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Construction of P1 Gradient from P0 Gradient by Averaging
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Abstract. Construction of nodal and element-wise linear (known as P1) gradient field from element-wise constant (known
as P0) gradient field obtained by the P1 finite element methods on defined triangular mesh is based on works of J. Dalík et al.
and it is briefly explained and numerically tested in this contribution. Nodal value of P1 gradient is computed by averaging of
P0 gradients on elements sharing the node in a common patch.
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INTRODUCTION

We suppose Ω is a bounded domain in R2 with a polygonal boundary ∂Ω and Th a triangular mesh of Ω consisting
of closed triangles. We denote by Nh,Eh the sets of nodes and edges of the mesh. For any node N ∈Nh we define a
patch of elements meeting at N as

T N
h = {T ∈Th : N ∈ T}.

We consider a function u ∈ H1
0 (Ω) and its approximation uh ∈ P1(Th) obtained for instance by the finite element

method when solving an elliptic boundary value problem. The approximation uh is searched in the space P1(Th) of
scalar continuous and element-wise linear basis functions defined over Th. Nodal values uh,i = uh(Ni) for Ni ∈Nh
(with a given ordering of nodes) define uh uniquely. The values of uh outside triangular nodes are interpolated by a
linear combination

uh(x,y) =
|Nh|
∑
i=1

uh,iϕi(x,y)

of global finite element basis functions ϕi defined over nodal patches. The gradient vector

∇uh = (∇x,∇y)uh ∈ P0(Th)×P0(Th)

is constant on every triangle T ∈ Th. It might be of interest to find a higher order gradient approximation in
applications. A focus of this paper is the construction of an averaged gradient

G uh = (Gx,Gy)uh ∈ P1(Th)×P1(Th)

following results of [1] and its efficient implementations. More details related to the construction can be found in
[2, 3]. For N ∈N , nodal gradient values at the node N are searched as linear combinations

Gxuh(N) = ∑
Ti∈T N

h

wx,i(∇xuh|Ti), Gyuh(N) = ∑
Ti∈T N

h

wy,i(∇yuh|Ti) (1)

of element-wise constant gradients in the corresponding patch T N
h (with a given ordering of elements in the patch).

There are two sets of weights wx,i = wx|Ti,wy,i = wy|Ti for derivatives with respect to x and y components, whose
values decide about the quality of G uh. A comparison of P0 and P1 gradient approximations is illustrated in Figure 1.
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FIGURE 1. An example of a P1 approximation vh obtained by the finite element method (left), its P0 gradient field∇xvh (middle)
and the reconstructed P1 gradient field Gxvh (right). For simplicity, only x-components of gradient fields are visualized.

RECONSTRUCTION OF P1 GRADIENT

A simple analysis shows the gradient of a linear function u(x,y) = α1+α2x+α3y can be evaluated exactly by (1) for
all coefficients α1,α2,α3 ∈ R if and only if

∑
Ti∈T N

h

wx,i = 1, ∑
Ti∈T N

h

wy,i = 1. (2)

Solutions of two systems of equations (2) are not unique and the choice of weights satisfying (2) leads to the first-
order approximation scheme. In order to evaluate the gradient of a quadratic function u(x,y) = α1+α2x+α3y+
α4x2+α5xy+α6y2 exactly for all coefficients α1,α2,α3,α4,α5,α6 ∈ R, a more general system of linear equations is
needed.

Let’s assume triangle T ∈T N
h consists of nodes N0 = (x0,y0),N1 = (x1,y1),N2 = (x2,y2), where N0 =N. The nodes

N0,N1,N2 are ordered always anticlockwise (or possibly always clockwise). Then, a linear system of equations⎛
⎝ x0 y0 1

x1 y1 1
x2 y2 1

⎞
⎠

⎛
⎝ ∇x f1 ∇x f2 ∇x f3
∇y f1 ∇y f2 ∇y f3
c1 c2 c3

⎞
⎠=

⎛
⎝ f1(x0,y0) f2(x0,y0) f3(x0,y0)

f1(x1,y1) f2(x1,y1) f3(x1,y1)
f1(x2,y2) f2(x2,y2) f3(x2,y2)

⎞
⎠ , (3)

where f1(x,y) = xy, f2(x,y) = x2, f3(x,y) = y2 is solved. The solution ∇x f j, ∇y f j for j = 1 . . .3 provide constant
gradients on element T , c j is some constant. The linear system (3) is solved for all elements Ti ∈ T N

h resulting in the
set of constant gradients

∇x( f j|Ti), ∇y( f j|Ti)
for j= 1 . . .3, i= 1 . . .m, wherem denotes the number of triangles in the patchT N

h . Then, we set up two linear systems
of equations in form

Mxwx = dx, Mywy = dy, (4)

where wx = (wx|T1, . . .wx|Tm),wy = (wy|T1, . . .wy|Tm) and

Mx =

⎛
⎜⎝

1 . . . 1
∇x( f1|T1) . . . ∇x( f1|Tm)
∇x( f2|T1) . . . ∇x( f2|Tm)
∇x( f3|T1) . . . ∇x( f3|Tm)

⎞
⎟⎠ ,dx =

⎛
⎜⎝

1
y0
2x0
0

⎞
⎟⎠ , My =

⎛
⎜⎝

1 . . . 1
∇y( f1|T1) . . . ∇y( f1|Tm)
∇y( f2|T1) . . . ∇y( f2|Tm)
∇y( f3|T1) . . . ∇y( f3|Tm)

⎞
⎟⎠ ,dy =

⎛
⎜⎝

1
x0
0
2y0

⎞
⎟⎠ .

Remark 1 Using special rotations and shifting of triangular nodes to the origin of the coordinate system x− y, it
is possible [1] to reduce vectors dx,dy to forms dx = (1,0,0,0)T ,dy = (1,0,0,0)T . Solution of (4) is obtained by the
Moore - Penrose pseudoinverse.

Example 1 Lets take our triangulation T1 and consider the patch around the inner node [0.5, 0.5]. There are six
triangles contained in this patch as depicted in Figure 2 (middle). The linear systems (4) rewrite as⎛

⎜⎜⎝
1 1 1 1 1 1
0 0.5 0.5 0.5 0.5 1
1.5 0.5 1.5 0.5 1.5 0.5
0 0 0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎝

wx|T1
...

wx|T6

⎞
⎟⎠=

⎛
⎜⎜⎝

1
0.5
1
0

⎞
⎟⎟⎠ ,
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⎛
⎜⎜⎝

1 1 1 1 1 1
0.5 0.5 1 0 0.5 0.5
0 0 0 0 0 0
0.5 0.5 0.5 1.5 1.5 1.5

⎞
⎟⎟⎠

⎛
⎜⎝

wy|T1
...

wy|T6

⎞
⎟⎠=

⎛
⎜⎜⎝

1
0.5
0
1

⎞
⎟⎟⎠

and their solutions provide

wx = wy = (
1
6
,
1
6
,
1
6
,
1
6
,
1
6
,
1
6
)T .

A MODEL PROBLEM

This example is taken from [4] and numerical experiments are implemented in a Matlab code inspired by [5]. We
consider a Poisson problem

−�u= f in Ω, u= 0 on ∂Ω (5)

for the unit square domain Ω= (0,1)× (0,1) and the right-hand side
f (x,y) = 2x(1− x)+2y(1− y)

for all (x,y) ∈Ω. For this particular right-hand side, the exact solution and its gradient read
u= x(1− x)y(1− y), ∇u= ((1−2x)y(1− y),x(1− x)(1−2y))

for all (x,y)∈Ω. The square geometry is discretized using a sequence of nested uniform triangular meshesT0, . . . ,T10
(containing 2,8,32, . . . ,2097152 elements and 4,9,25, . . . ,1050625 nodes), the first three triangulations are displayed
in Figure 2. A discrete approximation v ∈ P1(Th) of the exact solution u is computed by the finite element method.
Then, P0 gradient ∇v is computed and P1 gradient τ = G v is reconstructed. Figure 1 shows the discrete solution v,
its gradient ∇v and the reconstructed gradient τ computed on T4. For any triangulation mesh we compare squared
L2-norms

||∇u−∇v||=
∫
Ω
(∇u−∇v) · (∇u−∇v)dΩ, ||∇u− τ||=

∫
Ω
(∇u− τ) · (∇u− τ)dΩ

measuring the error of the finite elements approximation, and the error of our gradient reconstruction. Figure 3
indicates a linear convergence of ||∇u−∇v|| and a quadratic convergence of ||∇u− τ|| measured with respect to the
number of mesh nodes. The linear convergence of ||∇u−∇v|| of the finite elements method is typical for P1 elements
and the quadratic convergence of ||∇u−τ|| coincides with the approximation properties of P1 reconstructed gradients
as proved in [1].

T1

T2 T3

T4 T5

T6

FIGURE 2. Uniform triangulations T0 (left), T1 (middle), and T2 (right).
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FIGURE 3. Error of elementwise constant gradient ||∇u−∇v|| and error of reconstructed elementwise nodal linear gradient
||∇u− τ|| versus the number of mesh nodes of the considered uniform triangular mesh.
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