∑
a∈C

∑
B⊆N\{a} : |B∩C|≥k

η(a |B) ≤ |C| − k . (4)

We will call (4) the k-cluster inequality for C; its version

for k = 1 is simply the cluster inequality for C. Every

k-cluster inequality is facet-defining for F and the objective

defining (4) is SE; see (Cussens et al., 2015, Corol 4).
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Example 1 Consider N = {a, b, c, d} = C and k = 2.

Then (4) takes the following form:

[ η(a | bc) + η(a | bd) + η(a | cd) + η(a | bcd) ]
+ [ η(b | ac) + η(b | ad) + η(b | cd) + η(b | acd) ] (5)

+ [ η(c | ab) + η(c | ad) + η(c | bd) + η(c | abd) ]
+ [ η(d | ab) + η(d | ac) + η(d | bc) + η(d | abc) ] ≤ 2 .

2.2.2 Characteristic-Imset Polytope

The characteristic imset of G ∈ DAGs (N), introduced in

(Hemmecke et al., 2012) and denoted below by cG, is an

element of the vector space R
Λ where

Λ := {S ⊆ N : |S| ≥ 2 } .

Recall from (Studený, Haws, 2013) that cG is a many-to-

one linear function of ηG, the transformation is η �→ cη :

cη(S) =
∑
a∈S

∑
B :S\{a}⊆B⊆N\{a}

η(a |B) (6)

for S ∈ Λ. Thus, given G ∈ DAGs (N), (6) can serve as

the definition of cG in which one substitutes η = ηG. A

fundamental observation is that, for G,H ∈ DAGs (N),
G ∼ H if and only if cG = cH (Hemmecke et al., 2012).

In particular, the characteristic imset is a unique represen-

tative of the corresponding BN structure.

The characteristic-imset polytope is defined as follows:

C := conv ({ cG ∈ R
Λ : G ∈ DAGs (N) }) .

One can show that dim(C) = |Λ| = 2n−n−1. Of course,

C is the image of F by the linear mapping (6).

A notable fact is that any valid inequality for C induces a

valid inequality for F: if 〈z, c〉Λ ≤ u, where z ∈ R
Λ and

u ∈ R, is a valid inequality for c ∈ C, substitute (6) into

〈z, cη〉Λ ≤ u and re-arrange the terms after the compo-

nents of η. Indeed, since the image of ηG by (6) is just cG,

one gets an inequality valid for any ηG, G ∈ DAGs (N).
Moreover, the induced inequality for η ∈ F is given by an

SE objective: if G ∼ H , one has cG = cG and, therefore,

〈z, cG〉Λ = 〈z, cH〉Λ.

In fact, there is a one-to-one correspondence between the

valid inequalities for C and the valid inequalities for F
given by SE objectives (Cussens et al., 2015). Thus, these

special valid inequalities for F can also be viewed as the

valid inequalities for C, that is, interpreted in the context

of C. This concerns many facet-defining inequalities for F:

the k-cluster inequality (4) takes the following form in the

characteristic-imset context, see (Cussens et al., 2015, § 9):∑
S⊆C, |S|≥k+1

z(S) · c(S) ≤ |C| − k ,

where z(S) = (−1)|S|−k−1 · ( |S|−2
|S|−k−1

)
for any such S.

Example 2 Consider N = {a, b, c, d}. Then the 2-cluster

inequality for C = {a, b, c, d} takes the form

c(abc) + c(abd) + c(acd) + c(bcd)− 2 · c(abcd) ≤ 2 .

Indeed, the substitution of (6) in it gives just (5).

2.3 CONCEPTS FROM MATROID THEORY

Let us recall some definitions and basic facts from matroid

theory; see (Oxley, 1992, chapters 1,2,4) for more details.

A matroid is a pair (C, I) where C is a finite set, called its

ground set, and I a non-empty class of subsets of C, called

the independent sets (of the matroid), which is closed under

subsets: I ∈ I, J ⊆ I implies J ∈ I and satisfies the

independence augmentation axiom :

if I, J ∈ I and |J | < |I|
then a ∈ I \ J exists with J ∪ {a} ∈ I.

We will also say that the matroid is on the set C.

A number of equivalent descriptions of the matroid (C, I)
exists. Any matroid can be described by the class B of its

bases, which are inclusion-maximal independent sets. The

above independence augmentation axiom implies that the

sets in B have the same cardinality. The shared cardinality

of bases of a matroid is called its rank. A well-known fact

is that B ⊆ P(C) is the class of bases of a matroid on C
iff it is a non-empty class of subsets of C satisfying the

following basis exchange axiom :

if I, J ∈ B and a ∈ I \ J
then b ∈ J \ I exists with (I \ {a}) ∪ {b} ∈ B.

The class D of dependent sets of (C, I) consists of those

subsets of C that are not independent sets. The circuits
of the matroid are the inclusion-minimal dependent sets. A

class C ⊆ P(C) is the class of circuits of a matroid on C iff

it is a class of non-empty inclusion-incomparable subsets of

C satisfying the following circuit elimination axiom :

if K,L ∈ C, K 
= L and a ∈ K ∩ L

then M ∈ C exists with M ⊆ (K ∪ L) \ {a}.

We will also use the description of the matroid (C, I) in

terms of its rank function, which is a function r on P(C)
defined as follows:

r(J) = max { |I| : I ⊆ J & I ∈ I } for any J ⊆ C.

The rank functions of matroids on C are characterized as

integer-valued set functions r : P(C) → Z satisfying the

following three conditions:

• if I ⊆ C then 0 ≤ r(I) ≤ |I|,
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• if J ⊆ I ⊆ C then r(J) ≤ r(I),

• if I, J ⊆ C then r(I ∪ J) + r(I ∩ J) ≤ r(I) + r(J).

A set S ⊆ C is called a separator of a matroid (C, I) if

r(S) + r(C \ S) = r(C) .

The matroid is called connected if it has no other separators

except for the trivial ones S = ∅ and S = C. Observe that

if (C, I) is connected and |C| ≥ 2 then
⋃B = ⋃ I = C,

for otherwise
⋃ I is a non-trivial separator or r ≡ 0. An

equivalent definition of a connected matroid on C is that,

for every pair a, b ∈ C, a 
= b, a circuit D ∈ C exists with

a, b ∈ D, see (Oxley, 1992, Prop 4.1.4).

The dual matroid to a matroid over C having B ⊆ P(C) as

its class of bases is the matroid on C having

B∗ := {C \B : B ∈ B}

as its class of bases. The formula for the rank function r∗

of the dual matroid is as follows:

r∗(J) = |J | − r(C) + r(C \ J) for J ⊆ C, (7)

see (Oxley, 1992, Prop 2.1.9). Another well-known basic

fact is that the dual matroid to a connected matroid is con-

nected as well, see (Oxley, 1992, Corol 4.2.8).

Example 3 Consider C = {a, b, c, d} and put

B = { {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d} }.

Clearly, B is the class of bases of a matroid on C. The

independent sets in it are subsets of C of cardinality at most

two. The circuits are subsets of C of cardinality 3. The rank

function only depends on the cardinality:

r(J) = min { |J | , 2 } for J ⊆ C.

The form of r implies that the only separators are S = ∅
and S = C. In particular, the matroid is connected. The

dual matroid is itself.

The above example is a special matroid in a certain sense:

for any integer 0 ≤ k ≤ |C| the uniform matroid on C of

the rank k has the collection of subsets of C of the cardi-

nality at most k as its class of independent sets.

In this paper, the attention is limited to matroids which have

clusters of BN variables C ⊆ N , |C| ≥ 2 as their ground

sets. Any matroid (C, I) on such cluster C can be inter-

preted as a matroid on N because I ⊆ P(C) can be viewed

as a class of subsets of N . This kind of trivial extension on

N leads to the rank function r : P(N)→ Z given by

r(S) = r(C ∩ S) for any S ⊆ N .

3 SUPERMODULAR FUNCTIONS

In (Cussens et al., 2015, § 7) a one-to-one correspondence

has been established between extreme supermodular set

functions and certain important facets of F, respectively of

C. The relevant concepts are recalled in this section.

A real function m : P(N)→ R on subsets of the set N of

BN variables will be called standardized if m(S) = 0 for

S ⊆ N , |S| ≤ 1, and supermodular if

∀U, V ⊆ N m(U) +m(V ) ≤ m(U ∪ V ) +m(U ∩ V ) .

Mirror images of supermodular functions are submodular
functions, defined by the converse inequalities; recall from

§ 2.3 that rank functions of matroids are submodular.

3.1 EXTREME SUPERMODULAR FUNCTIONS

The collection of standardized supermodular functions on

P(N), viewed as a set of vectors in R
P(N), is a pointed

polyhedral cone. Therefore, it has finitely many extreme

rays, which makes the following definition meaningful.

A standardized supermodular function m : P(N) → R

will be called extreme if it generates an extreme ray of the

standardized supermodular cone. Recall that a non-zero

vector v in a cone generates its extreme ray if the only

summands in (positive) convex combinations of vectors

from the cone yielding v are non-negative multiples of v.

Theorems 1 and 2 from (Cussens et al., 2015) together give

the next observation.

THEOREM 1 An inequality 〈o, η〉Υ ≤ u for η ∈ R
Υ,

where o ∈ R
Υ, u ∈ R, is facet-defining for F and defined

by an SE objective o iff there exists an extreme standardized
supermodular function m on P(N) such that o is given by

o(a |B) = m({a} ∪B)−m(B) for (a |B) ∈ Υ, (8)

and u is the shared value of 〈o, ηH〉Υ for full graphs H
over N , that is, for such H ∈ DAGs (N) in which every
pair of distinct nodes is adjacent.

Example 4 Consider N = {a, b, c, d} and the set function

m(S) =

⎧⎨
⎩

2 if S = N ,

1 if |S| = 3,

0 otherwise,

for S ⊆ N .

Clearly, m is a standardized supermodular function; finer

arguments why m is extreme are given later (Example 5).

The formula (8) leads to the inequality (5). By Theorem 1,

(5) is facet-defining for the family-variable polytope F.

Moreover, Corollary 6 in (Cussens et al., 2015) says what

is the role of the inequalities from Theorem 1 in the

characteristic-imset context; here we have in mind the

correspondence of the inequalities mentioned in § 2.2.2.

836



COROLLARY 1 Facet-defining inequalities 〈o, η〉Υ ≤ u
for η ∈ F with SE objectives correspond to facet-defining
inequalities 〈z, c〉Λ ≤ u for c ∈ C tight for the 1-imset,
which is the vector in R

Λ whose all components are ones.

3.2 SUBMODULARITY AND RANK FUNCTIONS

Mirror images of supermodular functions are submodular

ones, which play an important role in matroid theory. It

follows from the facts mentioned in § 2.3 that every rank

function of a matroid belongs to the cone of non-decreasing

submodular functions r with r(∅) = 0. This is a pointed

polyhedral cone and has finitely many extreme rays.

Nguyen (1978) was interested in the question when the

rank function of a matroid generates an extreme ray of that

cone. The next fact follows from his Theorem 2.1.5.

THEOREM 2 Let C be a non-empty finite set and (C, I) a
matroid on it such that C =

⋃ I . Then its rank function
r generates an extreme ray of the cone of non-decreasing
submodular functions on P(C) satisfying r(∅) = 0 iff the
corresponding matroid (C, I) is connected.

4 MAIN RESULT

LEMMA 1 Given a connected matroid (C, I) on C ⊆ N ,

|C| ≥ 2with the rank function r : P(C)→ Z, the function

m(S) := |C ∩ S| − r(C ∩ S) for S ⊆ N , (9)

is extreme standardized supermodular function on P(N).

Proof: Let us denote by R[C], for C ⊆ N , the cone of

submodular functions r∗ on P(C) such that r∗(∅) = 0 and

r∗(C) − r∗(C \ {a}) = 0 for any a ∈ C. Any function

r∗ in R[C] is necessarily non-decreasing. The dual matroid

to (C, I) is connected; by Theorem 2, its rank function r∗

given by (7) generates an extreme ray of the non-decreasing

submodular cone. Since (C, I) is connected,
⋃ I = C

says r({a}) = 1 for any a ∈ C. Moreover, the dual ma-

troid to the dual matroid is again (C, I), which gives

1 = r({a}) = r∗∗({a}) (7)
= 1− r∗(C) + r∗(C \ {a})

for any a ∈ C; hence, r∗ belongs to the smaller cone

R[C]. This easily implies that r∗ generates an extreme

ray of R[C], which fact allows one to observe by a minor

consideration that its trivial extension

r∗(S) := r∗(C ∩ S) for S ⊆ N ,

generates an extreme ray of R[N ]. Finally, the formula

m(S) = r∗(N)− r∗(N \ S) for S ⊆ N ,

defines a one-to-one linear transformation of the cone R[N ]
onto the cone of standardized supermodular functions m

on P(N) (in fact, the transformation is self-inverse). In

particular, r∗ �→ m maps generators of extreme rays to

generators of extreme rays, implying that m is extreme in

the respective cone. Thus, one can write for any S ⊆ N :

m(S) = r∗(N)− r∗(N \ S) = r∗(C)− r∗(C \ S)
(7)
= { |C| − r(C) } − { |C \ S| − r(C) + r(C ∩ S) }
= |C ∩ S| − r(C ∩ S) ,

which gives (9).

Example 5 Consider N = {a, b, c, d} = C and take the

uniform matroid on C of rank 2 from Example 3. It is a

connected matroid and, by Lemma 1, it induces through

(9) an extreme supermodular function m from Example 4.

THEOREM 3 Given a connected matroid (C, I) on a
cluster C ⊆ N , |C| ≥ 2 of BN variables, the inequality
∑
a∈C

∑
B⊆N\{a}: ∃D∈C a∈D⊆B∪{a}

η(a |B) ≤ |C|−k, (10)

where k is the rank of (C, I) and C the collection of its
circuits, is a facet-defining inequality for F.

Proof: By Lemma 1, (9) gives an extreme standardized

supermodular function; one can apply Theorem 1 then. The

upper bound u in the respective facet-defining inequality

〈o, η〉Υ ≤ u for η ∈ F is the shared value 〈o, ηH〉Υ for full

graphs H ∈ DAGs (N). Using (8) one gets u = m(N),

that is, u = m(N)
(9)
= |C| − r(C) = |C| − k.

The formula for the objective coefficients o(a |B), where

a ∈ N and B ⊆ N \ {a} (possibly empty) is then

o(a |B) (8)
= m({a} ∪B)−m(B)

(9)
= |C ∩ {a}| − r(C ∩ ({a} ∪B)) + r(C ∩B) ,

implying o(a |B) = 0 if a ∈ N \C. In case a ∈ C one has

o(a |B) = 1−r(C∩({a}∪B))+r(C∩B) = o(a |C∩B) .
Therefore, in the rest of the proof, we assume a ∈ C and

B ⊆ C \ {a}; our goal is to verify

o(a |B) =
{

1 ∃D ∈ C with a ∈ D & D ⊆ B ∪ {a},
0 otherwise,

which clearly gives (10). We come from the above formula

o(a |B) = 1− r({a} ∪B) + r(B) . (11)

Having fixed a ∈ C, the coefficient are monotone

E ⊆ B ⊆ C \ {a} ⇒ o(a |B) ≥ o(a |E) (12)

because of submodularity of r :

o(a |B)− o(a |E)
(11)
= r(B) + r({a} ∪ E)− r(E)− r({a} ∪B) ≥ 0 .
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As (C, I) is connected one has r({a}) = 1 for any a ∈ C,

which gives

o(a | ∅) (11)
= 1− r({a}) + r(∅) = 1− 1 + 0 = 0.

Since the dual matroid is also connected, one has

o(a |C \ {a}) (11)
= 1− r(C) + r(C \ {a}) (7)

= r∗({a}) = 1.

In particular, the objective coefficients are either zeros or

ones. In case a circuit D ∈ C exists with a ∈ D ⊆ B∪{a},
it is enough to show o(a |D \ {a}) = 1 and apply (12).

Indeed, by the definition of a circuit, D \ {a} ∈ I and

r(D \ {a}) = |D| − 1. One cannot have r(D) = |D|, for

otherwise D ∈ I contradicts the assumption D ∈ C. Thus,

r(D) = |D| − 1 and one has

o(a |D \ {a}) (11)
= 1− r(D) + r(D \ {a}) = 1 .

It remains to show that o(a |B) = 0 in the complementary

case that no such D ∈ C exists for B. By the definition of

the rank function r, a set J ⊆ B exists with J ∈ I and

|J | = r(B). It is enough to show {a} ∪ J ∈ I because

then r({a} ∪B) = |J |+ 1 (use submodularity of r) and

o(a |B) (11)
= 1−r({a}∪B)+r(B) = 1−(|J |+1)+|J | = 0 .

Thus, assume for a contradiction that {a} ∪ J ∈ D is a

dependent set and, by the definition of circuits, find D ∈ C
with D ⊆ {a} ∪ J . Necessarily a ∈ D, for otherwise a

contradictory conclusion J ∈ D is derived. This implies

a ∈ D ⊆ {a}∪J ⊆ {a}∪B contradicting the assumption

that no such circuit D ∈ C exists for B.

The observation that the k-cluster inequalities (4) are facet-

defining for the family-variable polytope easily follows

from Theorem 3. Indeed, any uniform matroid on C ⊆ N ,

|C| ≥ 2 of the rank k, 1 ≤ k ≤ |C| − 1 is connected. This

fact is illustrated by the following simple example.

Example 6 Consider N = {a, b, c, d}, C = {a, b, c} and

k = 1. The uniform matroid on C of rank 1 has the bases

{a}, {b} and {c}. Thus, the class of its circuits is

C = { {a, b}, {a, c}, {b, c} } .
Since every pair of BN variables in C is contained in a

circuit, it is a connected matroid. To get the specific form

of the inequality (10) in this case realize that a ∈ C is

contained in two circuits D ∈ C, namely in {a, b} and in

{a, c}. Thus, one has in (10) those terms η(a |B) where

B ⊆ N \ {a} and either b ∈ B (⇔ {a, b} ⊆ B ∪ {a}) or

c ∈ B. Thus, (10) takes the form

[ η(a | b) + η(a | c) + η(a | bc)
+ η(b | bd) + η(b | cd) + η(b | bcd) ]

+ [ η(b | a) + η(b | c) + η(b | ac)
+ η(b | ad) + η(b | cd) + η(c | acd) ]

+ [ η(c | a) + η(c | b) + η(c | ab)
+ η(c | ad) + η(c | bd) + η(c | abd) ] ≤ 2 ,

which is just the cluster inequality (4) for C with k = 1.

Theorem 3 claims it is a facet-defining inequality for F.

Another instance of a uniform matroid was mentioned in

Example 3; in this case, the inequality (10) turns into (5)

from Example 1. The next example goes beyond the scope

of k-cluster inequalities and uniform matroids.

Example 7 Consider C = {a, b, c, d} = N and put

B = { {a, b}, {a, c}, {a, d}, {b, c}, {b, d} }.

Clearly, B is the class of bases of a matroid on C of the

rank 2. The rank function has the form

r(J) =

⎧⎨
⎩

0 if J = ∅,
1 if J = {c, d} or |J | = 1,

2 otherwise,

for J ⊆ C,

while the class C of its circuits is

C = { {a, b, c}, {a, b, d}, {c, d} }.

As every pair of elements in C is contained in a circuit, it

is a connected matroid. Theorem 3 says that the inequality

[ η(a | bc) + η(a | bd) + η(a | bcd) ]
+ [ η(b | ac) + η(b | ad) + η(b | acd) ]
+ [ η(c | d) + η(c | ab) (13)

+ η(c | ad) + η(c | bd) + η(c | abd) ]
+ [ η(d | c) + η(d | ab)

+ η(d | ac) + η(d | bc) + η(d | abc) ] ≤ 2 .

is facet-defining for F. An interesting observation is

that the inequality (13) defines the so-called 4B-type facet

found by Bartlett and Cussens (2013); see (13) in § 6 of

their paper where {v1, v4} = {a, b} and {v2, v3} = {c, d}.

COROLLARY 2 The inequality (10) from Theorem 3 has
the following form in the characteristic-imset mode:

∑
T∈Λ, T⊆C

z(T ) · c(T ) ≤ |C| − k for c ∈ R
Λ, (14)

where z(T ) = −
∑
L⊆T

(−1)|T\L| · r(L)

are determined by the rank function r of the matroid. The
inequality (14) defines a facet of C containing the 1-imset.

Proof: This follows from Lemma 10 and the formula (20)

in (Cussens et al., 2015) saying that 〈o, η〉Υ = 〈z, cη〉Λ
where the coefficients z(T ) for T ∈ Λ are given by

the Möbius transform of the corresponding standardized

supermodular function m, that is, by

z(T ) =
∑
L⊆T

(−1)|T\L| ·m(L) for T ∈ Λ.
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Figure 1: Edges of the graph define a matroid.

In our case, m is given by (9), which implies z(T ) = 0
whenever T \ C 
= ∅. Moreover, the Möbius transform of

the first term in (9) vanishes for T ∈ Λ, T ⊆ C, which

gives (14). The second claim follows from Corollary 1.

Example 8 Consider again the matroid from Example 7.

The formula (14) applied to the rank function r gives

z(T ) =

⎧⎨
⎩
−1 if T = C,

1 if T ∈ C,

0 otherwise,

for T ∈ Λ, T ⊆ C.

In particular, the inequality (13) has the following form in

the characteristic-imset mode:

c(abc) + c(abd) + c(cd)− c(abcd) ≤ 2 .

5 FIVE VARIABLES EXAMPLE

Note that in case of four BN variables there is no other

matroid-based facet-defining inequality for F except the

k-cluster inequalities and (13). However, there are more

matroid-based inequalities in case of five BN variables.

An important class of matroids are the so-called graphic
matroids (Oxley, 1992, § 1.1). In fact, any undirected graph

G defines a matroid on the set of its edges. Specifically, a

set I of edges in G is considered to be independent (in the

graphic matroid) if the edge-subgraph of G consisting of

edges in I is a forest, that is, has no undirected cycle.

The circuits of this graphic matroid are then the sets D of

edges in G forming edge-minimal cycles in G, which means

the removal of any edge from D results in a forest. The idea

is illustrated by an example.

Example 9 Consider C = {a, b, c, d, e} = N and define a

matroid on C by means of the graph in Figure 1, where the

edges are identified with the elements of C. It makes no

problem to observe that the matroid has three circuits:

C = { {a, b, c, d}, {a, c, e}, {b, d, e} } ,
while the number of bases is eight: these are all 3-element

subsets of C except for {a, c, e} and {b, d, e}. Of course,

these are just the sets of edges defining spanning trees for

the graph from Figure 1. It is easy to see that the matroid

is connected and has rank k = 3. Like in Example 6 one

can determine the terms η(∗ |B) which occur in (10). For

example, a ∈ C = N is contained in two circuits D ∈ C,

namely in {a, c, e} and {a, b, c, d}. In particular, one has

in (10) those terms η(a |B) where B ⊆ N \ {a} and either

{c, e} ⊆ B or {b, c, d} ⊆ B. The same principle applies

to b, c, d and e which results in the following abbreviated

form of (10):

∑
ce⊆B ∨ bcd⊆B

η(a |B) +
∑

de⊆B ∨ acd⊆B

η(b |B)

+
∑

ae⊆B ∨ abd⊆B

η(c |B) +
∑

be⊆B ∨ abc⊆B

η(d |B) (15)

+
∑

ac⊆B ∨ bd⊆B

η(e |B) ≤ 2 .

Thus, by Theorem 3, the inequality (15) if facet-defining

for F. We leave to the reader to derive the rank function r of

the matroid and observe that its Möbius transform only has

4 non-zero values: −1 for circuits in C and +1 for C = N .

In particular, by Corollary 2, (15) has the following simple

form in the characteristic-imset mode:

c(abcd) + c(ace) + c(bde)− c(abcde) ≤ 2 .

Example 9 indicated a way one can search for connected

matroids, and, thus, for facet-defining inequalities to be

used in the ILP approach to BN structure learning. Graphic

matroids are common examples of matroids; but there are

many matroids which are not graphic, like the uniform ma-

troid from Example 3.

To utilize fully the matroid-based approach some computer

scientists may take the following exhaustive “brute-force”

approach: given a (presumably) small cluster C, |C| ≥ 2
generate by means of a computer all (permutation) types of

classes C of inclusion-incomparable subsets of C such that

∀ a, b ∈ C, a 
= b, a set D ∈ C exists with a, b ∈ D. Then

one can check (again with the help of a computer) which of

them satisfy the circuit elimination axiom. In this way one

gets all types of connected matroids on C and can trans-

form them into facet-defining inequalities for the family-

variable polytope or for the characteristic imset polytope.

Other people may prefer to search in the literature on ma-

troid theory. Indeed, researcher in this area have generated

various catalogues of (types of) matroids on small ground

sets; see, for example (Mayhew, Royle, 2008).

6 CONCLUSIONS

Theorem 3 implies that every connected matroid on a

non-trivial cluster of BN variables induces a facet-defining

inequality for the family-variable polytope; Corollary 2

says what is the form of that inequality in the context of

the characteristic-imset polytope.
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This is a quite general theoretical result because the well-

known k-cluster inequalities, which play the key role in

contemporary ILP approaches to BN structure learning, can

be derived in this way. Specifically, they correspond to the

prominent (connected) uniform matroids.

The significance of the paper is mainly theoretical: the

area of statistical learning is related to a seemingly remote

field in discrete mathematics, namely to matroid theory.

Although matroids were previously known to have many

applications in combinatorial optimization, this particular

intimate link to BN structure learning could be surprising.

The advantage of the matroid-based approach to learning is

that the inequalities are easy to find and the verification that

they are facet-defining is immediate since testing whether

a matroid is connected is easy. The result is applicable in

both ILP approaches to BN structure learning, that is, both

in the context of the family-variable polytope and in the

context of the characteristic-imset polytope.

However, the result also has some potential for practical

future use because it may lead to bettering certain currently

used algorithms. Let me recall in more detail the original

motivation, which was the ILP approach to BN structure

learning. I have in mind the cutting plane method where

one solves an ILP optimization problem by the method

of iterative reduction of the feasible set. The solution to

a linear relaxation problem, which is a (non-integer) lin-

ear program with a larger feasible set, specified be a small

number of inequalities, is typically a fractional vector. The

next step is to solve the separation problem, that is, to find

an inequality from a reservoir of available inequalities (for

example from the class of cluster inequalities) which cuts

the current fractional solution from the true feasible region,

which is the polytope defined as the convex hull of integer

vectors in the feasible set, see (Wolsey, 1998, § 8.5)

From the point of view of computational efficiency, it is

essential to find such inequality which approximates the

polytope as close as possible near the current solution.

This leads to the suggestion to look for the most violated

inequalities by the current fractional solution; see also the

heuristic justification in (Cussens, 2011, § 4.1).

The presented result broadens the reservoir of available

facet-defining inequalities in the ILP approach to BN struc-

ture learning. In fact, it is claimed by Bartlett and Cussens

in (2013, § 6) that the inequality (13) from Example 7

has appeared to be particularly useful in their experiments.

Moreover, the other facet-defining inequalities for F, that

is, those not based on matroids, have not appeared to be

very useful. Their empirical observations are the basis

for my hope that the matroid-based inequalities may bring

some further progress in this area, perhaps even resulting

in better future running times.

Nevertheless, let me emphasize that additional problems

have to be solved to reach the practical applicability of

general matroid-based inequalities. More specifically, it is

necessary to solve the corresponding separation problem,

that is, to design a speedy algorithm for finding the (most)

violated inequalities by a current (fractional) solution in the

class of all general matroid-based inequalities. Thus, the

next step towards the practical application of the matroid-

based inequalities should be a proposal for such algorithm.
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