



### Construction of P1 gradient from P0 gradient by averaging

Jiří Kunovský, Václav Šátek, Jan Valdman, and Václav Valenta

Citation: AIP Conference Proceedings **1648**, 850080 (2015); doi: 10.1063/1.4913135 View online: http://dx.doi.org/10.1063/1.4913135 View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1648?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in Averaging of Gradients in Vertices of Triangulations AIP Conf. Proc. **1389**, 1832 (2011); 10.1063/1.3636966

Locally averaged thermal dissipation rate in turbulent thermal convection: A decomposition into contributions from different temperature gradient components Phys. Fluids **23**, 025106 (2011); 10.1063/1.3555637

Constructing the Average Natural History of HIV-1 Infection AIP Conf. Proc. **913**, 157 (2007); 10.1063/1.2746741

An interlaboratory measurement of screen-film speed and average gradient according to ISO 9236-1 Med. Phys. **27**, 307 (2000); 10.1118/1.598832

Measuring devices at BESSY for stored beam currents ranging from 0.8 pA to 1 A Rev. Sci. Instrum. **60**, 1752 (1989); 10.1063/1.1140946

# **Construction of** *P*<sup>1</sup> **Gradient from** *P*<sup>0</sup> **Gradient by Averaging**

Jiří Kunovský\*, Václav Šátek<sup>†,\*</sup>, Jan Valdman\*\* and Václav Valenta\*

\*Brno University of Technology, FIT, Božetěchova 2, 612 66 Brno, Czech Republic

<sup>†</sup>IT4Innovations, VŠB TU of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic

\*\*Institute of Information Theory and Automation, Pod Vodárenskou věží 4, 182 08, Praha 8, Czech Republic<sup>1</sup>

Abstract. Construction of nodal and element-wise linear (known as  $P^1$ ) gradient field from element-wise constant (known as  $P^0$ ) gradient field obtained by the  $P^1$  finite element methods on defined triangular mesh is based on works of J. Dalík et al. and it is briefly explained and numerically tested in this contribution. Nodal value of  $P^1$  gradient is computed by averaging of  $P^0$  gradients on elements sharing the node in a common patch.

Keywords: Poisson's Equation, Gradient Averaging, FEM PACS: 02.30.Jr, 02.30.Ik, 02.60.-x

### **INTRODUCTION**

We suppose  $\Omega$  is a bounded domain in  $\mathbb{R}^2$  with a polygonal boundary  $\partial \Omega$  and  $\mathscr{T}_h$  a triangular mesh of  $\Omega$  consisting of closed triangles. We denote by  $\mathscr{N}_h, \mathscr{E}_h$  the sets of nodes and edges of the mesh. For any node  $N \in \mathscr{N}_h$  we define a patch of elements meeting at N as

$$\mathscr{T}_h^N = \{ T \in \mathscr{T}_h : N \in T \}.$$

We consider a function  $u \in H_0^1(\Omega)$  and its approximation  $u_h \in P^1(\mathscr{T}_h)$  obtained for instance by the finite element method when solving an elliptic boundary value problem. The approximation  $u_h$  is searched in the space  $P^1(\mathscr{T}_h)$  of scalar continuous and element-wise linear basis functions defined over  $\mathscr{T}_h$ . Nodal values  $u_{h,i} = u_h(N_i)$  for  $N_i \in \mathscr{N}_h$ (with a given ordering of nodes) define  $u_h$  uniquely. The values of  $u_h$  outside triangular nodes are interpolated by a linear combination

$$u_h(x,y) = \sum_{i=1}^{|\mathcal{N}_h|} u_{h,i} \varphi_i(x,y)$$

of global finite element basis functions  $\varphi_i$  defined over nodal patches. The gradient vector

$$\nabla u_h = (\nabla_x, \nabla_y) u_h \in P^0(\mathscr{T}_h) \times P^0(\mathscr{T}_h)$$

is constant on every triangle  $T \in \mathscr{T}_h$ . It might be of interest to find a higher order gradient approximation in applications. A focus of this paper is the construction of an averaged gradient

$$\mathscr{G}u_h = (\mathscr{G}_x, \mathscr{G}_y)u_h \in P^1(\mathscr{T}_h) \times P^1(\mathscr{T}_h)$$

following results of [1] and its efficient implementations. More details related to the construction can be found in [2, 3]. For  $N \in \mathcal{N}$ , nodal gradient values at the node N are searched as linear combinations

$$\mathscr{G}_{x}u_{h}(N) = \sum_{T_{i}\in\mathscr{T}_{h}^{N}} w_{x,i}(\nabla_{x}u_{h}|T_{i}), \qquad \mathscr{G}_{y}u_{h}(N) = \sum_{T_{i}\in\mathscr{T}_{h}^{N}} w_{y,i}(\nabla_{y}u_{h}|T_{i})$$
(1)

of element-wise constant gradients in the corresponding patch  $\mathscr{T}_h^N$  (with a given ordering of elements in the patch). There are two sets of weights  $w_{x,i} = w_x | T_i, w_{y,i} = w_y | T_i$  for derivatives with respect to x and y components, whose values decide about the quality of  $\mathscr{G}u_h$ . A comparison of  $P^0$  and  $P^1$  gradient approximations is illustrated in Figure 1.

Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014) AIP Conf. Proc. 1648, 850080-1–850080-4; doi: 10.1063/1.4913135 © 2015 AIP Publishing LLC 978-0-7354-1287-3/\$30.00

<sup>&</sup>lt;sup>1</sup> jvaldman@utia.cas.cz (corresponding author)



**FIGURE 1.** An example of a  $P^1$  approximation  $v_h$  obtained by the finite element method (left), its  $P^0$  gradient field  $\nabla_x v_h$  (middle) and the reconstructed  $P^1$  gradient field  $\mathscr{G}_x v_h$  (right). For simplicity, only x-components of gradient fields are visualized.

## **RECONSTRUCTION OF** *P*<sup>1</sup> **GRADIENT**

A simple analysis shows the gradient of a linear function  $u(x, y) = \alpha_1 + \alpha_2 x + \alpha_3 y$  can be evaluated exactly by (1) for all coefficients  $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$  if and only if

$$\sum_{T_i \in \mathscr{T}_h^N} w_{x,i} = 1, \qquad \sum_{T_i \in \mathscr{T}_h^N} w_{y,i} = 1.$$
(2)

Solutions of two systems of equations (2) are not unique and the choice of weights satisfying (2) leads to the first-order approximation scheme. In order to evaluate the gradient of a quadratic function  $u(x,y) = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 x^2 + \alpha_5 xy + \alpha_6 y^2$  exactly for all coefficients  $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6 \in \mathbb{R}$ , a more general system of linear equations is needed.

Let's assume triangle  $T \in \mathscr{T}_h^N$  consists of nodes  $N_0 = (x_0, y_0), N_1 = (x_1, y_1), N_2 = (x_2, y_2)$ , where  $N_0 = N$ . The nodes  $N_0, N_1, N_2$  are ordered always anticlockwise (or possibly always clockwise). Then, a linear system of equations

$$\begin{pmatrix} x_0 & y_0 & 1\\ x_1 & y_1 & 1\\ x_2 & y_2 & 1 \end{pmatrix} \begin{pmatrix} \nabla_x f_1 & \nabla_x f_2 & \nabla_x f_3\\ \nabla_y f_1 & \nabla_y f_2 & \nabla_y f_3\\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{pmatrix} f_1(x_0, y_0) & f_2(x_0, y_0) & f_3(x_0, y_0)\\ f_1(x_1, y_1) & f_2(x_1, y_1) & f_3(x_1, y_1)\\ f_1(x_2, y_2) & f_2(x_2, y_2) & f_3(x_2, y_2) \end{pmatrix},$$
(3)

where  $f_1(x,y) = xy$ ,  $f_2(x,y) = x^2$ ,  $f_3(x,y) = y^2$  is solved. The solution  $\nabla_x f_j$ ,  $\nabla_y f_j$  for j = 1...3 provide constant gradients on element T,  $c_j$  is some constant. The linear system (3) is solved for all elements  $T_i \in \mathcal{T}_h^N$  resulting in the set of constant gradients

$$\nabla_x(f_j|T_i), \quad \nabla_y(f_j|T_i)$$

for  $j = 1 \dots 3, i = 1 \dots m$ , where *m* denotes the number of triangles in the patch  $\mathscr{T}_h^N$ . Then, we set up two linear systems of equations in form

$$M_x w_x = d_x, \qquad M_y w_y = d_y, \tag{4}$$

where  $w_x = (w_x | T_1, ..., w_x | T_m), w_y = (w_y | T_1, ..., w_y | T_m)$  and

$$M_{x} = \begin{pmatrix} 1 & \dots & 1 \\ \nabla_{x}(f_{1}|T_{1}) & \dots & \nabla_{x}(f_{1}|T_{m}) \\ \nabla_{x}(f_{2}|T_{1}) & \dots & \nabla_{x}(f_{2}|T_{m}) \\ \nabla_{x}(f_{3}|T_{1}) & \dots & \nabla_{x}(f_{3}|T_{m}) \end{pmatrix}, d_{x} = \begin{pmatrix} 1 & \dots & 1 \\ y_{0} \\ 2x_{0} \\ 0 \end{pmatrix}, M_{y} = \begin{pmatrix} 1 & \dots & 1 \\ \nabla_{y}(f_{1}|T_{1}) & \dots & \nabla_{y}(f_{1}|T_{m}) \\ \nabla_{y}(f_{2}|T_{1}) & \dots & \nabla_{y}(f_{2}|T_{m}) \\ \nabla_{y}(f_{3}|T_{1}) & \dots & \nabla_{y}(f_{3}|T_{m}) \end{pmatrix}, d_{y} = \begin{pmatrix} 1 & \dots & 1 \\ x_{0} \\ 0 \\ 2y_{0} \end{pmatrix}.$$

**Remark 1** Using special rotations and shifting of triangular nodes to the origin of the coordinate system x - y, it is possible [1] to reduce vectors  $d_x, d_y$  to forms  $d_x = (1,0,0,0)^T, d_y = (1,0,0,0)^T$ . Solution of (4) is obtained by the Moore - Penrose pseudoinverse.

**Example 1** Lets take our triangulation  $\mathcal{T}_1$  and consider the patch around the inner node [0.5, 0.5]. There are six triangles contained in this patch as depicted in Figure 2 (middle). The linear systems (4) rewrite as

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0.5 & 0.5 & 0.5 & 0.5 & 1 \\ 1.5 & 0.5 & 1.5 & 0.5 & 1.5 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} w_x | T_1 \\ \vdots \\ w_x | T_6 \end{pmatrix} = \begin{pmatrix} 1 \\ 0.5 \\ 1 \\ 0 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0.5 & 0.5 & 1 & 0 & 0.5 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0.5 & 0.5 & 0.5 & 1.5 & 1.5 & 1.5 \end{pmatrix} \begin{pmatrix} w_y | T_1 \\ \vdots \\ w_y | T_6 \end{pmatrix} = \begin{pmatrix} 1 \\ 0.5 \\ 0 \\ 1 \end{pmatrix}$$

and their solutions provide

$$w_x = w_y = (\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6})^T$$

#### **A MODEL PROBLEM**

This example is taken from [4] and numerical experiments are implemented in a Matlab code inspired by [5]. We consider a Poisson problem

$$-\Delta u = f \quad \text{in } \Omega, \quad u = 0 \quad \text{on } \partial \Omega \tag{5}$$

for the unit square domain  $\Omega = (0,1) \times (0,1)$  and the right-hand side

$$f(x, y) = 2x(1 - x) + 2y(1 - y)$$

for all  $(x, y) \in \Omega$ . For this particular right-hand side, the exact solution and its gradient read

$$u = x(1-x)y(1-y),$$
  $\nabla u = ((1-2x)y(1-y), x(1-x)(1-2y))$ 

for all  $(x, y) \in \Omega$ . The square geometry is discretized using a sequence of nested uniform triangular meshes  $\mathscr{T}_0, \ldots, \mathscr{T}_{10}$  (containing 2, 8, 32, ..., 2097152 elements and 4, 9, 25, ..., 1050625 nodes), the first three triangulations are displayed in Figure 2. A discrete approximation  $v \in P^1(\mathscr{T}_h)$  of the exact solution u is computed by the finite element method. Then,  $P^0$  gradient  $\nabla v$  is computed and  $P^1$  gradient  $\tau = \mathscr{G}v$  is reconstructed. Figure 1 shows the discrete solution v, its gradient  $\nabla v$  and the reconstructed gradient  $\tau$  computed on  $\mathscr{T}_4$ . For any triangulation mesh we compare squared  $L^2$ -norms

$$||\nabla u - \nabla v|| = \int_{\Omega} (\nabla u - \nabla v) \cdot (\nabla u - \nabla v) d\Omega, \quad ||\nabla u - \tau|| = \int_{\Omega} (\nabla u - \tau) \cdot (\nabla u - \tau) d\Omega$$

measuring the error of the finite elements approximation, and the error of our gradient reconstruction. Figure 3 indicates a linear convergence of  $||\nabla u - \nabla v||$  and a quadratic convergence of  $||\nabla u - \tau||$  measured with respect to the number of mesh nodes. The linear convergence of  $||\nabla u - \nabla v||$  of the finite elements method is typical for  $P^1$  elements and the quadratic convergence of  $||\nabla u - \tau||$  coincides with the approximation properties of  $P^1$  reconstructed gradients as proved in [1].



**FIGURE 2.** Uniform triangulations  $\mathscr{T}_0$  (left),  $\mathscr{T}_1$  (middle), and  $\mathscr{T}_2$  (right).



**FIGURE 3.** Error of elementwise constant gradient  $||\nabla u - \nabla v||$  and error of reconstructed elementwise nodal linear gradient  $||\nabla u - \tau||$  versus the number of mesh nodes of the considered uniform triangular mesh.

### ACKNOWLEDGMENTS

This paper has been elaborated in the framework of the project New creative teams in priorities of scientific research, reg. no. CZ.1.07/2.3.00/30.0055 as well as the the IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070, supported by Operational Programme Education for Competitiveness and co-financed by the European Social Fund and the state budget of the Czech Republic. The third author acknowledges the support of the project SPOMECH (CZ.1.07/2.3.00/20.0070) during his former stay in Ostrava and the support of project GA13-18652S. The paper also includes the solution results of the internal BUT projects FIT-S-12-1 and FIT-S-14-2486.

### REFERENCES

- 1. J. Dalík, "Averaging of directional derivatives in vertices of nonobtuse regular triangulations," in *Numerische Mathematik*, Springer-Verlag, Heidelberg, 2010, vol. 116, pp. 619–644.
- 2. J. Dalík, and V. Valenta, "Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements," in *Central European Journal of Mathematics*, 2013, vol. 11, pp. 597–608.
- V. Valenta, V. Šátek, J. Kunovský, and P. Humená, "Adaptive Solution of Laplace Equation," in AIP Conference Proceedings -American Institute of Physics, American Institute of Physics, 2013, vol. 1558, pp. 2285–2288.
- 4. J. Valdman, "Minimization of Functional Majorant in A Posteriori Error Analysis based on H(div) Multigrid-Preconditioned CG Method," in *Advances in Numerical Analysis*, 2009, vol. 2009, pp. 597–608, article ID 164519.
- T. Rahman, and J. Valdman, "Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements," in *Applied Mathematics* and Computation, 2013, vol. 219, pp. 7151–7158.