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For the two–phase obstacle problem we derive the basic error identity which yields natural

measure of the distance to the exact solution. For this measure we derive a computable

majorant valid for any function in the admissible (energy) class of functions. It is proved

that the majorant vanishes if and only if the function coincides with the minimizer. It is

shown that the respective estimate has no gap, so that accuracy of any approximation can

be evaluated with any desired accuracy. Bibliography: 10 titles. Illustrations: 1 figure.
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1 Two–Phase Obstacle Type Problem

Let Ω ⊂ R
d (d � 1) be a bounded domain with Lipschitz continuous boundary ∂Ω. We consider

the following two-phase obstacle problem, which was introduced and studied in [1]–[3] and other

papers cited therein.

Problem 1.1 (primal problem). Find u ∈ K such that where

J(v) :=

∫

Ω

(1
2
A∇v · ∇v − fv + α⊕{v}⊕ + α�{v}�

)
dx, (1.1)
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{v}⊕ and {v}⊕ denote the positive and negative parts of v, i.e., {v}⊕ := max{0, v}, {v}� :=

max{−v, 0}, and K := {v ∈ H1(Ω) : v|∂Ω = u0}. The function u0 ∈ H1(Ω) defines the

prescribed Dirichlet boundary condition, which may attain both positive and negative values.

It is assumed that the coefficients α⊕, α� : Ω → R are positive Lipschitz continuous functions,

f ∈ L2(Ω), and A ∈ L2(Ω,Rd×d) is a symmetric matrix with bounded coefficients satisfying the

condition

A(x)ξ · ξ � c1 |ξ|2, c1 > 0, ∀ξ ∈ R
d

almost everywhere in Ω. Under these assumptions, the functional J(v) is strictly convex and

continuous on V . Hence there exists a unique minimizer u ∈ K of Problem 1.1. A physical

interpretation of the problem is presented by an elastic membrane touching the planar phase

boundary between two liquid/gaseous phases (cf., for example, [1]). Properties of minimizers

were studied in [1]–[3] and some other papers. It was shown that the correspoding Euler-

Lagrangian equation has the form

div(A∇u) = −f + α⊕ χ{u>0} − α� χ{u<0}, u|∂Ω = u0, (1.2)

where χ denotes a characteristic set function.

We analyze Problem 1.1 in the context of a posteriori error estimates, i.e., our goal is to

deduce a fully computable and guaranteed bound of the difference between the exact solution

u ∈ K and an approximation v ∈ K measured in terms of the natural (energy) norm. For this

purpose we use general theory presented in [4, 5] and [7, Chapter 7], where estimates of the

distance to the minimizer were derived for a class of convex variational problems generated by

functionals J : V → R of type

J(v) = G(Λv) + F (v).

Here Λ : Y ∗ → R is a bounded linear operator, G : Y → R is a convex, coercive, and lower

semicontinuous functional, F : V → R is another convex lower semicontinuous functional, and Y

and V are reflexive Banach spaces. The functional J is assumed to be proper (in the termiology

of [6]). The respective conjugate (dual) spaces are denoted by Y ∗ and V ∗ respectively and the

duality pairing are denoted by (y∗, y) and < v∗, v >. The starting point of our analysis is the

identity

DF (v,−Λ∗p∗) +DG(Λv, p
∗) = J(v)− I∗(p∗), (1.3)

which is a particular form of the identity (7.2.13) in [7]. Here p∗ is the exact solution of the dual

variational problem, which is to maximize the functional I∗(y∗) := −G∗(y∗)− F ∗(−Λ∗y∗) over
the space Y ∗ topologically dual to Y , G∗ : Y ∗ → R and F ∗ : V ∗ → R are the Young–Fenchel

transforms of G and F , respectively, and

DF (v,−Λ∗p∗) := F (v) + F ∗(v∗)− 〈v∗, v〉,
DG(Λv, p

∗) := G(Λv) +G∗(p∗)− (p∗,Λv).

In view of the duality relation J(u) = I∗(p∗), the identity (1.3) is equivalent to

DF (v,−Λ∗p∗) +DG(Λv, p
∗) = J(v)− J(u). (1.4)
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We apply this identity to Problem 1.1 in which Λ is defined as the gradient operator acting from

H1(Ω) to Y := L2(Ω,Rd),

G(Λv) :=
1

2

∫

Ω

A∇v · ∇v dx,

F (v) :=

∫

Ω

(
− fv + α⊕{v}⊕ + α�{v}�

)
dx.

In this case, V = V0 := {v ∈ H1(Ω) | v = 0 on ∂Ω} and V ∗ is H−1(Ω). The identities (1.3)

and (1.4) also hold if v is defined on an affine set V0 + u0 (cf. [7, Section 7.3]). The identity

(1.4) plays an important role in our subsequent analysis. First of all, the left-hand side of (1.4)

yields the measure of the distance to the exact solution, which is natural for the considered

class of variational problems. This measure contains two parts. The first part is an integral

(energy) norm of v − u generated by the main part of the functional (associated with G). The

second part is a certain measure of the error associated with free boundary. These questions

are discussed in Section 2. In Section 3, we estimate the right-hand side of (1.4) from above by

a fully computable quantity, which yields a majorant of the above discussed error measure. In

the last section, we present an example, which shows that the estimates indeed provide correct

estimates of the distance to the minimizer.

2 Measure of the Distance Between v and u

Let

H(v) :=

∫

Ω

h(z) dx, h(z) := α⊕{v}⊕ + α�{v}�.

First, we find H∗(v∗), where v∗ ∈ L2(Ω). In this case, finding H∗(v∗) is reduced to finding the

polar to h (cf., for example, [6]) and we need to find

sup
z∈R

{z∗z − α�{z}� − α⊕{z}⊕} ,

where z∗ ∈ R. If z∗ > −α⊕, then the expression tends to +∞ as z → +∞. Analogously, if

z∗ < α�, then the expression tends to +∞ as z → −∞. If 0 � z∗ � α⊕, then for z > 0 we have

z∗z − α⊕{z}⊕ � 0 and for z < 0 we also have z∗z − α�{z}� � 0. Therefore, in this case, the

supremum is equal to zero. Analogous arguments show that for −α� � z∗ � 0, the supremum

is also equal to zero. Hence

sup
z∈R

{
z∗z − α�{z}� − α⊕{z}⊕

}
= h∗(z∗) :=

⎧⎪⎪⎨
⎪⎪⎩

+∞, z∗ < −α�,

0, −α� � z∗ � α⊕,

+∞, z∗ > α⊕.

Since

F (v) =

∫

Ω

(h(v)− fv)dx
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and

sup
z∈R

{z∗z + fz − h(z)} = h∗(z∗ + f),

we conclude that

F ∗(v∗) =
∫

Ω

h∗(v∗ + f) dx.

Note that h∗(v∗ + f)(x) = 0 if v∗(x) is in the interval [−α� − f, α⊕ − f ]. The corresponding

compound functional is finite if this condition holds for almost all x and it has the form

DF (v, v
∗) =

∫

Ω

(α⊕{v}⊕ + α�{v}� − (v∗ + f)v)dx.

Now, we apply (1.3), where

p∗ := A∇u. (2.1)

In our case, Λ = ∇, Λ∗ = −div, and (note that divp∗ + f ∈ L2(Ω))

DF (v,−Λ∗p∗) =
∫

Ω

(α⊕{v}⊕ + α�{v}� − (divp∗ + f)v)dx

provided that

−α� � divp∗ + f � α⊕.

In view of (1.2), this condition holds. We introduce two decompositions of Ω associated with

the minimizer u and the function v:

Ω+
u := {x ∈ Ω : u(x) > 0}, Ω−

u := {x ∈ Ω : u(x) < 0}, Ω0
u := {x ∈ Ω : u(x) = 0}

and

Ω+
v := {x ∈ Ω : v(x) > 0}, Ω−

v := {x ∈ Ω : v(x) < 0}, Ω0
v := {x ∈ Ω : v(x) = 0}.

First, we see that

DF (v,−Λ∗p∗) =
∫

Ωv>0

(α⊕ − (divp∗ + f))v dx+

∫

Ωv<0

(−α� − (divp∗ + f))v dx � 0. (2.2)

Thus, the value of the compound functional DF is always nonnegative. If sgn (u) = sgn (v) (i.e.,

if Ω+
u and Ω−

u coincide with Ω+
v and Ω−

v respectively) then

divp∗ + f = a⊕ on Ω+
v ,

divp∗ + f = −a� on Ω−
v

due to (1.2), so that DF (v,−Λ∗p∗) = 0. In all other cases, DF (v,−Λ∗p∗) > 0. Below we consider

all possible variants related to this situation.

If the set Ω+
u ∩ Ω−

v has a positive measure, then
∫

Ω+
u ∩Ω−

v

(α⊕{v}⊕ + α�{v}� − (divp∗ + f)v) dx = −
∫

Ω+
u∩Ω−

v

(α� + α⊕)v dx > 0. (2.3)
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Analogously, if the set Ω−
u ∩ Ω+

v has a positive measure, then

∫

Ω−
u ∩Ω+

v

(α⊕{v}⊕ + α�{v}� − (divp∗ + f)v)dx = (α⊕ + α�)
∫

Ω−
u ∩Ω+

v

vdx > 0. (2.4)

Hence for the set ω± := {Ω+
u ∩ Ω−

v } ∪ {Ω−
u ∩ Ω+

v }
∫

ω±

(α⊕{v}⊕ + α�{v}� − (divp∗ + f)v)dx = (α⊕ + α�)
∫

ω±

|v|dx > 0. (2.5)

If the set ω0− := Ω0
u ∩ Ω−

v , has a positive measure, then

∫

ω0
−

(α⊕{v}⊕ + α�{v}� − (divp∗ + f))vdx = −α�
∫

ω0
−

v dx > 0. (2.6)

Analogously, if the set ω0
+ := Ω0

u ∩ Ω+
v , has a positive measure, then

∫

ω0
+

(α⊕{v}⊕ + α�{v}� − (divp∗ + f))vdx = α⊕
∫

ω0
+

v dx > 0. (2.7)

Now, we can rewrite DF (v,−Λ∗p∗) in a more compact way as

DF (v,−Λ∗p∗) = mω(v) :=

∫

Ω

α(x)|v|dx. (2.8)

Here,

α(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x ∈ Ω \ ω, ω := ω0− ∪ ω0
+ ∪ ω±,

α�, x ∈ ω0−,

α⊕, x ∈ ω0
+,

α� + α⊕, x ∈ ω±,

and mω(v) is a nonnegative functional, which is positive on the set ω := ω0− ∪ ω0
+ ∪ ω±. If the

sets Ω−
v and Ω+

v are well defined (i.e., for v they are the same as for the exact solution u), then

ω = ∅ and mω(v) = 0. Hence we can view mω(v) as a certain accuracy measure related to

approximations of free boundaries.

The second term on the right-hand side of (1.4) generates another measure of the error.

Indeed,

DG(Λv, p
∗) =

∫

Ω

(
1

2
A∇v · ∇v +

1

2
A−1p∗ · p∗ −∇v · p∗

)
dx

=
1

2

∫

Ω

A∇(u− v) · ∇(u− v)dx =
1

2
‖∇(u− v)‖2Ω,A, (2.9)

and this term is equal to the energy norm of u− v.
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Now, the general error identity (1.4) implies the following error identity for approximate

solutions to Problem 1.1:

1

2
‖∇(u− v)‖2Ω,A +mω(v) = J(v)− J(u) ∀ v ∈ K, (2.10)

The left-hand side of (2.10) presents the full error measure

1

2
‖∇(u− v)‖2Ω,A +mω(v) (2.11)

naturally associated with the considered nonlinear problem. This entity is related to the question

which error measure correctly reflects accuracy of an approximation for nonlinear problems

(cf. [5]).

The estimate (2.10) does not represent an a posteriori error estimate yet since it contains the

unknown term J(u) on the right-hand side. By techniques of Calculus of variation and concepts

of perturbed and dual problems, we replace this difference of energies by a fully computable

term independent of u.

3 Majorant of the Difference Between J(v) and J(u)

Now, our goal is to estimate the right-hand side of (2.10). For this purpose we define a new

(perturbed) functional

Jμ(v) := J(μ⊕,μ�)(v) =

∫

Ω

(1
2
A∇v · ∇v − fμv

)
dx, (3.1)

where fμ := f − α⊕μ⊕ + α�μ�. It is easy to see that

J(v) = sup
μ∈Λ

Jμ(v) ∀ v ∈ K, (3.2)

where Λ :=
{
(μ⊕, μ�) ∈ L∞(Ω,R2) : μ⊕(x), μ�(x) ∈ [0, 1] a.e. inΩ

}
. Since

J(u) = inf
v∈K

sup
μ∈Λ

Jμ(v) � sup
μ∈Λ

inf
v∈K

Jμ(v) � inf
v∈K

Jμ(v) ∀ μ ∈ Λ, (3.3)

the value of J(u) is estimated from below by the value of the problem on the right-hand side of

(3.3).

Problem 3.1 (perturbed problem). For a given μ ∈ Λ find uμ ∈ K such that

Jμ(uμ) = inf
v∈K

Jμ(v). (3.4)

For any given μ ∈ Λ the perturbed problem is uniquely solvable by the same reasons as those

for Problem 1.1. In view of (3.3), the minimal perturbed energy Jμ(uμ) serves as the lower bound

of J(u). We find a computable lower bound of Jμ(uμ) by means of the dual counterpart of the

perturbed problem. The dual problem is generated by the Lagrangian

Lμ(v, τ
∗) =

∫

Ω

(∇v · τ∗ − 1

2
A−1τ∗ · τ∗ − fμv) dx,
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where τ∗ ∈ L2(Ω,Rd). It is easy to see that

sup
τ∗∈L2(Ω,Rd)

Lμ(v, τ
∗) = Jμ(v).

Moreover,

Jμ(uμ) = inf
v∈K

Jμ(v) = inf
v∈K

sup
τ∗∈L2(Ω,Rd)

Lμ(v, τ
∗)

= sup
τ∗∈L2(Ω,Rd)

inf
v∈K

Lμ(v, τ
∗) = sup

τ∗∈Qfµ

J∗
μ(τ

∗), (3.5)

where

J∗
μ(τ

∗) := inf
v∈K

Lμ(v, τ
∗) =

∫

Ω

(
− 1

2
A−1τ∗ · τ∗ +∇u0 · τ − fμu0

)
dx, (3.6)

Qfµ =
{
τ∗ ∈ L2(Ω,Rd) :

∫

Ω

(τ∗ · ∇w − fμw) dx = 0 ∀ w ∈ V0

}
. (3.7)

The right-hand side of (3.5) gives rise to the dual problem.

Problem 3.2 (dual perturbed problem). For a given μ ∈ Λ, find σ∗ ∈ Qfµ such that

J∗
μ(σ

∗) = sup
τ∗∈Qfµ

J∗
μ(τ

∗). (3.8)

Problem 3.2 is a quadratic maximization problem with a strictly concave and continuous

functional. It has a unique maximizer in the affine subspace τ∗ ∈ Qfµ . Due to (3.3) and (3.5),

we obtain the estimate

J(v)− J(u) � J(v)− J∗
μ(τ

∗), (3.9)

which is valid for all v ∈ K, μ ∈ Λ, τ∗ ∈ Qfµ . Due to (1.1), (3.6), and (3.7),

J(v)− J∗
μ(τ

∗) =
1

2
||A∇v − τ∗||2Ω,A−1 +

∫

Ω

(
α⊕

({v}⊕ − μ⊕v
)
+ α�

({v}� + μ�v
))

dx. (3.10)

The right-hand size of (3.10) is fully computable, but it requires that τ∗ satisfies the constraint

τ∗ ∈ Qfµ . Our goal is to replace (3.10) by a more general estimate for a function η∗ ∈ H(Ω,div),

which may not satisfy the constraint η∗ ∈ Qfµ . We apply the triangle inequality

||A∇v − τ∗||Ω,A−1 � ||A∇v − η∗||Ω,A−1 + ||η∗ − τ∗||Ω,A−1

and note that the estimate

inf
τ∗∈Qfµ

||A∇v − τ∗||Ω,A−1 � {||A∇v − η∗||Ω,A−1 + inf
τ∗∈Qfµ

||η∗ − τ∗||Ω,A−1}

� ||A∇v − η∗||Ω,A−1 + CΩ||div η∗ + fμ||Ω (3.11)

is valid for any η∗ ∈ H(Ω,div). In this estimate, we used a projection-type inequality (cf., for

example, [8, Chapter 3])

inf
τ∗∈Qfµ

||η∗ − τ∗||Ω,A−1 � CΩ||div η∗ + fμ||Ω ∀ η∗ ∈ H(Ω,div).
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Here, the constant CΩ > 0 originates from the generalized Friedrichs inequality

||v||Ω � CΩ||∇v||Ω,A

valid for all v ∈ V0. The Young estimate with a parameter β > 0 yields

(||A∇v − η∗||Ω,A−1 + CΩ||div η∗ + fμ||Ω)2

� (1 + β)||A∇v − η∗||2Ω,A−1 +
(
1 +

1

β

)
C2
Ω||div η∗ + fμ||2Ω.

Hence the combination of (3.9), (3.10), and (3.11) yields the majorant estimate

J(v)− J(u) � M+(v;β, η
∗, μ⊕, μ�), (3.12)

where

M+(v;β, η
∗, μ⊕, μ�) :=

1

2
(1 + β)||A∇v − η∗||2Ω,A−1 +

1

2
(1 +

1

β
)C2

Ω||div η∗ + fμ||2Ω

+

∫

Ω

(
α⊕

({v}⊕ − μ⊕v
)
+ α�

({v}� + μ�v
))

dx, (3.13)

M+(v;β, η
∗, μ⊕μ�) is a nonnegative functional (error majorant) which reflects natural properties

of the original problem (Problem 1.1). We recall (2.10) and arrive at the main result.

Theorem 3.1. For all v ∈ K, β > 0, (μ⊕, μ�) ∈ Λ, and η∗ ∈ H(Ω,div)

1

2
‖∇(u− v)‖2Ω, A+mω(v) � M+(v;β, η

∗, μ⊕, μ�). (3.14)

In view of (3.14), we see that if M+(v;β, η
∗, μ⊕, μ�) = 0 then v = u almost everywhere in

Ω. Moreover, in this case,

η∗ = A∇u, (3.15)

div η∗ = −fμ, (3.16)

{v}⊕ = μ⊕v, (3.17)

{v}� = −μ�v (3.18)

almost everywhere in Ω. We can also justify the opposite statement. Indeed, if v = u and other

arguments of the majorant are generated by the minimizer, i.e.,

η∗ = A∇u, μ⊕ = χ{u > 0}, μ� = χ{u < 0} a.e. in Ω, (3.19)

then M+(v;β, η
∗, μ⊕, μ�) = 0 for all β > 0. In other words, for any β > 0 and (μ⊕, μ�) ∈ Λ,

the majorant M+(v;β, η
∗, μ⊕, μ�) vanishes if and only if v = u and η∗ = A∇u.

It is worth noticing one other important property of the majorant. If the functions η∗, μ⊕,
and μ� are selected in accordance with the exact solution by (3.19) then for any v ∈ K the

majorant coincides with the error measure on the left-hand side of (3.14). Indeed, in this case,

div η∗ + fμ = 0 and we can set β = 0. Then

‖A∇v − η∗‖2Ω,A−1 = ‖∇(u− v)‖2Ω,A.
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Consider the last term of the majorant∫

Ω

(
α⊕

({v}⊕ − μ⊕v
)
+ α�

({v}� + μ�v
))

dx

=

∫

Ωu
−

(
α⊕

{
v}⊕ + α�

({v}� + v
))
dx+

∫

Ωu
+

(
α⊕

({v}⊕ − v
)
+ α�{v}�

)
dx

+

∫

Ωu
0

(
α⊕{v}⊕ + α�{v}�

)
dx.

Here, ∫

Ωu
−

(
α⊕

{
v}⊕ + α�

({v}� + v
))
dx =

∫

Ωu
−∩Ωv

+

(
α⊕

{
v}⊕ + α�

({v}� + v
))
dx

+

∫

Ωu
−∩Ωv

−

(
α⊕

{
v}⊕ + α�

({v}� + v
))
dx+

∫

Ωu
−∩Ωv

0

(
α⊕

{
v}⊕ + α�

({v}� + v
))
dx

=

∫

Ωu
−∩Ωv

+

(
α⊕ + α�)vdx.

Analogously, ∫

Ωu
+

(
α⊕

{
v}⊕ + α�

({v}� + v
))
dx =

∫

Ωu
+∩Ωv

−

(
α⊕ + α�)vdx.

Now, we split the third term in a similar way∫

Ωu
0

(
α⊕

{
v}⊕ + α�{v}�

)
dx = −

∫

Ωu
0∩Ωv

−

α�vdx+

∫

Ωu
0∩Ωv

+

α⊕vdx

and find that the last term of the majorant coincides with mω(v). Therefore, the estimate (3.14)

has no gap between the left- and right-hand sides and, in principle, we can always select the

parameters of the majorant such that it is arbitrarily close to the error.

Remark 3.1. Under the special choice μ⊕ = χ{v > 0} and μ� = χ{v < 0}, the majorant

can be presented in a simplified form

M̃+(v;β, η
∗) =

1

2
(1 + β)||A∇v − η∗||2Ω,A−1

+
1

2

(
1 +

1

β

)
C2
Ω||div η∗ + f − α⊕χ{v > 0}+ α�χ{v < 0}||2Ω. (3.20)

It is easy to see that this majorant vanishes if and only if v coincides with the exact minimizer.

4 Example

We verify the error identity (2.10) and the majorant estimate (3.12) on a benchmark example

taken from [9]. In this example, Ω = (−1, 1), f = 0, α⊕ = α� = 8 and the equation is supplied
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with the Dirichlet boundary conditions u(−1) = −1, u(1) = 1. The exact solution is given by

the relation

u(x) =

⎧⎪⎪⎨
⎪⎪⎩

−4x2 − 4x− 1, x ∈ 〈−1,−0.5〉,
0, x ∈ 〈< −0.5, 0.5〉 >,

4x2 − 4x+ 1, x ∈ 〈< 0.5, 1〉 >
and the respective exact minimum is J(u) = 51

3 .

The error identity (2.10) is valid for any approximation v ∈ H1(−1, 1) satisfying boundary

conditions v(−1) = −1, v(1) = 1. In order to illustrate the performance of the error majorant

in different situations, we first consider a very bad quality approximation

v(x) = x, x ∈ 〈−1, 1〉 .

In this case, J(v) = 9. By a direct computation, we find

J(v)− J(u) = 3
2

3
,

1

2
‖∇(u− v)‖2Ω,A = 1

2

3
, mω(v) = 2.

Hence the basic error identity

1

2
‖∇(u− v)‖2Ω,A +mω(v) = J(v)− J(u)

holds. The quantity mω(v) significantly contributes to the error estimate and detailed informa-

tion shows that ω0
+(u, v) = (0, 0.5), ω0−(u, v) = (−0.5, 0), ω±(u, v) = ∅ and

α⊕
∫

ω0
+

vdx = 4
1

2
, −α�

∫

ω0
−

vdx = 4
1

2
, (α⊕ + α�)

∫

ω±

|v|dx = 0.

Table 1. The error identity and the majorant estimate

computed on various uniform meshes with mesh size h.

h 1
2‖∇(u− v)‖2Ω,A mω(v) J(v)− J(u) M (v, . . . )

√
2M (v,... )

‖∇(v−u)‖Ω,A

1/4 6.67e-01 1.93e-06 6.67e-01 8.36e-01 1.12

1/8 1.67e-01 1.04e-06 1.67e-01 1.89e-01 1.07

1/16 4.17e-02 1.12e-06 4.17e-02 4.45e-02 1.03

1/32 1.04e-02 1.37e-06 1.04e-02 1.08e-02 1.02

1/64 2.60e-03 1.73e-07 2.60e-03 2.68e-03 1.01

For a better quality approximation v, the value of the gap mω(v) becomes less important.

We construct v by the finite elements method on an equidistant partition of Ω = (−1, 1) with

mesh size h ∈ {1/4, 1/8, 1/16, 1/32, 1/64}. The approximation v is constructed as a nodal and

piecewise linear function. The nodal values of v are obtained by the MATLAB automatic

unconstrained minimization method fminunc. Table 1 reports on results for considered uni-

form meshes. The squared approximation error 1
2‖∇(u − v)‖2Ω,A decreases by the factor 4 as

the interval size h gets halved. This indicates the linear convergence of the approximation error

333



‖∇(u−v)‖Ω,A expected for the nodal piecewise linear approximation v. The gap mω(v) is indeed

very low for all interval partitions. In verification of the majorant estimate (3.12), the gradient

(flux) field τ is constructed as a nodal and piecewise linear function. The Lagrange multiplies

μ� and μ⊕ are sought as a piecewise constant function. The minimization of the functional ma-

jorant providing optimal values of τ, μ�, μ⊕ is obtained by the MATLAB automatic constrained

minimization method fmincon. Table 1 confirms that the functional majorant M (v, . . . ) serves

as a sharp error estimate. Local distributions of the (squared) error and the functional majorant

are compared in Figure 1 for the finest interval partition. The MATLAB software inspired by

[10] is available at http://www.mathworks.com/matlabcentral/fileexchange/47966.

Figure 1. Distribution of the error 1
2‖∇(v − u)‖2Ω,A (left) and the majorant (right) for

h = 1/64.
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