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We propose an effective and flexible way to assemble finite element stiffness and mass
matrices in MATLAB. We apply this for problems discretized by edge finite elements.
Typical edge finite elements are Raviart–Thomas elements used in discretizations of
HðdivÞ spaces and Nédélec elements in discretizations of HðcurlÞ spaces. We explain
vectorization ideas and comment on a freely available MATLAB code which is fast and
scalable with respect to time.
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1. Introduction

Elliptic problems containing the full gradient operatorr of scalar or vector arguments are formulated in weak forms in H1

Sobolev spaces and discretized using nodal finite element functions. Efficient MATLAB vectorization of the assembly routine
of stiffness matrices for the linear nodal finite element was explained by Rahman and Valdman in [11]. The focus of this
paper is generalizing the ideas of [11] to arbitrary finite elements, including higher order elements, and vector problems
operating with the divergence operator div and the rotation operator curl. Such problems appear in electromagnetism
and are also related to various mixed or dual problems in mechanics. Weak forms of these problems are defined in
HðdivÞ and HðcurlÞ Sobolev spaces. A finite element discretization is done in terms of edge elements, typically Raviart–
Thomas elements [12] for HðdivÞ problems and Nédélec elements [9] for HðcurlÞ problems. Edge element basis functions
are not defined on the nodes of 2D triangular or 3D tetrahedral meshes, but on edges and faces. Edge elements provide only
partial continuity over element boundaries: continuity of normal vector component for HðdivÞ problems and continuity of
tangential vector component for HðcurlÞ problems.

The method of finite elements applied to HðdivÞ and HðcurlÞ problems and its implementation has been well documented,
see for instance [16] including higher order polynomials defined through hierarchical bases. A user can find many software
codes (for instance NGSOLVE [14] or HERMES [15]) written in object oriented languages allowing for higher order elements
defined on elements with curved boundaries. These codes are very powerful, capable of high complexity computations and
they provide certain flexibility via user interface. However, such codes are not so easy to understand and modify unless one
is quite familiar with the code. We believe that our MATLAB code is more convenient for students and researchers who wish
to become familiar with edge elements and prefer to have their own implementation. We consider the lowest order linear
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edge elements defined on 2D triangles and 3D tetrahedra only. However, it is straightforward to extend the code to use
higher order elements, since the assembly routines remain almost the same regardless of the element order.

There are plenty of papers [4,7,8,5] dedicated to implementing vectorized FEM assembly routines for nodal elements in
MATLAB. In [8] the authors also discuss the Raviart–Thomas element in 3D, but do not provide the program code. The iFEM
package [4] has efficient implementation of FEM assembly routines for various different linear and higher order elements.
The paper [2] considers the implementation of Raviart–Thomas elements (in a non-vectorized way), providing a good inspi-
ration for the implementation of a multigrid based solver for HðdivÞ majorant minimization [17] by the second author.

Our implementation generalizes the approach of [11] to work with arbitrary affine finite elements. It is based again on
operations with long vectors and arrays in MATLAB and it is reasonably scalable for large size problems. On a typical com-
puter with a decent processor and enough system memory, the 2D/3D assemblies of FEM matrices are very fast. For example,
a 2D assembly of matrices with around 10 million rows takes less than a minute. Vectorization of calculations typically
requires more system memory, but the performance degrades only when the system memory becomes full. The software
described in this paper is available for download at MATLAB Central at
http : ==www:mathworks:com=matlabcentral=fileexchange=46635
It also includes an implementation of the linear nodal finite element in 2D and 3D with the generalized approach, so an inter-
ested reader can compare the performance of the code described in [11]. The key idea in our generalized approach is to vec-
torize the integration procedure of scalar and vector valued functions on affine meshes. This allows also for fast evaluation of
norms of functions.

The paper is divided as follows: In Section 2 we briefly describe the implemented linear edge elements. In Section 3 we go
through the particular constructions related to the implementation of the elements and vectorization details. We also show
the performance of the vectorized assembly routines with respect to time and scalability. Section 4 illustrates two applica-
tions of edge elements: a functional majorant minimization in a posteriori error analysis and solving of an electromagnetic
problem.

2. Linear edge elements

We denote by X an open, bounded, and connected Lipschitz domain in Rd, where d 2 f2;3g denotes the space dimension.
The divergence (2D and 3D) and rotation (3D) of a vector valued function w : X! Rd are defined as
divw :¼
Xd

i¼1

@iwi and curlw :¼
@2w3 � @3w2

@3w1 � @1w3

@1w2 � @2w1

0
B@

1
CA:
We consider two types of rotation operators in 2D, the vector operator curl and the scalar operator curl
curl f :¼
@2f

�@1f

� �
and curlw :¼ @1w2 � @2w1
applied to a scalar function f : X! R and to a vector function w : X! R2. The operator curl is frequently called the ‘‘co-
gradient’’ in literature, and is often denoted by r?. The operators give rise to the standard Sobolev spaces:
Hðdiv;XÞ :¼ fv 2 L2ðX;RdÞjdivv 2 L2ðXÞg;

Hðcurl;XÞ :¼ fv 2 L2ðX;R3Þ j curlv 2 L2ðX;R3Þg if d ¼ 3

fv 2 L2ðX;R2Þ j curlv 2 L2ðXÞg if d ¼ 2

(
;

where L2 denotes the space of square Lebesque integrable functions. We will denote the L2-norm of scalar and vector valued
functions by �k k :¼ �k kL2ðXÞ. Assuming that X is discretized by a triangular (2D) or a tetrahedral (3D) mesh T , Raviart–Thomas

and Nédélec elements represent basis functions in Hðdiv; T Þ and Hðcurl; T Þ spaces.
In the case of the lowest order (linear) Raviart–Thomas and Nédélec elements, there is one global degree of freedom (dof),

i.e., one global basis function, related to either each edge (2D and 3D), or each face (3D) of a mesh T . Due to construction, the
global Raviart–Thomas basis functions and the Nédélec basis functions in 2D are nonzero only in the two elements who
share the edge/face that is related to the basis function. In 3D the global Nédélec basis function is nonzero in all the elements
sharing the related edge, and the number of these elements is usually more than two.

We denote the global edge/face basis functions by gRT and gNed, and by x ¼ ðx1; x2; x3ÞT the spatial variable in X. The nota-
tion for reference basis functions and spatial variable is obtained by simply adding the hat �̂, i.e., x̂ denotes the spatial variable

in the reference element K̂. We will use the unit triangle in 2D and the unit tetrahedron in 3D as the reference elements. We

denote by êi the ith edge of the reference triangle or tetrahedron, and by f̂ i the ith face of the reference tetrahedron. The num-
bering of the edges and faces, i.e., the numbering of the degrees of freedom in the reference elements, can be seen in Fig. 1. In

the following, FK denotes the affine element mapping FKðx̂Þ :¼ BK x̂þ bK from the reference element K̂ to an element K in the
mesh.



Fig. 1. Degrees of freedom of linear edge elements in the reference configuration K̂ .

Fig. 2. Elements by their nodes and edges, i.e., global numbering of degrees of freedom for 2D linear finite elements.
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A finite element is defined by the triplet fK̂; R̂; Âg, where K̂ is the reference configuration, R̂ the finite space of functions

defined on the reference configuration, and Â is the set of linearly independent degrees of freedom. The reference configu-

rations we have already chosen. We also need a mapping which takes functions from R̂ and maps them from K̂ to an element
K on the mesh T . These mappings are called Piola mappings.

2.1. Raviart–Thomas element

The linear Raviart–Thomas element is based on the spaces (see, e.g., [9,12])
2D : R̂ ¼
1
0

� �
;

0
1

� �
;

x̂1

x̂2

� �� �
; 3D : R̂ ¼

1
0
0

0
B@

1
CA;

0
1
0

0
B@

1
CA;

0
0
1

0
B@

1
CA;

x̂1

x̂2

x̂3

0
B@

1
CA

* +
;

and the degrees of freedom for û 2 R̂ read as
2D : Â ¼ âiðûÞ ¼
Z

êi

n̂i � û dŝ; i 2 f1;2;3g
( )

; 3D : Â ¼ âiðûÞ ¼
Z

f̂ i

n̂i � û dŝ; i 2 f1;2;3;4g
( )

ð1Þ
for every edge êi in 2D, or face f̂ i in 3D, in the corresponding reference elements K̂. There are three dofs in 2D and four in 3D.

Here n̂i is the normal unit vector of the edge êi, or the face f̂ i. Here one has to choose which of the two possible unit normal
vectors to use. The standard choice of outer unit normals is depicted in Fig. 1. The requirement âiðĝRT

j Þ ¼ dij (where dij is the
Kronecker delta) gives us the reference basis functions of the Raviart–Thomas element:
2D : ĝRT
1 ðx̂Þ ¼

x̂1

x̂2

� �
; ĝRT

2 ðx̂Þ ¼
x̂1 � 1

x̂2

� �
; ĝRT

3 ðx̂Þ ¼
x̂1

x̂2 � 1

� �
;

3D : ĝRT
1 ðx̂Þ ¼

x̂1

x̂2

x̂3 � 1

0
B@

1
CA; ĝRT

2 ðx̂Þ ¼
x̂1

x̂2 � 1
x̂3

0
B@

1
CA; ĝRT

3 ðx̂Þ ¼
x̂1 � 1

x̂2

x̂3

0
B@

1
CA; ĝRT

4 ðx̂Þ ¼
x̂1

x̂2

x̂3

0
B@

1
CA:
In order to preserve normal continuity of the reference basis functions, we need to use the so-called Piola mappings. The
values and the divergence values are mapped as follows (see, e.g., [3]):
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gRTjKðxÞ ¼
1

det BK
BK ĝRTðF�1

K ðxÞÞ and divgRTjKðxÞ ¼
1

det BK
div ĝRTðF�1

K ðxÞÞ: ð2Þ
2.2. Nédélec element

The linear Nédélec element is based on the spaces (see, e.g., [9,13])
2D : R̂ ¼
1
0

� �
;

0
1

� �
;

x̂2

�x̂1

� �� �
; 3D : R̂ ¼

1
0
0

0
B@

1
CA;

0
1
0

0
B@

1
CA;

0
0
1

0
B@

1
CA;

0
x̂3

x̂2

0
B@

1
CA;

x̂3

0
x̂1

0
B@

1
CA;

x̂2

x̂1

0

0
B@

1
CA

* +
;

and the degrees of freedom for û 2 R̂ in both dimensions are related to the edges of the elements:
Â ¼ âiðûÞ ¼
Z

êi

t̂i � û dŝ; i 2 f1;2; . . .g
( )

ð3Þ
for every edge êi in the reference configuration K̂. There are three dofs in 2D and six in 3D. Here t̂i is the tangential unit vector
of the edge êi. Similarly to the Raviart–Thomas element, one has to choose which direction for the unit tangential vectors to
use. Our choice is depicted in Fig. 1. The requirement âiðĝNed

j Þ ¼ dij gives us the reference basis functions of the Nédélec
element:
2D : ĝNed
1 ðx̂Þ ¼

�x̂2

x̂1

� �
; ĝNed

2 ðx̂Þ ¼
�x̂2

x̂1 � 1

� �
; ĝNed

3 ðx̂Þ ¼
1� x̂2

x̂1

� �
;

3D : ĝNed
1 ðx̂Þ ¼

1� x̂3 � x̂2

x̂1

x̂1

0
B@

1
CA; ĝNed

2 ðx̂Þ ¼
x̂2

1� x̂3 � x̂1

x̂2

0
B@

1
CA; ĝNed

3 ðx̂Þ ¼
x̂3

x̂3

1� x̂2 � x̂1

0
B@

1
CA;

ĝNed
4 ðx̂Þ ¼

�x̂2

x̂1

0

0
B@

1
CA; ĝNed

5 ðx̂Þ ¼
0
�x̂3

x̂2

0
B@

1
CA; ĝNed

6 ðx̂Þ ¼
x̂3

0
�x̂1

0
B@

1
CA:
Again, we need to use a Piola mapping in order to preserve the tangential continuity (see, e.g., [9,13]). The values are mapped
as follows:
gNedjKðxÞ ¼ B�T
K ĝNed F�1

K ðxÞ
� �

: ð4Þ
The rotation is mapped differently depending on the dimension:
2D : curlgNedjKðxÞ ¼
1

det BK
curl ĝNed F�1

K ðxÞ
� �

; ð5Þ

3D : curlgNedjKðxÞ ¼
1

det BK
BK curl ĝNed F�1

K ðxÞ
� �

: ð6Þ
2.3. Orientation of local degrees of freedom

In order to obtain the global basis functions gRT and gNed, the transformations described in the previous sections are not
enough. A global basis function is related to more than one element. No consideration has been yet made in making sure that
the local orientation of the degrees of freedom (1) and (3) in these different elements is the same. The orientation must be
same in order for the Raviart–Thomas and Nédélec elements to produce functions whose normal component, or tangential
component (respectively) are continuous at element interfaces.

Take for example the Raviart–Thomas element in 2D. Let Kn and Km be two elements in a mesh which share an edge (see
Fig. 3), and let gRT be the global basis function related to this edge. We denote by ĝRT

k and ĝRT
l the reference basis functions

which we will transform from K̂ to Kn and Km respectively, in order to obtain the global basis function.
By taking a look at the dofs (1), we see that we are always using the outer unit normals to compute the local basis func-

tions. If we simply use the transformation (2), the normal component of the values at the edge might be the opposite of each
other. This depends wether or not the element mappings FKn and FKm preserve orientation. If det BKn > 0, and det BKm < 0, the
element mapping FKn preserves the counter-clockwise orientation of the reference element, and FKm is oriented clockwise.
This means that on the common edge the orientation is in the same direction, and the transformation (2) is enough for both
elements. However, otherwise the orientation on the common edge will be the opposite, and one of the transformations
must be multiplied by �1. The global basis function is thus obtained by



Fig. 3. Orientation of 2D edge elements sharing an edge, when both elements are oriented counter-clockwise, and c�>a�. The thick line denotes the ‘‘positive
direction’’.
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gRTjKn
ðxÞ ¼ signk

Kn

h i 1
det BKn

BKn ĝRT
k F�1

Kn
ðxÞ

� �
and gRTjKm

ðxÞ ¼ signl
Km

h i 1
det BKm

BKm ĝRT
l F�1

Km
ðxÞ

� �
; ð7Þ
where
signk
Kn

h i
¼ þ1; signl

Km

h i
¼ þ1 if det BKn > 0; det BKm < 0;

signk
Kn

h i
¼ þ1; signl

Km

h i
¼ �1 if det BKn > 0; det BKm > 0;

signk
Kn

h i
¼ �1; signl

Km

h i
¼ þ1 if det BKn < 0; det BKm < 0;

signk
Kn

h i
¼ �1; signl

Km

h i
¼ �1 if det BKn < 0; det BKm > 0:
We call these values the sign data related to each of the two elements. Note that the above means that the global basis func-
tion is obtained simply by
gRTjKn
ðxÞ ¼ þ 1

det BKnj jBKn ĝRT
k F�1

Kn
ðxÞ

� �
and gRTjKm

ðxÞ ¼ � 1
det BKmj j BKm ĝRT

l F�1
Km
ðxÞ

� �
;

but we will use (7) since it is more convenient to implement in program code.
The situation is the same for 3D Raviart–Thomas element and the 2D Nédélec element. For the Nédélec element in 3D one

needs to be more careful since a global basis function may be nonzero in a relatively large patch of elements, and the relevant
orientation is related to an edge. Note also that the same sign data must be used when transforming the divergence or rota-
tion of the basis functions.

2.4. Finite element matrices

We are interested in assembly of the mass matrices MRT; MNed and the stiffness matrices KRT; KNed defined by
MRT
ij ¼

R
X gRT

i � gRT
j dx; MNed

ij ¼
R

X gNed
i � gNed

j dx;

KRT
ij ¼

R
X divgRT

i divgRT
j dx; KNed

ij ¼
R

X curlgNed
i � curlgNed

j dx;
where the indexes i and j are the global numbering of the degrees of freedom, i.e., they are related to the edges or faces of a
mesh. By using the Piola mappings (with correct orientations), we are able to assemble the local matrices using the reference
element.

By using (7), the local matrices related to the global matrices MRT and KRT can be calculated on each element K 2 T by
MRT;K
kl ¼ 1

det BKj j

Z
K̂

signk
K

h i
BK ĝRT

k ðx̂Þ � signl
K

h i
BK ĝRT

l ðx̂Þ dx̂;

KRT;K
kl ¼ 1

det BKj j

Z
K̂

signk
K

h i
div ĝRT

k ðx̂Þ signl
K

h i
div ĝRT

l ðx̂Þ dx̂; ð8Þ
where K̂ is the reference element. The indexes k and l run through all the local basis functions in the element: k; l 2 f1;2;3g
in 2D, and k; l 2 f1;2;3;4g in 3D.

Similarly, by using (4) (and considering the correct orientations, see Section 2.3) the local mass matrices related to the

global mass matrix MNed can be calculated on each element K 2 T by
MNed;K
kl ¼ det BKj j

Z
K̂

signk
K

h i
B�T

K ĝNed
k ðx̂Þ � signl

K

h i
B�T

K ĝNed
l ðx̂Þ dx̂;
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and by using (5) and (6) the local stiffness matrices related to the global stiffness matrix KNed can be calculated by
2D : KNed;K
kl ¼ 1

det BKj j

Z
K̂

signk
K

h i
curl ĝNed

k ðx̂Þ signl
K

h i
curl ĝNed

l ðx̂Þ dx̂;

3D : KNed;K
kl ¼ 1

det BKj j

Z
K̂

signk
K

h i
BK curl ĝNed

k ðx̂Þ � signk
K

h i
BK curl ĝNed

l ðx̂Þ dx̂:
The indexes k and l run through all the local basis functions in the reference element: k; l 2 f1;2;3g in 2D, and
k; l 2 f1;2;3;4;5;6g in 3D.

3. Implementation of edge elements

We denote by #x the number of elements in the set x, and by N ; E;F , and T the sets of nodes, edges, faces, and ele-
ments, respectively. Note that faces F exist only in 3D. We need the following structures representing the mesh in order
to implement edge elements. The second column states the size of the structure, and the third column the meaning of
the structure.
nodes2coord
 #N � 2=3
 nodes defined by their two/three coordinates in 2D/3D (in [11] coordinates)

edges2nodes
 #E � 2
 edges defined by their two nodes in 2D/3D

faces2nodes
 #F � 3
 faces defined by their three nodes in 3D
With these matrices available, we can then express every element by the list of its nodes, edges, or faces:
elems2nodes
 #T � 3=4
 elements by their three/four nodes in 2D/3D (in [11] elements)

elems2edges
 #T � 3=6
 elements by their three/six edges in 2D/3D

elems2faces
 #T � 4
 elements by their four faces in 3D
In 2D both the linear Raviart–Thomas element and the linear Nédélec element have a degree of freedom related to each of
the three edges of the reference triangle, totalling three dofs. In 3D the linear Nédélec element has a dof related to each of the
six edges, and the Raviart–Thomas element will have a dof related to each of the four faces. Thus, the global numbering of
degrees of freedom is given by the row indices of edges2nodes or faces2nodes. For a particular element K in the mesh, the
global dofs related to it are then given by the structures elems2edges or elems2faces, respectively. For nodal elements
the global numbering of dofs is given by the row indices of nodes2coord, and the dofs related to a particular element K
are given by elems2nodes. In Fig. 2 we have further illustrated the structure of the mesh data in 2D.

Since the degrees of freedom are integrals over edges or faces, we need to pay attention to orientation (see Sections 2.3
and 2.4). In practice we need to know how every edge/face of every element is oriented. Orientation is naturally given either
by þ1 or �1. We need the following structures:
signs_e
 #T � 3=6
 þ1 or �1 for every edge of an element, corresponding to elems2edges
signs_f
 #T � 4
 þ1 or �1 for every face of an element in 3D, corresponding to elems2faces
In 2D obtaining the sign data for an element Ki can be conveniently done by examining elems2nodes(i,:). The first edge
of Ki (elems2edges(i,1)) is the edge from node 2 (elems2nodes(i,2)) to node 3 (elems2nodes(i,3)). We can then
simply agree that if the global node indices satisfy elems2nodes(i,2) > elems2nodes(i,3), we assign signs_e(i,1)
¼ 1, and signs_e(i,1) ¼ �1 otherwise. This gives us the signs, or their opposites, as described in Section 2.3. This sign data
can be used for both Raviart–Thomas element and the Nédélec element in 2D. The data structures are illustrated in Fig. 3.

The procedure of determining the signs for the 3D elements is straightforwards as well, but we will not comment on it
here. In our software package the edges in 2D and 3D are calculated by the function get_edges() and the orientation
related to edges is calculated by the function signs_edges(). In 3D the faces are calculated by the function get_faces(),
and the orientation related to faces is calculated by signs_faces().

3.1. Vectorized integration procedure

As stated in the introduction, the key idea of this paper is to vectorize the integration procedure of an arbitrary function
on an arbitrary mesh. The main ingredient is how to efficiently use integration quadratures via the reference element. We

demonstrate our idea by explaining how to calculate the (squared) L2-norm fk k2 of a function f 2 L2ðXÞ. Provided that we
have the structures nodes2coord and elems2nodes available, this is achieved (in the folder /example_majorant/) with
the following two lines:
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½B K;b K;B K det� ¼ affine transformationsðnodes2coord;elems2nodesÞ;
f L2norm ¼ norm L2ðelems2nodes; B K; b K; B K det; fÞ;
On the first line we obtain the affine transformations FKðx̂Þ ¼ BK x̂þ bK and determinants of BK for all elements K:
B_K
 d� d�#T
 matrix parts BK
b_K
 #T � d
 vector parts bK
B_K_det
 #T � 1
 the determinants det BK
The calculation of this data is done in a vectorized manner. On the second line we calculate the norm. The code of the
function /example_majorant/norm_L2.m is

function fnorm = norm_L2( elems2nodes, B_K, b_K, B_K_det, f );

1 B_K_detA = abs(B_K_det);
2 dim = size(B_K,1);
3 [ip,w,nip] = intquad(6,dim);

4 elems = size(elems2nodes,1);

5 fnorm = zeros(nelems,1);

6 for i = 1:nip

7 F_K_ip = squeeze(amsv(B_K, ip(i,:)))’+ b_K;
8 fval = f(F_K_ip);
9 fnorm = fnorm + w(i).* B_K_detA.* fval.̂ 2;

10 end

11 fnorm = sum(fnorm);

On line 2 we deduce the dimension of the mesh. On line 3 the function [ip,w,nip] = intquad(po,dim) returns an inte-
gration quadrature of order po in the reference element. We use integration quadratures for triangles and tetrahedrons from
[6,18], respectively. In this example we use quadrature order 6, so the calculation of the L2-norm is exact (up to machine
precision) for polynomials of order 3 and less. The quadrature consists of the integration points ip and the weighs w. The
variable nip is the number of integration points. On the lines 4 and 5 we deduce the number of elements in the mesh in
order to initialize the structure fnorm.

Note that the for-loop on line 6 is not over elements, but over integration points. This is what we mean by vectorization
of the for-loop over elements. Essentially we are replacing this loop with another, much smaller loop. Of course, since all the
affine mappings and other data has to be available for all elements at the same time, this method requires more system
memory.

On line 7 we transform the ith integration point to the mesh for all elements K at the same time, and put this data into
the structure F_K_ip. We have used here some functionality from the folder /path/library_vectorization/, which was
also used in the vectorization of nodal elements in [11]. This folder contains functions which perform certain operations
between matrices and vectors, and does them in a vectorized manner. The function amsv.m from this folder takes in the
matrices B_K and does the necessary multiplication with the ith integration point ip(i,:) for all entries simultaneously.
On line 8 we calculate the values of the function f on all of these points, and on line 9 we add the contributions of the
ith integration point to fnorm.

After going through all the integration points, the structure fnorm contains the elementwise contributions of the norm,
i.e., fnorm(i)¼ fk k2

Ki
, where Ki is the element described by its nodes in elems2nodes(i,:). On the last line the element-

wise contributions are summed together to obtain fk k2.

3.2. Vectorized finite element assembly routine

The vectorized integration procedure of the previous section can be directly applied for finite element matrix assembly
routines. As an example, we go through the needed program code for calculating the stiffness matrix KRT with Raviart–
Thomas elements. We assume we have the mesh in the form of the structures nodes2coord and elems2nodes, i.e., we have
the node coordinates, and the representation of elements by their nodes.
[B_K,~,B_K_det]
 = affine_transformations(nodes2coord,elems2nodes);

[elems2faces,faces2nodes]
 = get_faces(elems2nodes);

signs_f
 = signs_faces(nodes2coord,elems2faces,faces2nodes,B_K);
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On the first line we obtain the affine transformation matrices and the determinants. On the second line we obtain the
structure elems2faces, which is the representation of elements by their faces. Note that indeed the numbers in elems2-

faces are indices to faces2nodes. More importantly, elems2faces is the global numbering of the degrees of freedom for
all elements K in the mesh. On the third line we calculate the orientations for faces in 3D. Then, we call
K RT0 ¼ stiffness matrix RT0ðelems2faces;B K det;signs fÞ;
M RT0 ¼ mass matrix RT0ðelems2faces;B K;B K det;signs fÞ;
to assemble the stiffness and mass matrices. The main part of the function stiffness_matrix_RT0 is the vectorized assem-
bly routine:

function STIFF = stiffness_matrix_RT0( elems, B_K_det, signs )

1 dim = size(elems,2)-1;

2 nelems = size(elems,1);

3 B_K_detA = abs(B_K_det);
4 [ip,w,nip] = intquad(1,dim);

5 [�,dval,nbasis] = basis_RT0(ip);
6 STIFF = zeros(nbasis,nbasis,nelems);

7 for i = 1:nip

8 for m = 1:nbasis

9 for k = m:nbasis

10 STIFF(m,k,:) = squeeze(STIFF(m,k,:)) + . . .

11 w(i).* B_K_detA.̂ (-1).*. . .

12 ( signs(:,m).* dval(i,:,m) ).* . . .

13 ( signs(:,k).* dval(i,:,k) );

14 end

15 end

16 end

17 STIFF = copy_triu(STIFF);
18 . . .

Note that this function does the assembly in both 2D and 3D, depending on the input variable elems.
On lines 1–4 we deduce the dimension of the problem, deduce the number of elements in the mesh, calculate the absolute

values of the determinants, and obtain the first order integration quadrature on the reference element. This is enough since
for the linear Raviart–Thomas element the basis function divergences are constants. The function [val,dval,nbasis] =

basis_RT0(ip) returns the values val and divergence values dval of the linear Raviart–Thomas reference basis functions
at the integration points. Since we are assembling the stiffness matrix, we need only the divergence values. The variable
nbasis is the number of basis functions per element. On line 6, the variable STIFF is initialized to be of suitable size to
contain all the local element matrices.

Note again that the outer for-loop on line 7 is not over elements, but over integration points. On lines 10–13 we assem-
ble the local matrix entry (m,k) (for the integration point i) for all elements at the same time. The assembly is done accord-
ing to (8). Note that since the matrix is symmetric, it is sufficient to assemble only the diagonal and upper triangular entries,
hence the indexing on the loop in line 9 begins from the previous loop index m, and not 1. On line 17 the symmetric entries
are copied to the lower triangular part of STIFF. After this, the global matrix is assembled from the local matrices in STIFF,
but this part of the code we have excluded here.

This assembly routine consists only of the normal matrix operations of MATLAB. However, on most of the assembly rou-
tines we need to perform more complicated array operations. This functionality is provided by functions in /path/li-

brary_vectorization/.

3.3. Performance in 2D and 3D

For investigating the performance of our vectorized assembly routines, we chose an L-shaped domain in 2D, and the unit
cube for 3D. The results were performed with MATLAB 7.13.0.564 (R2011b) on a computer with 64 Intel(R) Xeon(R) CPU E7–
8837 processors running at 2.67 GHz, and 1 TB system memory. The computer is located at the University of Jyväskylä.
Results can be seen in Tables 1 and 2.

Uniform refinement results in 4 times more triangles in 2D, and 8 times more tetrahedra in 3D. Thus, in each refinement
step the optimal increase in time would be 4 in 2D and 8 in 3D. We see from Tables 1 and 2 that both 2D and 3D assembly
routines scale with satisfactory performance as the problem size is increased. In 2D, on level 14 we already had over 2.4 bil-
lion elements, and the 1 TB system memory was still occupied by level 13 matrices. This forced the computer to start using
swap memory, which considerably slowed the calculation of the new � 2:4 billion� 2:4 billion matrices for level 14.



Table 1
2D assembly times (in seconds) for an L-shaped domain X :¼ ð0;1Þ2 n ð1=2;1Þ2. Values in brackets are the increase in time compared to the previous step (the
optimal increase is 4).

Level Size of matrices Assembly of

KRT MRT KNed MNed

5 9 344 0.03 – 0.06 – 0.03 – 0.03 –
6 37 120 0.11 (3.6) 0.51 (8.5) 0.11 (3.6) 0.47 (15.6)
7 147 968 0.41 (3.7) 1.08 (2.1) 0.40 (3.6) 1.02 (2.1)
8 590 848 1.70 (4.1) 3.59 (3.3) 1.82 (4.5) 3.65 (3.5)
9 2 361 344 7.49 (4.4) 12.82 (3.5) 7.49 (4.1) 12.94 (3.5)
10 9 441 280 30.89 (4.1) 52.09 (4.0) 30.83 (4.1) 54.86 (4.2)
11 37 756 928 132.95 (4.3) 216.64 (4.1) 132.56 (4.2) 230.44 (4.2)
12 151 011 328 597.37 (4.4) 919.36 (4.2) 583.86 (4.4) 931.79 (4.0)
13 604 012 544 2620.11 (4.3) 3969.16 (4.3) 2840.51 (4.8) 4121.33 (4.4)
14 2 415 984 640 18333.25 (6.9) 33328.58 (8.3) 26781.41 (9.4) 37009.85 (8.9)

Table 2
3D assembly times (in seconds) for the unit cube X :¼ ð0;1Þ3. Values in brackets are the increase in time compared to the previous step (the optimal increase is
8).

Level Size of matrices Assembly of matrices Size of matrices Assembly of

KRT MRT KNed MNed

1 2 808 0.02 – 0.09 – 1 854 0.05 – 0.09 –
2 21 600 0.14 (7.0) 0.39 (4.3) 13 428 0.30 (6.0) 0.79 (8.7)
3 169 344 0.82 (5.8) 2.18 (5.5) 102 024 1.92 (6.4) 4.53 (5.7)
4 1 340 928 7.15 (8.7) 15.35 (7.0) 795 024 15.44 (8.0) 33.43 (7.3)
5 10 672 128 59.37 (8.3) 125.71 (8.1) 6 276 384 129.91 (8.4) 282.14 (8.4)
6 85 155 840 503.89 (8.4) 1054.49 (8.3) 49 877 568 1125.08 (8.6) 2291.50 (8.1)
7 680 361 984 4437.84 (8.8) 8717.70 (8.2) 397 689 984 10232.01 (9.0) 20028.06 (8.7)
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It is also notable that in 3D the calculation of the matrices KNed and MNed for the Nédélec element takes over twice the
time compared to the calculation of KRT and MRT even though there are more degrees of freedom for the Raviart–Thomas
matrices. The reason becomes evident when comparing the amount of algebraic operations that need to be calculated:
for example, the divergences of Raviart–Thomas basis functions in 3D are scalar valued, but the rotations of Nédélec basis
functions in 3D are vector valued.

4. Examples of vectorized FEM computations using edge elements

4.1. Minimization of functional majorant using Raviart–Thomas elements

Let us consider a scalar boundary value (Poisson’s) problem
�Mu ¼ f in X;

u ¼ 0 on @X;
for a function u 2 H�1ðXÞ :¼ fv 2 L2ðXÞjrv 2 L2ðX;RdÞ; v ¼ 0 on @Xg and a given right hand side f 2 L2ðXÞ. The exact solution
u is sought from the weak formulation
Z

X
ru � rwdx ¼

Z
X

fwdx 8w 2 H�1ðXÞ: ð9Þ
Assume that v 2 H�1ðXÞ is an approximation of the exact solution u of (9). Then, the functional type a posteriori error estimate
from [10] states that
rðu� vÞk k 6 rv � yk k þ CF divyþ fk k ¼: Mðrv; f ;CF ; yÞ; 8y 2 Hðdiv;XÞ; ð10Þ
where M is called a functional majorant. The global constant CF represents the smallest possible constant from the Friedrichs’

inequality wk k 6 CF rwk k which holds for all w 2 H�1ðXÞ. Note that the estimate (10) is sharp: by choosing y ¼ ru, the
inequality changes into an equality. By this we immediately see that minimizing M with respect to y provides us a way
to obtain approximations of the flux ru. Since M contains nondifferentiable norm terms, we apply the Young’s inequality

ðaþ bÞ2 6 ð1þ bÞa2 þ ð1þ 1
bÞb

2 valid for all b > 0 to obtain



Table 3
Majoran

Iter

1
2
3

Table 4
Majoran

Iter

1
2
3
4
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rv � yk k þ CF divyþ fk kð Þ2 6 1þ 1
b

� �
rv � yk k2 þ ð1þ bÞC2

F divyþ fk k2 ¼:Mðrv; f ;CF ;b; yÞ:
The majorantM arguments v and f are known, and upper bounds of CF are also known. The parameter b > 0 and the function
y 2 Hðdiv;XÞ are free parameters. For a fixed value of b, the majorant represents a quadratic functional in y. Global minimiza-
tion of M with respect to y results in the following problem for y:
ð1þ bÞC2
F

Z
X

div y div/dxþ 1þ 1
b

� �Z
X

y � /dx ¼ �ð1þ bÞC2
F

Z
X

f div/dxþ 1þ 1
b

� �Z
X
rv � /dx 8/ 2 Hðdiv;XÞ

ð11Þ
On the other hand, for a fixed y,
b ¼ rv � yk k
CF divyþ fk k ð12Þ
minimizes M amongst all b > 0. It suggests the following solution algorithm:

Algorithm 1 (Majorant minimization algorithm). Let b > 0 be given (for example, set b ¼ 1).

(a) Compute y (using current value of b) by minimizing the quadratic problem Mðrv ; f ;CF ; b; yÞ !min.
(b) Update b (using y calculated in step (a)) from (12). If the convergence in y is not achieved then go to step (a).

We solved the quadratic minimization problem in (a) by discretizing the problem (11) with the linear Raviart–Thomas
elements. For this both of the FEM matrices MRT and KRT were needed (see also [17]).

Example 1. In 2D we choose the unit square X :¼ ð0;1Þ2, and in 3D the unit cube X :¼ ð0;1Þ3. We choose the bubble function
uðxÞ :¼
Yd

i¼1

xiðxi � 1Þ
as the exact solution in both 2D and 3D. It is clear that u 2 H�1ðXÞ in both dimensions.
On Tables 3 and 4 we have calculated the majorantM values with Algorithm 1 for four different meshes in 2D and 3D,

respectively. The program code can be found in the folder /example_majorant/. The approximation v was calculated with
linear nodal finite elements. For measuring the quality of the chosen free parameters b and y, we have also included the val-
ues of the so-called efficiency index Ieff :¼

ffiffiffiffiffiffi
M
p

= rðu� vÞk kP 1. The approximation v and flux approximation y of the small-
est 2D mesh are depicted in Fig. 4. The iterations of Algorithm 1 were stopped if the distance of the previous value of the
majorant to the new value (normalized with the previous value) was less than 10�4.

4.2. Solving the eddy-current problem using Nédélec elements

We split the boundary into two parts: @X :¼ CD [ CN such that CD \ CN ¼ ;. The 2D eddy-current problem reads as
t calculation for four meshes in 2D.

#T ¼ 512 #T ¼ 131 072 #T ¼ 2 097 152 #T ¼ 33 554 432

b M Ieff b M Ieff b M Ieff b M Ieff

1.000 0.026203 1.72 1.000 0.001648 1.73 1.000 0.000412 1.73 1.000 0.000103 1.73
3.208 0.023159 1.52 3.294 0.001453 1.52 3.294 0.000363 1.52 3.294 0.000091 1.52
3.268 0.023159 1.52 3.294 0.001453 1.52 3.294 0.000363 1.52 3.294 0.000091 1.52

t calculation for four meshes in 3D.

#T ¼ 10 368 #T ¼ 82 944 #T ¼ 663 552 #T ¼ 5 308 416

b M Ieff b M Ieff b M Ieff b M Ieff

1.000 0.011794 1.59 1.000 0.006176 1.59 1.000 0.003135 1.59 1.000 0.001574 1.59
3.128 0.010396 1.40 3.512 0.005379 1.39 3.655 0.002721 1.38 3.697 0.001365 1.38
3.420 0.010388 1.40 3.622 0.005379 1.39 3.687 0.002720 1.38 3.706 0.001365 1.38
3.432 0.010388 1.40



Fig. 4. Discrete solution v (left), and the flux approximation y first and second components (middle and right) on a mesh with 512 elements.
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curll�1curlEþ jE ¼ F in X;

E� n ¼ 0 in CD;

l�1curlE ¼ 0 in CN;
for E 2 H�CD ðcurl;XÞ :¼ fv 2 Hðcurl;XÞjv � n ¼ 0 on CDg, where n denotes the outward unit normal to the boundary @X. Here

the right hand side F 2 L2ðX;R2Þ, and the positive material parameters l;j 2 L1ðXÞ are given. The exact solution E is sought
from the weak formulation
Z

X
l�1curlE curlwdxþ

Z
X
jE �wdx ¼

Z
X

F �wdx 8w 2 H�CD ðcurl;XÞ: ð13Þ
Example 2 [1]. We choose the unit square X :¼ ð0;1Þ2 with j ¼ l ¼ 1. We split the domain in two parts across the diagonal,
X1 :¼ fx 2 Xjx1 > x2g and X2 :¼ X nX1, in order to define the following discontinuous exact solution:
EjX1
ðxÞ :¼

sinð2px1Þ þ 2p cosð2px1Þðx1 � x2Þ
sin ðx1 � x2Þ2ðx1 � 1Þ2x2

� �
� sinð2px1Þ

 !
; EjX2

ðxÞ :¼ 0:
Since on C= :¼ fx 2 Xjx1 ¼ x2g we have
EjX1
� n ¼ 1ffiffiffi

2
p 2p cosð2px1Þðx1 � x2Þ þ sin ðx1 � x2Þ2ðx1 � 1Þ2x2

� �� �
; EjX2

� n ¼ 0;
we see that EjX1
� n ¼ 0 on C=. We conclude that the tangential component is continuous on C=, so E belongs to Hðcurl;XÞ.

Moreover,
curlEjX1
¼ 2x2ðx1 � x2Þðx1 � 1Þð2x1 � x2 � 1Þ cos x2ðx1 � x2Þ2ðx1 � 1Þ2

� �
; curlEjX2

¼ 0;
and clearly curlEjX1
¼ 0 on C=, i.e., curlE is continuous on C=. Also, it is easy to see that curlE vanishes on the whole boundary,

so it belongs to H�1ðXÞ. Thus, the exact solution satisfies zero Neumann boundary condition on the whole boundary, i.e.,
CD ¼ ; and CN ¼ @X.

We denote by v an approximation of the exact solution E of (13). In the discretization of (13) we need both the mass and

stiffness matrices MNed and KNed. We see from Fig. 5 that the 2D Nédélec element catches the normal discontinuity on the
diagonal line C=. In Table 5 we show how the error measured in the Hðcurl;XÞ-norm decreases as the mesh is uniformly
refined. The program code can be found in the folder /example_eddycurrent/.
Fig. 5. Discrete solution v first and second components (left and middle), and curlv (right) on a mesh with 512 elements.



Table 5
Exact energy errors of approximations of the 2D eddy-current problem on uniformly refined meshes.

#T #E ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� vk k2 þ curlðE� vÞk k2

q
32 768 49 408 2.358185e�02

131 072 197 120 1.179151e�02
524 288 787 456 5.895834e�03

2 097 152 3 147 776 2.947927e�03
8 388 608 12 587 008 1.473965e�03

33 554 432 50 339 840 7.369826e�04
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