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Abstract

Influence diagrams were applied to diverse decision problems. However,
the general theory is still not sufficiently developed if the variables are con-
tinuous or hybrid and the utility functions are nonlinear. In this paper, we
study computational problems related to the application of influence dia-
grams to vehicle speed profile optimization and suggest an approximation of
the nonlinear utility functions by piecewise linear functions.

1 Introduction

In this paper, we use an example inspired by a real problem – a car moving on a
road – to study various issues related to computations with influence diagrams. The
modeled car is equipped with an automatic transmission and its speed is controlled
using the throttle and the brakes. There are various speed limits on the road (e.g.,
130 km/h on a highway or 50 km/h in an urban area). The goal is to find an
optimal strategy for passing the road while minimizing (i) time spend on the road,
(ii) the fuel consumption, or (iii) a mixture of both.

There are two principal ways for representing the solution:

speed profile – a function that assigns a speed value to all points on the road,

control policy – a function that assigns control values of the throttle and the
brakes for every possible speed and to every point on the road.

The control policy is more general. In case of the speed profile the vehicle
uses an additional regulator that follows the speed profile by controlling the car
acceleration using the throttle and the brakes. In the control policy, the control
signals are already precomputed for all admissible speed values. This becomes
especially handy in real situations when the driver has to suddenly slow down or
even to stop due to an unexpected traffic situation and the precomputed speed
profile becomes obsolete.
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Since all variables (speed, acceleration, throttle, brakes) are continuous by their
nature, it would be natural to work with continuous or hybrid influence diagrams.
Unfortunately, the theory of continuous influence diagrams is not sufficiently devel-
oped (especially for nonlinear utility functions). In this paper we perform experi-
ments with discrete influence diagrams. One of our goals is to analyze the shape
of nonlinear relations and propose good approximations.

An influence diagram (Howard and Matheson, 1981) is a Bayesian network
augmented with decision variables and utility functions. Influence diagrams were
applied to diverse decision problems. Recently, we introduced influence diagrams to
the problem of optimization of a vehicle speed profile. We performed computational
experiments in which an influence diagram was used to optimize the speed profile
of a Formula 1 race car at the Silverstone F1 circuit (Kratochv́ıl and Vomlel, 2015).

In this paper we split the vehicle path into n segments of the same length s.
For each segment of the vehicle path there are two random variables Vi and Vi+1,
one decision variable Ui, and one utility potential fi+1. In Figure 1, we present the
structure of a part of the ID corresponding to one segment of the path. The values
of i are from the set {1, 2, . . . , n− 1}. The physical model of the vehicle is given in

Vi+1

fi+1

Vi

Ui

Figure 1: A part of the influence diagram for one path segment

Section 2. It is used to define the probability and utility functions of the influence
diagram.

In this paper, we generally allow variables to be discrete or continuous and the
main theoretical results presented in the paper are valid for both types of variables.
However, experiments were performed with discrete variables only. For the sake of
brevity we do not discuss related work in this paper – we refer interested readers
to Kratochv́ıl and Vomlel (2015).
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2 Vehicle physics

We model the vehicle behavior using the laws of physics. To model the engine
behavior and the fuel consumption we assume the vehicle to be a passenger car
and we follow the approach of Chang and Morlok (2005). The values of variables1

describing the car state are defined by the following formulas2.
Velocity at the coordinate i+ 1

vi+1 = v(ai, vi) =
√

(vi)2 + 2 · s · ai , (1)

where ai and vi is acceleration and velocity at the coordinate i, respectively. Let
amaxt be the maximum tangential acceleration of the vehicle,3 amint be the maximum
tangential deceleration,4 Engine acceleration at segment i is defined by the following
equation:

aei = ae(ui, vi) =

{
ui · (amaxt − ca · vi) if ui > 0
ui · amint otherwise.

(2)

In this paper we will consider a vehicle with values amaxt = 4, ca = 0.06, and
amint = 5. ui is the control at the coordinate i. It has values from 〈0, 1〉 where
negative ones correspond to braking, positive ones to using throttle. Deceleration
caused by friction forces and aerodynamic drag is

adi = ad(vi) = cr + cv · (vi)2 (3)

where cr = 0.1273 and cv = 0.000257 for the considered vehicle. Acceleration at
segment [i, i+ 1] is

ai = a(ui, vi) = ae(ui, vi)− ad(vi) . (4)

By putting equations (1)–(4) altogether we get

vi+1 = v′(ui, vi)

=





√
(vi)2 + 2 · s ·

(
ui · (amaxt − ca · vi)− cr − cv · (vi)2

)
if ui > 0

√
(vi)2 + 2 · s ·

(
ui · amint − cr − cv · (vi)2

)
otherwise.

(5)

Time spent at the path segment [i, i+ 1]

ti+1 = t(vi, vi+1) = s ·
(
vi + vi+1

2

)−1
. (6)

1We use the symbol without subscript to denote the function that specifies the variable’s value.
2Note that the relations between variables follow the edges of the influence diagram from

Figure 1
3It is a property of the vehicle engine (without considering the aerodynamic drag and friction

forces). The real maximum acceleration is lower.
4It is a property of the vehicle brakes (without considering the aerodynamic drag and friction

forces). The real maximum deceleration is higher.
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Figure 2: The total fuel consumption and the speed with the initial speed 100 km/h
and the control u = 0.2 and u = 0, respectively.

When modeling the fuel consumption, we assume it is proportional to the work
done by the engine (Chang and Morlok, 2005), which is the acceleration multiplied
by the vehicle mass and by the distance s, plus a low fuel consumption constant
per time:

gi+1 = g(vi, vi+1)

= cg · s ·m ·max

{
0,

(vi+1)2 − (vi)
2

2s
+ ad(vi)

}
+ gmin · t(vi, vi+1) , (7)

where the considered constants are the vehicle mass in kilograms m = 1759, the fuel
rate in liter per one Joul of energy cg = 10−7, and the constant fuel consumption
in liter per second gmin = 1/3600. The vehicle behavior in terms of the fuel
consumption and its speed is illustrated in Figure 2.

3 Speed constraints in the model

We assume that a maximum speed vmaxi and a minimum speed vmini is given in
advance at each path coordinate i = 1, . . . , n. Let Vi denote the set of admissible
speed values at i and let the admissible set at the end of the path be

Vn = {v ∈ V, vminn ≤ v ≤ vmaxn } . (8)

We apply the constraints during optimization process where we allow to select
only those control signals ui ∈ U that lead to vi+1 = v′(ui, vi) belonging to Vi+1.
We define functions Ui(Vi) that for each value vi of variable Vi provide the set of
admissible control values:

Ui(vi) = {u ∈ U : v′(ui, vi) ∈ Vi+1} . (9)

This set inductively defines the set of admissible speed values at i for which there
exist an admissible control value:

Vi = {v ∈ V : vmini ≤ v ≤ vmaxi , Ui(v) 6= ∅} . (10)

This, again, inductively defines set Ui−1(vi−1). This process is repeated until i = 1.
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4 Expected utility of a control policy

In the sequel we will use the following abbreviations
∑

Vi

ϕ(Vi, ·) =
∑

vi∈Vi
ϕ(Vi = vi, ·) and

max
Ui

ψ(Ui, Vi) = max
ui∈Ui(vi)

ψ(Ui = ui, Vi = vi) .

M will be a generalized marginalization operation. The operatorM acts differently
for a discrete random variable A, a continuous random variable B, and a decision
variable U of a (probability or utility) potential ψ:

M
A
ψ(A, . . .) =

∑

A

ψ(A, . . .), M
B
ψ(B, . . .) =

∫
ψ(B = b, . . .) db,

M
U
ψ(U, . . .) = max

U
ψ(U, . . .) .

The control of the vehicle speed will be realized by means of the control policy.

Definition 1. Control policy is a set of functions

δ =
{
δ(Ui|Vi) : i ∈ {1, . . . , n− 1}, vi ∈ V

}

such that for all i = 1, . . . , n and all vi ∈ V it maps ui ∈ U to values from [0, 1] and
it holds that

∑

ui∈U
δ(Ui = ui|Vi = vi) = 1 . (11)

Definition 2. A control policy δ is deterministic if for all i = 1, . . . , n and all
vi ∈ V it holds that there is a function ui : V → U such that for all u ∈ U

δ(Ui = u|Vi = vi) =

{
1 if u = ui(vi)
0 otherwise.

(12)

Remark 1. In this paper, all considered policies will be deterministic.

Definition 3. The expected value Ef of a deterministic control policy δ speci-
fied by functions ui is the sum or the integral over all possible configurations of
random variables of the products of the probability and the criteria value of that
configuration:

Ef (δ) = M
V1,...,Vn

P (V1, . . . , Vn) · f(V1, . . . , Vn) (13)

where

P (V1, . . . , Vn) = P (V1) ·
n−1∏

i=1

P (Vi+1|Ui = ui(vi), Vi) (14)

f(V1, . . . , Vn) =

n−1∑

i=1

f(Vi, Vi+1) . (15)
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The criteria to be optimized will be the expected value Ef of a deterministic
control policy.

Definition 4. An optimal deterministic policy δ∗ is a deterministic policy such
that it holds for all control policies δ that

Ef (δ) ≤ Ef (δ∗) . (16)

We will use symbol u∗i to denote the function ui : V → U that specifies the optimal
deterministic policy δ∗ according to Definition 2. The symbol u∗i (Vi) denotes the
set of functions u∗i for all values vi of variable Vi.

Using the recursive application of the commutative and distributive laws we
get the following theorem that specifies a computationally efficient algorithm for
finding an optimal decision policy. Note that our algorithm is just a special case of
general inference methods for influence diagrams (Jensen et al., 1994; Shenoy, 1992;
Shachter and Peot, 1992). But since our influence diagram has a simple structure
it is useful to derive a simple inference algorithm tailored for the task we solve.
Note that, in this case, the algorithm does not involve divisions. The computations
can be also viewed as a special case of dynamic programming (Bellman, 1957).

Theorem 1.

E∗f = Ef (δ∗) = M
V1

P (V1) · ψ(V1) , (17)

where ψ(V1) is computed recursively for i = 1, . . . , n− 1 as

ψ(Vi) = max
Ui

M
Vi+1

P (Vi+1|Vi, Ui) ·
(
f(Vi, Vi+1) + ψ(Vi+1)

)
. (18)

with the recursion terminal values being ψ(Vn) = 0(Vn), where 0(Vn) stands for
the vector taking for all states of variable Vn value zero.

The proof can be found in Appendix A.

Remark 2. In each step i = 1, . . . , n, an optimal deterministic policy is specified
(according to Definition 2) by a function ui : V → U such that ui(vi) = u∗i (vi),
where u∗i (vi) is a value of Ui that maximize formula (18) for a given vi .

5 Deterministic continuous model for the total time
minimization

In this section we will present a special case for which it is easy to find an optimal
speed profile even if all variables are continuous. The optimality criteria will be
the total time

∑n−1
i=1 t(vi, vi+1) and the goal will be to minimize it.
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Definition 5. Let v′(ui, vi) be the function specified in (5). If for i = 1, . . . , n− 1
it holds that

P (Vi+1 = vi+1|Ui = ui, Vi = vi) =

{
1 if vi+1 = v′(ui, vi)
0 otherwise.

then we say that the vehicle behavior is deterministic.

Next we present a corollary of Theorem 1 that specifies an algorithm for the
case of a deterministic vehicle behavior.

Corollary 1. Assume that the vehicle behavior is deterministic. Then

E∗f = Ef (δ∗) = M
V1

P (V1) · ψ(V1) , (19)

where ψ(V1) is computed recursively for i = 1, . . . , n− 1 and for all vi ∈ V as:

ψ(vi) = f
(
vi, v

′(max Ui(vi), vi
))

+ ψ
(
v′
(

max Ui(vi), vi
))

. (20)

The recursion terminal values are defined as ψ(vn) = 0 for all vn ∈ V.

Proof. Formula (20) follows from (18) - the considered criteria is the minimization
of the total time. Therefore maxUi corresponds to picking the highest value from
Ui(vi). Also, note that for the deterministic vehicle behavior and for any potential
ξ(Vi, Vi+1) it holds for all ui ∈ U , vi ∈ V that

M
Vi+1

P (Vi+1|Ui = ui, Vi = vi) · ξ(Vi = vi, Vi+1) = ξ(Vi = vi, Vi+1 = v′(ui, vi)) .

From Corollary 1 we derive computationally efficient Algorithm 1 that can be
used to compute efficiently the optimal speed profile of the vehicle satisfying the
speed constraints. We will use function w(ui, vi+1) that gives the initial speed vi
such that after driving distance s with the control ui the speed is vi+1. The idea
behind the algorithm is that the function f , which is is to be maximized, implies
that the best policy for any vi, i = 1, . . . , n−1 is to speedup as much as possible to
be able to slow down by maximum allowed decceleration to satisfy that v∗j ≤ vmaxj

for all j > i.
First, the maximal speed profile is constructed from the speed constraints and

the maximum decceleration of the vehicle. Second, the best policy is found with
the maximum acceleration until the speed meets the maximum profile constructed
in the first stage of the algorithm.

6 Experiments

In the experiments, we considered the speed and control variables to be discrete,
i.e. sets V,U are finite with the discretization steps being dV , dU , respectively. In
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input : vmaxi , i = 1, . . . , n – maximal speed values
output: v∗i , i = 1, . . . , n – speed values maximizing Ef (see Definition 3)

v∗n = vmaxn ;
for i = n− 1, . . . , 1 do

v∗i = w(−1, v∗i+1);
if (v∗i > vmaxi ) then

v∗i = vmaxi ;
end

end
for i = 1, . . . , n− 1 do

vi+1 = v′(+1, v∗i );
if (vi+1 < v∗i+1) then

v∗i+1 = vi+1;
end

end

Algorithm 1: Optimal speed profile construction for the deterministic vehicle
behavior.

this case we use linear approximations of utility values of vi = v(ui−1, vi−1), vi 6∈ V
by a mixture of utility values vi ≤ vi and vi ≥ vi that are the closest values from
V to vi. The mixture weights are the probabilities that are defined as

P (Vi = v|Ui−1 = ui−1, Vi−1 = vi−1) =





1− |v − vi|
dV

for v = vi, vi

0 otherwise.
(21)

To get an into the problem we performed the following computational experi-
ment. Assume a road section of length 2 km in a flat area and the speed limit of
90 km/h in the whole section and with three short subpaths with the speed limit
of 50 km/h. Let s = 20 m. The speed limit profile of the road can be seen in the
upper part of Figure 3. The area of forbidden speeds is highlighted. The black line
illustrates a speed profile of a car starting with initial speed of 80 km/h, following
the control policy calculated using Theorem 1. The probability potentials were
defined as in (21) and V,U had 100 values.

Using deterministic relation between variables, we are inevitably working with
states of zero probability. If the task is minimization of a criteria the zero proba-
bility values may lead to wrong solutions. Therefore we formulate the problem as
a maximization task. Instead of the minimization of a specific mixture of the fuel
consumption and the total time, we maximize the savings with respect to the worst
performance. As the optimality criteria we use a mixture of the normalized total
time savings and the normalized fuel savings. The normalized utility functions for
the time and fuel savings at segment [i, i+ 1] are defined as

f ti+1 = f t(vi, vi+1) = 1− t(vi, vi+1)

tmax
, ffi+1 = ff (vi, vi+1) = 1− g(vi, vi+1)

gmax
,
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Figure 3: Generated speed profile and corresponding control profile

where t(vi, vi+1) and g(vi, vi+1) are defined by formula (6) and (7), respectively.
tmax and gmax are the maximum possible time spent and fuel consumption in one
segment. In the experiments we used utility function f defined (for α = 0.5)

f =

n−1∑

i=1

αf ti + (1− α)ffi . (22)

Remark 3. For the speeds close to zero the values of t(vi, vi+1) and g(vi, vi+1) are
very high. This would imply high values of tmax and gmax. Consequently, for most
of other speed values the functions f ti+1 and ffi+1 would provide values close to one.
This may cause rounding errors. To avoid this problem we disregard speeds lower
than 4 km/h for the definitions of tmax and gmax.

In Figure 3, we present results of our numerical experiment. In the upper part
the computed optimal speed profile is presented. The corresponding values of the
control variable (the throttle or the brakes) are depicted in the lower part of the
figure. It is interesting to note that most of the time the car is in a so called
flying mode, which is driving with the neutral gear with no throttle or brakes. In
case of a longer road without speed limits, the optimal speed stabilizes (for this
settings) around 80 km/h - see the road section around 900 m. Because there is
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no requirement on the speed at the end - the algorithm decided to enter the flying
mode, similarly, as in the case when the vehicle is approaching 50 km/h speed
limits.

According to Theorem 1, the calculations are performed in the direction from
the road’s furthermost point backwards. The development of the values of the
expected utility function in two randomly selected points of the path can be seen
in Figure 4. Axis x and y correspond to speed and control, axis z refers to the
expected utility. Figure 4a corresponds to the iteration 15 of the algorithm (i = 87),
while Figure 4b corresponds to the iteration 62 (i = 39). Forbidden combinations of
speed and control are not depicted. In Figure 4 the highlighted facets corresponds
to maximal expected utility for the given speed. For every value of speed, we store
respective control as the optimal deterministic policy in this points - see Remark 2.

From Figure 4a we can deduce that the best strategy for a low speed is to use
the full throttle (first, to speed up and than to use the flying mode). For speeds of
about 50− 60 km/h it starts to be better to use the flying mode immediately. For
very high speeds, the optimal strategy has to be to use the brakes in order to satisfy
the speed limits. The overall view of the image suggests that global optimum is
at the highest speeds. It is logical, because with a high initial speed a lot of the
fuel and time can be saved. Figure 4b corresponds to a driving situation just
before reaching one of the speed limits of 50 km/h. Therefore more combinations
of speed and control values are forbidden. However, the shape of the expected
utility function is similar.

Remark 4. Note the scale of axis z in Figures 4a and 4b. Recall that, in every
point, we are using a weighted mixture of normalized utility functions with values
from interval 〈0, 1〉. By maximization, we usually select combinations with values
close to 1 and that is why the values of expected utility corresponds well to the
number of the current algorithm iteration.

Our future goal is to move from discrete variables to the continuous ones. There-
fore, it is interesting to see the shape of the expected utility function with respect
to the control value and for a given speed. Let us take the utility function from Fig-
ure 4a and select five speed values. Respective slices are depicted in Figure 5. The
gray solid lines show values from Figure 4a, the black lines show piecewise-linear
approximations of each line. All approximations are composed from three lines. To
find the best approximation of each curve, we used R package segmented (Muggeo,
2008). The package estimates linear and generalized linear models with one or more
segmented relationships in the linear predictor. Estimates of the slopes and of the
(possibly multiple) breakpoints are provided. In our experiments, we decided to fix
the number of breakpoints to two and let the algorithm find their best positions.

In an influence diagram with continuous variables we would need to represent
the optimal control policy at each step i by a function ui : V → U (see Definition 2).
The optimal control policy at point i = 87 of the path is depicted in Figure 6. We
can see that piecewise linear functions may again represent good approximations.
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7 Conclusions

We applied influence diagrams to optimization of a vehicle speed profile and per-
formed numerical experiments on a 2-km-long path with few speed constraints.
We considered optimality criteria based on a mixture of the fuel consumption and
the total driving time. We derived the general inference algorithm for this type
of influence diagrams and presented efficient modifications of this algorithm for
specific cases. Finally, we used the numerical experiments to elicit the shape of
expected utility and policy functions. In both cases piecewise linear functions seem
to be good approximations that can be used in influence diagrams with continuous
variables.
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A Proof of Theorem 1

Proof. For any j = 1, . . . , n we will denote the joint probability distribution as

P (U1, . . . , Uj , V1, . . . , Vj) = P (V1) ·
j∏

i=2

P (Vi|Ui−1, Vi−1) · δ(Ui−1|Vi−1)

and the total utility as

f(V1, . . . , Vj) =

j−1∑

i=1

f(Vi, Vi+1) .

For the maximal expected value it holds that

E∗f

= max
U1,...,Un−1

M
V1,...,Vn

(
P (U1, . . . , Un−1, V1, . . . , Vn) · f(V1, . . . , Vn)

)

= max
U1,...,Un−1

M
V1,...,Vn

(
P (U1, . . . , Un−1, V1, . . . , Vn)

·
(
f(V1, . . . , Vn) + ψ(Vn)

)
)

(23)

= max
U1,...,Un−1

M
V1,...,Vn−1




P (U1, . . . , Un−1, V1, . . . , Vn−1)

·
∑

Vn

P (Vn|Vn−1, Un−1) ·




f(V1, . . . , Vn−1)

+f(Vn−1, Vn)

+ψ(Vn)







.
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We can write

E∗f = max
U1,...,Un−1

M
V1,...,Vn−1




P (U1, . . . , Un−1, V1, . . . , Vn−1)

·
(
ξ(V1, . . . , Vn−1) + ψ(Un−1, Vn−1)

)

 ,

where

ξ(V1, . . . , Vn−1) = M
Vn

(
P (Vn|Vn−1, Un−1) · f(V1, . . . , Vn−1)

)
(24)

ψ(Un−1, Vn−1) = M
Vn

P (Vn|Vn−1, Un−1) ·
(
f(Vn−1, Vn) + ψ(Vn)

)
. (25)

Equation (24) can be simplified to

ξ(V1, . . . , Vn−1) =
(
M
Vn

P (Vn|Vn−1, Un−1)
)
· f(V1, . . . , Vn−1) (26)

= f(V1, . . . , Vn−1) , (27)

where the second transformation is due toM
Vn

P (Vn|Vn−1, Un−1) = 1. This implies

E∗f = max
U1,...,Un−1

M
V1,...,Vn−1




P (U1, . . . , Un−1, V1, . . . , Vn−1)

·
(
f(V1, . . . , Vn−1) + ψ(Un−1, Vn−1)

)

 .

As the next step, we will for each vn−1 ∈ V find a value un−1 of decision variable
Un−1 that maximizes Ef over the terms containing Un−1. Note that the value of
Un−1 cannot influence the past since when deciding on Un−1 the value of Vn−1 is
already known. It means that the values of Vn−1 effectively separate the influence
diagram into two parts and maximization over Un−1 can be performed only in the
part containing Un−1:

E∗f = max
U1,...,Un−2

M
V1,...,Vn−1




P (U1, . . . , Un−2, V1, . . . , Vn−1)

·max
Un−1

δ(Un−1|Vn−1) ·
(
f(V1, . . . , Vn−1)
+ψ(Un−1, Vn−1)

)

 .

Since f(V1, . . . , Vn−1) does not depend on Un−1 we get

E∗f = max
U1,...,Un−2

M
V1,...,Vn−1

(
P (U1, . . . , Un−2, V1, . . . , Vn−1)
· (f(V1, . . . , Vn−1) + ψ(Vn−1))

)
. (28)

where

ψ(Vn−1) = max
Un−1

ψ(Un−1, Vn−1) .

From formula (23) we can get formula (28) by substituting n− 1 for n. Therefore
we can repeat the transformations again and again until n = 2. In case n = 2
formula (28) reduces to

E∗f = M
V1

P (V1) · ψ(V1) ,

which is formula (17) of the theorem we want to prove.
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