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GENERALIZATIONS OF THE NOISY-OR MODEL

Jiř́ı Vomlel

In this paper, we generalize the noisy-or model. The generalizations are three-fold. First, we
allow parents to be multivalued ordinal variables. Second, parents can have both positive and
negative influences on their common child. Third, we describe how the suggested generalization
can be extended to multivalued child variables. The major advantage of our generalizations is
that they require only one parameter per parent. We suggest a model learning method and
report results of experiments on the Reuters text classification data. The generalized noisy-or
models achieve equal or better performance than the standard noisy-or. An important property
of the noisy-or model and of its generalizations suggested in this paper is that it allows more
efficient exact inference than logistic regression models do.
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1. INTRODUCTION

Conditional probability tables (CPTs) that are the basic building blocks of Bayesian
networks [9, 14] have, in general, an exponential size with respect to the number of parent
variables of the CPT. This has two unpleasant consequences. First, when eliciting model
parameters, one needs to estimate an exponential number of parameters. Second, in a
case where there is a high number of parent variables, the exact probabilistic inference
may become intractable.

On the other hand, real implementations of Bayesian networks (see, e. g., [12]) often
have a simple local structure of the CPTs. The noisy-or model [14] is a popular model
for describing relations between variables in one CPT of a Bayesian network. Noisy-or
is a member of the family of models of independence of causal influence [7], which are
also called canonical models [5]. An advantage of these models is that the number of
parameters required for their specification is linear with respect to the number of parent
variables in CPTs and that they allow applications of efficient inference methods, see,
for example, [6, 19]. In [24], Zagorecki and Druzdzel show that practical models, for
which the authors do not take noisy-or (or noisy-max) models, even models learned
from data, have many CPTs that can be approximated by a noisy-or (noisy-max) model.
Additionally, the results presented in [23] suggest that many CPTs from real applications
can be parameterized with the aid of a low number of parameters.
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In some applications it is natural to consider multivalued parent variables with values
having a natural ordering. In this paper, we propose a generalization of the noisy-or
model to multivalued ordinal parent variables. Our first and second proposals differ
from the noisy-max model [8] since we keep the child variable binary, no matter what
the number of values of the parent variables are. Also, we have only one parameter
for each parent. Our generalizations also differ from the generalization of the noisy-or
model proposed by Srinivas [20] since in his model the inhibition probabilities cannot
depend on the value of the parent variables if the value differs from the value of the child,
which we consider to be quite a restrictive requirement for some applications. Our first
and second proposals belong to the class of Generalized Linear Models [11] with a non-
canonical link function. The link function is the logarithm, while the canonical link
function for a binary dependent variable is the logit function.

In Section 4 we discuss methods one can use to learn parameters of the generalized
noisy-or model from data. In Section 5 we present results of numerical experiments
on the well-known Reuters text classification data. We use this dataset to compare the
performance of suggested generalizations of multivalued and binary noisy-or models. We
have made the source code and datasets used in our experiments freely available on the
Web. In the final part of the paper we describe how the suggested generalization can
be further extended to multivalued child variables and perform learning experiments of
the suggested model from artificially generated data.

2. MULTIVALUED NOISY-OR

In this Section, we propose a generalization of noisy-or for multivalued parent variables.
Let Y be a binary variable taking on values y ∈ {0, 1}, and Xi, i = 1, . . . , n be multival-
ued discrete variables taking on values1 xi ∈ Xi = {0, 1, . . . ,mi}, mi ∈ N+. The local
structure of both the standard (see, e. g., [5]) and the multivalued generalization of the
noisy-or can be made explicit with the help of auxiliary variables X ′i, i = 1, . . . , n taking
values also from Xi. The structure is shown in Figure 1.

The CPT P (Y |X1, . . . , Xn) is defined using CPTs P (X ′i|Xi) as

P (X ′i = 0|Xi = xi) = (pi)xi (1)
P (X ′i = 1|Xi = xi) = 1− (pi)xi , (2)

where (for i = 1, . . . , n) pi ∈ [0, 1] is the parameter which defines the probability that
the positive value xi of variable Xi is inhibited. In the formula, we use parentheses to
emphasize that xi is an exponent, not an upper index of pi. The CPT P (Y |X ′1, . . . , X ′n)
is deterministic and represents the logical OR function. The higher the value xi of Xi

the lower the probability of X ′i = 0, which is a desirable property in many applications.

1Generally, the values of Xi could be from R. However, in this paper, we consider CPTs in the
context of a Bayesian network where parents of one CPT are children in other CPTs. Therefore we
assume that all variables are discrete and their values are from N0.
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Fig. 1. Noisy-or model with the explicit deterministic (OR) part.

The conditional probability table P (Y |X1, . . . , Xn) is then defined as

P (Y = 0|X1 = x1, . . . , Xn = xn) =
n∏
i=1

P (X ′i = 0|Xi = xi) =
n∏
i=1

(pi)xi (3)

P (Y = 1|X1 = x1, . . . , Xn = xn) = 1−
n∏
i=1

(pi)xi . (4)

Note that if mi = 1, i. e., the values xi of Xi are either 0 or 1, then we get the standard
noisy-or model [5, 14].

Remark. The suggested generalization influences only the definition of noise P (X ′i|Xi).
This implies that the idea can also be similarly applied to models with deterministic parts
representing different functions – e. g., the maximum.

In Figure 2 the dependence of the inhibitory probability P (X ′ = 0|X = x) on the
value x of a variable X is depicted. In the Figure we can see the shape of the curves
representing the dependence for ten different values of the model parameter p.

It is important to note that, contrary to the definition of causal noisy-max [5, Section
4.1.6], we have only one parameter pi for each parent Xi of Y no matter what the
number of values of Xi is. This implies that our model is more restricted. On the other
hand, however, the suggested simple parameterization guarantees ordinality, which is a
desirable property in many applications (as is also discussed in [5]). Also, since domain
experts elicit or learning algorithms estimate fewer parameters, those estimates might
be more reliable.

In practical application of noisy-or models, we often lift the requirement that if all
parent variables are of the value 0 then the probability of Y = 0 must be one. One can
achieve this by the inclusion of an auxiliary parent variable X0 whose value is always
assumed to be 1. This auxiliary variable is called a leaky cause [5] and its inhibition
probability p0 = pL < 1 is called the leaky probability. This allows the probability

P (Y = 0|X1 = 0, . . . , Xn = 0) = pL < 1 .
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Fig. 2. The dependence of P (X ′
i = 0|Xi = xi) on parameter pi = p

and the variable value xi = x.

In this way we can model unobserved or unknown causes of Y = 1. When we include
the leaky cause in generalized noisy-or models, Formula (3) is modified to

P (Y = 0|X1 = x1, . . . , Xn = xn) = pL

n∏
i=1

(pi)xi . (5)

Next, we will discuss possible interpretations of multivalued noisy-or. The expression
on the left hand side of formula (3) also corresponds to a model where each multivalued
variable Xi is replaced by xi copies of the corresponding binary variable. It means that
the probability of the inhibition pi of multivalued variable Xi corresponds to probability
of the inhibition of binary variables repeated in the model as many times as the value of
xi is – with the same parameter value pi. This seems appropriate, for example, in the
classification of text documents discussed in Section 5. The multivalued noisy-or model
corresponds to treating each word in a classified text as a separate feature (repeated
as many times as it is actually present in the text) with a natural requirement that
equivalent words must have the same inhibition probability.

It is possible to give the multivalued noisy-or another interpretation. For i = 1, . . . , n
we can define a new parameter qi = pmi

i and replace variable Xi by X ′i so that it takes
values x′i = xi

mi
. The value of qi is the inhibition probability of a standard noisy-or but

with variables X ′i taking fractional values xi

mi
. These values might be interpreted as
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degrees of the presence of X ′i. Formula (3) is then modified to:

P (Y = 0|X ′1 = x′1, . . . , X
′
n = x′n) =

n∏
i=1

(qi)x
′
i ,where x′i ∈ {0, 1

mi
, . . . , mi−1

mi
, 1}.

Next, we will describe the relation of the generalized noisy-or model to Generalized
Linear Models [11]. Assume the generalized noisy-or model defined by Equation (5) and
pi > 0, i = 0, 1, . . . n. By taking the logarithm on both sides of Equation (5) we get

logP (Y = 0|X1 = x1, . . . , Xn = xn) = log pL +
n∑
i=1

xi log pi .

Define new parameters βi = log pi, i = 1, . . . , n, and β0 = pL. Note that, since 0 < pi ≤
1, i = 0, 1, . . . , n, it holds for i = 0, 1, . . . , n that

−∞ < βi ≤ 0 . (6)

Then we can write

logP (Y = 0|X1 = x1, . . . , Xn = xn) = β0 +
n∑
i=1

xiβi = βTx , (7)

where x denotes vector (1, x1, . . . , xn), and β denotes vector (β0, β1, . . . , βn). Note that,
since the expected value

E(1− Y |x1, . . . , xn) = 1 · P (Y = 0|x1, . . . , xn) + 0 · P (Y = 1|x1, . . . , xn) (8)
= P (Y = 0|x1, . . . , xn), (9)

it holds that

logE((1− Y )|x1, . . . , xn) = βTx . (10)

3. PARENTS WITH POSITIVE AND NEGATIVE INFLUENCE

In this section we will go one step further with generalizations of the noisy-or model
and allow positive values of βi, i = 1, . . . , n. We can give each positive value βi a quite
natural interpretation in generalized noisy-or models – it can mean that the higher values
of corresponding Xi imply a higher probability of inhibition of positive influence on Y .

We will allow parents Xi, i = 1, . . . , n of Y to have a negative influence on probability
of the value Y = 1 with increasing values of xi. In the generalized noisy-or model we can
treat the parents with positive values of βi by relabeling their values xi ∈ {0, 1, . . . ,mi}
to (mi − xi) ∈ {mi, . . . , 1, 0}. In this way the generalized noisy-or is now capable of
treating not only positive influences (the presence of Xi increases the probability of
Y = 1) but also negative influences (the presence of Xi decreases the probability of
Y = 1).

When learning the generalized noisy-or with positive and negative influences of par-
ents, we need to restrict values of βi, i = 1, . . . , n by a single constraint:

β0 +
∑

i∈{1,...,n}:βi>0

βimi ≤ 0 , (11)
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which generalizes the condition (19) from [13, p. 81] to multivalued parents. The positive
values of βi cannot be interpreted as inhibition probabilities pi = exp(βi), but they may
get an inhibition interpretation with the aid of the transformation discussed above:

P (Y = 0|x) = exp

β0 +
∑

i∈{1,...,n}

βixi


= exp

β′0 +
∑

i∈{1,...,n}:βi>0

β′i(mi − xi) +
∑

i∈{1,...,n}:βi≤0

βixi

 (12)

where β′i = −βi, and β′0 = β0 +
∑
i∈{1,...,n}:βi>0 βimi, which is non-positive due to the

constraint (11). It is now possible to get a probabilistic interpretation of the parents’
influence in the model with the new non-positive parameters β′0 and β′i.

In the experiments reported in Section 5 we learned these models by, first, restricting
βi ≤ 0 for i = 0, 1, . . . , n and then transforming the parents Xi with learned βi ∼ 0
by the above transformation. Finally, we learned the model again requiring βi ≤ 0 for
i = 0, 1, . . . , n. This is easier than optimization with the constraint 11.

4. LEARNING PARAMETERS OF THE GENERALIZED NOISY-OR

We will distinguish between two basic versions of generalized noisy-or models:

(b) a generalized noisy-or with binary parent variables, which we will refer to as gen-
eralized binary noisy-or,

(m) a generalized noisy-or with multivalued parent variables, which we will refer to as
generalized multivalued noisy-or.

For both versions the learning algorithms will be the same; they will differ only in
data used for learning. In the version where all variables are binary, the data will be
transformed so that all values are either 0 or 1. In this paper we define the transformed
value2 to be 0 if and only if the original value is 0, otherwise it is 1.

We consider two versions of the generalized noisy-or models:

(+) include only parents Xi, i = 1, . . . , n of Y that have a positive influence on the
probability of Y = 1 (i. e., negative βi),

(±) include all parents from Xi, i = 1, . . . , n of Y . Those parents that have negative
influence on the probability of Y = 1 (i. e., positive βi) have their values renum-
bered reversely (as discussed in Section 3) and then are included in the generalized
noisy-or models with a positive influence.

2Our motivation is the classification of text documents. In the binary version we just consider
whether a word is present or not in the document – we use a threshold of 0.5. Generally, any threshold
from the interval (0, m) can be applied.
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For both versions of the generalized noisy-or model we use a constraint learning
method with the constraint β ≤ 0. In this way we guarantee that, for all possible values
of x, we get probability values (i. e., values from [0, 1]). In the experiments reported
in Section 5 we used a quasi-Newton method with box constraints [3] implemented in
R [15]. When searching for the maximum of the conditional log-likelihood we used the
formula (22) for the gradient derived in Appendix A. To avoid infinite numbers we added
a small positive value (10−10) to the numerator and the denominator in Formula (22).
The algorithm was started from ten different initial values of β, generated randomly
from interval [−1,+1].

To summarize, if we combine the options discussed above we get four different models:

• Generalized binary noisy-or with parents of positive influence3 (noisy-or+),

• Generalized binary noisy-or with parents of positive and also negative influence
(noisy-or±),

• Generalized multivalued noisy-or with parents of positive influence (m-noisy-or+),

• Generalized multivalued noisy-or with parents of positive and also negative influ-
ence (m-noisy-or±).

5. EXPERIMENTS

In this section, we will describe experiments we performed with the well-known Reuters-
21578 collection (Distribution 1.0) of text documents. The text documents from this
dataset appeared on the Reuters newswire in 1987. Personnel from Reuters Ltd. and
Carnegie Group, Inc. classified the documents manually into several classes according
to their topic. In the test, we further divided documents into training and testing sets
according to Apté et al. [2]. We performed experiments with preprocessed data in the
eight largest classes4. To reduce the feature space we only kept relevant features in our
data. Namely, for each class we excluded from the data all features with a correlation
to the class of less than 0.3. To allow interested readers to replicate our experiments
easily, we have made our R code and the datasets used in experiments available on the
Web 5.

In the experiments we compare all versions of the generalized noisy-or classifiers and
the generalized multivalued noisy-or classifier with two versions of the logistic classifier,
as they are all defined in Section 4.

We decided to include in the models all features that were not rejected as irrelevant
at the significance level 0.1. We also performed the experiments with the significance
level increased to 0.3. In this way, we can increase the number of features, but we prefer
simpler models since there was no significant increase in the accuracy for most classes.
However, it may be a topic for future research to apply exhaustive feature selection
methods that would find optimal models for the families of our interest.

3This is the standard noisy-or. However, to stress the relation to other noisy-or models discussed in
this paper, we will use the abbreviation noisy-or+.

4The preprocessed dataset is available at http://web.ist.utl.pt/acardoso/datasets/.
5The code and data are available at http://www.utia.cas.cz/vomlel/generalized-noisy-or/

http://web.ist.utl.pt/acardoso/datasets/
http://www.utia.cas.cz/vomlel/generalized-noisy-or/
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In Table 1 we present the accuracy, sensitivity, specificity, and number of selected
features of individual classifiers for binarized and multivalued data. All tested classifiers
could be tuned up so that they sacrifice specificity to sensitivity and vice versa by a
modification of the threshold. But we did not experiment with the threshold, we simply
kept it fixed to 1/2.

noisy-or+ m-noisy-or+

acc. sens. spec. feat.

earn 92.46 96.49 88.52 9
acq 89.49 83.76 92.16 6

crude 97.58 61.98 99.66 4
money-fx 96.98 59.77 98.53 7

interest 96.67 17.28 99.72 3
trade 98.40 65.33 99.57 8
ship 98.77 50.00 99.58 3

grain 99.91 90.00 99.95 1

acc. sens. spec. feat.

earn 93.60 95.48 91.77 7
acq 85.20 59.20 97.32 4

crude 98.54 82.64 99.47 4
money-fx 97.03 47.13 99.10 5

interest 97.85 49.38 99.72 2
trade 98.36 72.00 99.29 5
ship 99.13 66.67 99.67 4

grain 99.91 90.00 99.95 1

noisy-or± m-noisy-or±
acc. sens. spec. feat.

earn 92.46 96.49 88.52 10
acq 90.04 83.62 93.03 9

crude 97.58 61.98 99.66 4
money-fx 96.98 59.77 98.53 7

interest 96.67 17.28 99.72 3
trade 98.40 65.33 99.57 8
ship 98.77 50.00 99.58 3

grain 99.91 90.00 99.95 1

acc. sens. spec. feat.

earn 93.60 95.48 91.77 8
acq 85.20 59.20 97.32 6

crude 98.54 82.64 99.47 4
money-fx 97.03 47.13 99.10 5

interest 97.85 49.38 99.72 2
trade 98.36 72.00 99.29 5
ship 99.13 66.67 99.67 4

grain 99.91 90.00 99.95 1

b-logistic m-logistic

acc. sens. spec. feat.

earn 94.34 94.92 93.76 7
acq 89.90 74.57 97.05 7

crude 97.99 71.07 99.56 7
money-fx 96.67 33.33 99.29 10

interest 97.35 35.80 99.72 3
trade 98.81 80.00 99.48 12
ship 99.22 63.89 99.81 4

grain 99.86 70.00 100.00 3

acc. sens. spec. feat.

earn 94.47 96.49 92.50 12
acq 91.64 81.61 96.32 9

crude 98.58 80.99 99.61 8
money-fx 97.08 45.98 99.19 11

interest 96.80 22.22 99.67 4
trade 98.86 85.33 99.34 14
ship 99.09 50.00 99.91 4

grain 99.77 50.00 100.00 3

Tab. 1. Results on binarized and multivalued data.

We summarize the results of experiments in Tables 2 and 3. We report the accuracy
using the percentage scale, which is the relative proportion of correctly classified docu-
ments either as belonging to the given class or not. We print the best achieved accuracy
across both versions of data, bold and framed.

From Tables 2 and 3 we can see that multivalued noisy-or is more often better than
binary noisy-or. There is almost no difference between the performance of noisy-or+
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nr. doc noisy-or+ noisy-or± b-logistic

earn 1083 92.46 92.46 94.47

acq 696 89.49 90.04 91.64

crude 121 97.58 97.58 98.58

money-fx 87 96.98 96.98 97.08
interest 81 96.67 96.67 96.80

trade 75 98.40 98.40 98.86
ship 36 98.77 98.77 99.09

grain 10 99.91 99.91 99.77

Tab. 2. Comparisons of the accuracy of the generalized noisy-or

classifiers and the logistic classifier on binarized data.

nr. doc m-noisy-or+ m-noisy-or± m-logistic

earn 1083 93.60 93.60 94.34
acq 696 85.20 85.20 89.90

crude 121 98.54 98.54 97.99
money-fx 87 97.03 97.03 96.67

interest 81 97.85 97.85 97.35
trade 75 98.36 98.36 98.81

ship 36 99.13 99.13 99.22

grain 10 99.91 99.91 99.86

Tab. 3. Comparisons of the accuracy of the generalized noisy-or

classifiers and the logistic classifier on multivalued data.

and noisy-or±. In the case of binary data, noisy-or± is better than noisy-or+ for one
class only; in the case of multivalued data both classifiers perform equally well. An
explanation might be that in the Reuters data there are not many words whose presence
would be significant for concluding that a document does not belong to a certain class.
The difference between noisy-or+ and noisy-or± might turn out to be significant for a
different dataset. It is important that in our experiments m-noisy-or± is never worse
than m-noisy-or+, which is a desirable property for any good generalization of noisy-or.

From the tested models the best performing model is the logistic regression model. Its
accuracy is the best for five classes in the binary case and for one class in the multivariate
case. m-noisy-or± has the best performance for two classes.

6. ONE STEP FURTHER: A MULTIVALUED GRADED CHILD VARIABLE

A natural generalization of the noisy-or model to multivalued parents and a multivalued
child is the noisy-max. Assume that Y takes on values y ∈ {0, 1, . . . ,m}, where m =
max{m1, . . . ,mn}. Similarly as the noisy-or, the noisy-max can also be defined with
the help of auxiliary variables X ′i and inhibition probabilities py,xi . The latter can be
different for different values xi of Xi and y of Y . The structure is the same as for noisy-or



Generalizations of the noisy-or model 517

defined in Figure 1. It is convenient to express conditional probabilities in the form of
cumulative distribution function for y = 0, 1, . . . ,m and xi = 0, 1, . . . ,mi

P (Y ≤ y|x) =
n∏
i=1

P (X ′i ≤ y|Xi = xi) =
n∏
i=1

py,xi , (13)

which requires m · (n+
∑n
i=1mi) model parameters since pm,xi , i = 1, . . . , n is defined

to be one. See [5] for a discussion of different versions of noisy-max. When all variables
are ordinal, which is the case considered in this paper, then it is reasonable to assume
that, for y = 0, 1, . . . ,m,

xi < x′i implies py,xi
≥ py,x′

i
. (14)

Following the generalization presented in Section 2 of this paper, we can further
extend the generalized noisy-or also for a multivalued child variable so that the number
of model parameters is still n (or n+ 1 if we also consider the leaky cause). We define

P (X ′i ≤ y|Xi = xi) = (pi)R(xi−y) , (15)

where R is the ramp function:

R(x) =
{

0 if x ≤ 0
x if x > 0. (16)

The meaning is that Xi with values xi ≤ y does not contribute to Y ≥ y. Please note
that this definition satisfies (14). As a consequence, Formulas (5) and (4) are generalized
for a multivalued variable Y as follows. For y = 0, 1, . . . ,m it holds

P (Y ≤ y|x) = (pL)R(m−y)
n∏
i=1

(pi)R(xi−y). (17)

Let (y,x) denote a data vector with x = (x0, x1, . . . , xn) and x0 be fixed at value m.
Assume that both xi and y take values from the set {0, 1, . . . ,m}, and probabilities
p0, p1, . . . , pn are non-zero. Denote the vector of logarithms of the model’s probability
parameters by β = (log(p0), log(p1), . . . , log(pn)) with p0 = pL. Then we can write
Formula (17) as

P (Y ≤ y|x) = exp
(
βTR(x− y)

)
, (18)

where y is the vector of n+ 1 copies of the value y.

Remark. Note that if y = m then R(m − y) = 0 and for i = 1, . . . , n it holds that
R(xi − y) = 0. This implies that for all x = (x1, . . . , xn) it holds that P (Y ≤ m|x) = 1.

If we set m = 1 then we get the generalized noisy-or from the previous sections of
this paper. If m = 1 and mi = 1, i = 1, . . . , n then we get the standard noisy-or. Our
generalization from this section is a special case of the graded noisy-max model proposed
by Dı́ez in [4, Definition 2]. The main difference is that our model requires only n + 1
parameters (including the leaky cause pL). We will refer to our model as the Simple
Graded Noisy-max.
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Learning of Simple Graded Noisy-max

We learn the Simple Graded Noisy-max model using a constraint learning method with
the constraint β ≤ 0. This constraint guarantees that we get probability values for
all possible values of x in formula (18) . To maximize the conditional log-likelihood,
we use a quasi-Newton method with box constraints [3] implemented in R [15]. The
method uses Formula (25) for the gradient derived in Appendix B. To avoid infinite
numbers we added a small positive value (10−10) to the numerator and the denominator
in Formula (25). The algorithm was initialized at ten different values of β generated
randomly from interval [−1,+1].

Since we did not have real data for a learning experiment we created data artificially.
We used a Simple Graded Noisy-max model with three parents, each taking values from
{0, 1, 2}. The child variable was also ternary and took values from {0, 1, 2}. During
the data generation process we repeated the following two steps. First, we randomly
generated a parent configuration x (with uniform probability), and then we randomly
generated value y with probabilities defined by Formula 18 for the given x. We performed
experiments with different numbers of generated data vectors. We used the learning
algorithm described above to learn the parameters β of the Simple Graded Noisy-max.

In Figure 3 we present the results of our experiments. The left-hand side plot describes
the dependence of the total sum of the Kullback-Leibler divergence of the conditional
probability tables of the true model and the model learned from the generated data on
the size of the training dataset. We compare two models: the Simple Graded Noisy-max
(the full line) and the full conditional probability table (CPT) computed from relative
frequencies of data vectors in generated data (the dashed line). Note the logarithmic
scale of the vertical axis. On the right-hand side we present the dependence of Euclidean
distance of parameter vectors β of the true and the learned models on the size of the
training dataset.

From the plots we can see that training datasets of a relatively small size (∼ 1000) are
sufficient for learning the parameters of the Simple Graded Noisy-max. The parameters
of the full CPT are much harder to estimate properly. In the experiment, a general CPT
required 54 parameters to be learned while to specify the Simple Graded Noisy-max we
needed to learn only 4 parameters. This explains the difference in the learning speed.

7. COMPARISON WITH OTHER MODELS FOR GRADED VARIABLES

Probably the most popular model for modeling ordered response variables is the cu-
mulative logit model. McCullagh calls this model the Proportional Odds Model [10].
Cumulative logit models are known as Graded Response Models [17] in the Item Re-
sponse Theory. They were applied in Bayesian networks by Russel Almond et al. [1].
The conditional probability of a Graded Response Model is defined as

P (Y ≤ y|x) =
exp(αy + βTx)

1 + exp(αy + βTx)
. (19)

Note that the Graded Response Model is specified by m+n parameters while the Simple
Graded Noisy-max requires only n+ 1 parameters.
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Fig. 3. Dependence of the quality of the learned simple graded

noisy-max models on the size of the training dataset.

In Figures 4 and 5 we compare the conditional probability distributions of a Simple
Graded Noisy-max and a Graded Response Models – both with one parent X. Variable
Y takes on four values and each curve corresponds to one of these values. In Figure 4 the
conditional probabilities of a Simple Graded Noisy-max are presented while in Figure 5

we can see the conditional probabilities of a Graded Response Model. The horizontal axis
corresponds to the values of x and the vertical axis to the probabilities of P (Y = y|x).

Remark. One might try to further generalize the generalized linear model with the
log link function to a multivalued graded child variable by defining

P (Y ≤ y|x) = exp(αy + βTx) (20)

and by requiring non-positive αy and β. But this model does not seem useful since it is
not possible for more than two values y of Y to be the most probable at least for certain
values of βTx. See Figure 6, in which we can observe that only two values y of Y attain
maximum probability at a certain interval of values x.

8. CONCLUSIONS

In this paper we propose generalizations of the popular noisy-or model to multivalued
parent variables and allow parent variables with both positive and negative influence on
the child variable. To learn generalized noisy-or models we use a quasi-Newton method
with box constraints, while for the logistic regression we use iteratively reweighted least-
squares method. In the experiments with the Reuters text collection, generalized noisy-
or models perform equally well or better than standard noisy-or models. Generalized
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Fig. 4. Conditional probability distributions of a Simple Graded
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Model
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Fig. 6. Conditional probability distributions of a Graded Log Model
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noisy-or models represent handy generalizations of noisy-or for real applications with
multivalued variables and/or with parent variables being a mixture of variables having
either positive or negative influence on their child variables.

The generalizations of noisy-or can be used as local models for conditional probability
tables (CPTs) of a Bayesian network similarly as logistic regression models are used in
BNs called sigmoid belief networks [13, 16]. The noisy-or and its generalizations have an
advantage over logistic regression models. The exact probabilistic inference with densely
connected sigmoid belief networks is intractable and approximate inference methods
have to be used [18]. On the other hand, the exact probabilistic inference with BNs
with (generalized) noisy-or and noisy-max can still be tractable, since this CPT can be
nicely decomposed using CP tensor decomposition [6, 19] with the rank equal to the
number of states of the child variable.

APPENDIX

A. THE CONDITIONAL LOG-LIKELIHOOD AND ITS GRADIENT
FOR THE BINARY RESPONSE

Let (y,x) denote a data vector from a training dataset D, where x = (x0, x1, . . . , xn),
and x0 is fixed at value 1. Assume that xi take values from the set {0, 1, . . . ,m} and y
from the set {0, 1}. Under the generalized noisy-or model the probability of y given x
is defined as:

logP (y = 0|x) = βTx

logP (y = 1|x) = log(1− exp(βTx)) .

The conditional log-likelihood of data given this model is

`(β) =
∑

(y,x)∈D

(1− y)βTx + y log(1− exp(βTx)) . (21)

The gradient of the conditional log-likelihood is the vector of partial derivatives with
respect to β:

∂`(β)
∂β

=
∑

(y,x)∈D

(1− y)x − yx
exp(βTx)

1− exp(βTx)

=
∑

(y,x)∈D

(1− y)x− (1− y)x exp(xTβ)− yx exp(βTx)
1− exp(βTx)

=
∑

(y,x)∈D

x
(1− y)− exp(βTx)

1− exp(βTx)
. (22)
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B. THE CONDITIONAL LOG-LIKELIHOOD AND ITS GRADIENT
FOR THE GRADED RESPONSE

Let (y,x) be a data vector from D. Under the simple graded noisy-max (defined in
Section 6) the probability of observing y given x is

P (y|x) = exp
(
βTR(x− y)

)
−H(y) exp

(
βTR(x− y + 1)

)
,

where y is the vector of n+ 1 copies of the value y and H is the step function:

H(y) =
{

0 if y ≤ 0
1 otherwise. (23)

The conditional log-likelihood of data D given the model is

`(β) =
∑

(y,x)∈D

log
(

exp
(
βTR(x− y)

)
−H(y) exp

(
βTR(x− y + 1)

))
. (24)

The gradient of the conditional log-likelihood is the vector of partial derivatives with
respect to β:

∂`(β)
∂β

(25)

=
∑

(y,x)∈D

exp
(
βTR(x− y)

)
R(x− y)−H(y) exp

(
βTR(x− y + 1)

)
R(x− y + 1)

exp
(
βTR(x− y)

)
−H(y) exp

(
βTR(x− y + 1)

) .
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