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Abstract—We present the enrichment of the Prague
Texture Segmentation Data-Generator and Benchmark
(PTSDB) to include the assessment of the remote sensing
(RS) image segmenters. The PTSDB tool is a Web-based
(http://mosaic.utia.cas.cz) service designed for real-time perfor-
mance evaluation, mutual comparison, and ranking of various
supervised or unsupervised static or dynamic image segmenters.
PTSDB supports rapid verification and development of new
segmentation approaches. The RS datasets contain ten spectral
Advanced Land Imager (ALI) satellite images, their RGB subsets,
and very-high-resolution GeoEye RGB images, with optional
additive-noise-resistance checking. Alternative setting options
allow us to also test scale, rotation, or illumination invariance. The
meaningfulness of the newly proposed dataset is demonstrated by
testing and comparing several RS segmentation algorithms, and
showing that the benchmark figures provide a solid framework
for the fair and critical comparison among different techniques.

Index Terms—Benchmark, remote sensing (RS) segmentation,
supervised segmentation, unsupervised segmentation.

I. INTRODUCTION

S ATELLITE image segmentation is currently a consol-
idated prerequisite for successful remote sensing (RS)

scene analysis, used, e.g., in crop inventory, geological
and environment surveys, and military applications. Recent
advances in RS technologies, and the consequent increase in
the availability of RS data, have further pushed forward the
development of segmentation-based applications [1]–[4], and
several commercial products in RS image analysis, such as
the eCognition [5] and ENVI [6] suites, are by now equipped
with sophisticated segmentation tools. This scenario motivates
a growing number of research activities on image segmentation.
However, the diversity in both the kind of available data sources
and the targeted applications has given life to a vast range of
approaches and solutions [7]–[11], which are not supported by
reliable and objective means to compare the performance of
different techniques.
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Very limited efforts have been made, in fact, to develop suit-
able quantitative measures of segmentation quality, especially
in the case of RS. In this field, it is, in fact, quite common
that researchers use their own data and related ground-truths,
which are not publicly available to others, and present only
a few carefully selected positive examples as validation for a
new algorithm. This habit definitely encourages the proposal
of more and more new techniques, whatever their actual mer-
its, rather than the advancement of the most promising image
segmentation approaches.

The optimal approach to check several variants of a devel-
oped method by carefully comparing the results with the state-
of-the-art in this area is practically impossible because most
methods are either too complicated or insufficiently described
to be implemented in an acceptable time frame. Since no bench-
mark oriented to the development of segmentation methods
for RS is available, we have generalized the Prague Texture
Segmentation Data-Generator and Benchmark (PTSDB) [12]
for the RS data applications. The solution is implemented in the
form of a Web-based data generator and benchmark software
suite. In particular, our proposal is aimed at both facing the lack
of a rich shared dataset for evaluation, and allowing for a deep
critical view on each technique’s advantages and drawbacks as
well as fairer comparisons among different methods.

In fact, it is well known that proper testing and robust learn-
ing of performance characteristics require large test sets and
objective ground-truths, which are unrealistic requirements for
natural satellite images. Thus, the satellite test images that
are actually used are inevitably few, and they share the same
drawbacks—subjectively generated ground-truth regions and
limited extent of such a set, which is very difficult and expen-
sive to enlarge. These problems motivated our preference for
random mosaics with randomly filled satellite textures even
if they only approximately correspond to satellite scenes. The
most appealing feature of this tradeoff is the unlimited number
of different test images with the corresponding objective and
free ground-truth map available for each of them.

Moreover, to cope with the diversity of methods and tar-
geted applications, we opt for a feature-rich scheme, which
relies, on one hand, on a precise algorithm taxonomy concern-
ing the employment of user-provided information (supervised
segmentation, number of classes, map selection from a hierar-
chical stack, etc.) and, on the other hand, on a wide spectrum
of performance metrics. This latter aspect is particularly impor-
tant, since it favors the emergence of qualifying points as well
as their validation, through the analysis of the correspondences
among related indicators.
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II. BENCHMARK

The PTSDB is a Web-based (http://mosaic.utia.cas.cz) ser-
vice [12] designed for real-time performance evaluation, mutual
comparison, and ranking of various supervised or unsupervised
static or dynamic image segmenters. The key objective of the
PTSDB is to compute several accuracy measures for each given
algorithm over the selected dataset. Once different segmenta-
tions have been collected over a given dataset, it is then possible
to score them with respect to any of the computed accuracy
indicators. This is of critical importance for three main reasons
as follows:

1) to check the progress of an algorithm’s development;
2) to mutually compare any two methods;
3) to track and measure the progress toward human-level

segmentation performance over time.
A correct experimental evaluation should compare the tested

method to several leading alternative algorithms, using a suf-
ficiently large test image dataset and employing several eval-
uation measures for such comparison (in the absence of one
clearly superior measure). Contrary to the prevailing practice
when single authors verify their methods on a few carefully
selected and thus noninformative positive examples, our bench-
mark possesses all these mentioned important features. While
the color benchmark textures were chosen intentionally to
produce unusually difficult tests in order to leave large mar-
gins for better segmentation algorithms to be derived in the
future, the ALI multispectral textures contain richer spectral
information and their textural analysis thus is less demanding.
The benchmark operates either in the full mode for registered
users (unrestricted mode—U) or in a restricted mode. The
benchmark allows users: to obtain customized experimental
satellite texture mosaics and their corresponding ground-truths
(U); to obtain the benchmark mosaic sets with their corre-
sponding ground-truths; to evaluate working segmenters and
compare them with the state-of-the-art methods; to update the
benchmark database (U) with an algorithm’s details; to assess
robustness with respect to noise; to check single mosaics’ eval-
uation details (the criteria values and the resulting thematic
maps); to rank segmentation algorithms according to the most
common benchmark criteria; to obtain LaTeX- or MATLAB-
coded result tables (U); and to select a user-defined subset of
the criteria (U).

A. RS Data

Generated texture mosaics as well as the benchmarks are
composed of the following texture types: 1) gray-scale textures
(derived from the corresponding color textures); 2) color tex-
tures; 3) bidirectional texture function (BTF) textures; 4) ALI
and GeoEye multispectral satellite images; 5) dynamic textures;
6) rotation invariant texture sets; 7) scale-invariant texture sets;
and 8) illumination invariant texture sets and several invariant
combinations.

The RS benchmark proposed here uses the Advanced Land
Imager (ALI) and the high-resolution GeoEye observations.

The EO-1 (Earth Observing-1—http://eo1.usgs.gov) ALI is
the first Earth-observing instrument to be flown under NASA’s

TABLE I
ALI AND GEOEYE BANDS AND SPECTRAL RANGES

New Millennium Program (NMP). The ALI employs novel
wide-angle optics and a highly integrated multispectral and
panchromatic spectrometer. The focal plane for this instrument
is partially populated with four sensor chip assemblies (SCAs)
and also covers 3◦ × 1.625◦. Operating in a pushbroom fashion
at an orbit of 705 km, the ALI provides Landsat-type panchro-
matic and multispectral bands. These bands have been designed
to mimic six Landsat bands with three additional bands cov-
ering 0.433–0.453, 0.845–0.890, and 1.20–1.30 µm. The ALI
also contains wide-angle optics designed to provide a continu-
ous 15◦ × 1.625◦ field of view for a fully populated focal plane
with 30-m resolution for the multispectral pixels and 10-m
resolution for the panchromatic pixels.

GeoEye-1 [13] was launched in 2008 and simultaneously
captures image detail up to 0.41 m for panchromatic images
and 1.65 m for multispectral images. The benchmark uses pan-
sharpened (0.5-m resolution) color (RGB) images (fusion of
multispectral and panchromatic bands).

ALI and GeoEye bands and spectral ranges are listed in
Table I. The benchmark uses 31 multispectral ALI and 52
GeoEye color textures categorized into 12 thematic classes. The
thematic classes on each satellite data differ. The satellite tex-
ture parts, which are not used in the corresponding test mosaics,
are used as separate training sets in the benchmark-supervised
mode.

B. Benchmark Sets Creation

Benchmark 512× 512 test mosaics are built by means of a
Voronoi polygon random generator, and filled with randomly
selected ALI/GeoEye textures. It is worth emphasizing that
smaller and irregularly shaped objects are more difficult to
segment than larger and regular shaped (square or circular)
ones. ALI/GeoEye benchmarks (multispectral and RGB) are
generated upon request in three quantities (10, 40, and 90
test mosaics) either in unsupervised or supervised mode, the
latter including additional separate training sets. If required,
however, any number of such mosaics can be generated. With
each texture mosaic, the corresponding ground-truth and mask
images are included. The RS benchmark allows us to check
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the segmenter noise resistance. All generated mosaics may be
corrupted with additive Gaussian, Poisson, or salt and pepper
noise. Alternative benchmarks allow us to also test scale and
rotation or illumination invariance of the evaluated segmenta-
tion algorithm.

C. Performance Evaluation

The uploaded benchmark segmentation results are assessed,
(permanently—U) stored in the database, and used to rank
the segmenter according to a chosen criterion. PTSDB uses
the most common 27 evaluation criteria sorted into 4 the-
matic groups: 1) region-based (5+5) [14]; 2) pixel-wise (11+1);
3) consistency measures (2) [15]; and 4) clustering com-
parison criteria (3) [16]. The performance criteria mutually
compare ground-truth image regions with the corresponding
machine segmented regions. The basic region-based criteria
available [14] are correct segmentation, over-segmentation,
under-segmentation, missed error, and noise error. All these
criteria are available either with a single threshold parame-
ter setting or in the form of performance curves and their
integrals. The pixel-wise group contains the most common clas-
sification criteria such as the omission and commission errors,
class accuracy, recall, precision, and mapping score. The con-
sistency criteria [15] are global and local consistency errors.
Finally, the last set contains three clustering comparison mea-
sures [16]. A detailed description of all these criteria (see
http://mosaic.utia.cas.cz [12]) would go beyond the scope of
this paper.

Uploaded results are also grouped according to the level of
user interaction of the corresponding segmentation technique.
Three possibly concomitant flags can be set when uploading,
specifying whether 1) the used method is supervised (training-
based classification); 2) the uploaded result is hand-picked from
a hierarchical stack; and 3) the number of different ground-truth
objects is given a priori. The efficiency of segmentation meth-
ods themselves cannot be considered because the benchmark
obtains final segmentation results only.

III. SAMPLE METHODS

A. A Binary Tree-Structured Segmenter Family

The dynamic hierarchical classifier (DHC) [17] is one of
the best performing unsupervised algorithms tested on the ALI
dataset. It follows a top-down binary splitting paradigm, provid-
ing a stack of nested hierarchical segmentations. In particular,
it combines two different segmentation methods that share the
same paradigm: 1) the tree-structured Markov random field
(TS-MRF) algorithm [18] and 2) the recursive-TFR (R-TFR)
[19], which is an evolution of the texture fragmentation and
reconstruction (TFR) algorithm proposed in [20]. The former
is a spectral-oriented method where spatial regularity is con-
trolled by means of an MRF [21] prior model. The latter is
a texture-oriented method especially suited for macro-textured
images. Given the DHC methodological roots, the authors
have primarily used the benchmark to assess its performances
w.r.t. TS-MRF and R-TFR, which had been previously tested

on the same ALI dataset. These three intimately interrelated
techniques are briefly recalled in the following.

TS-MRF is a recursive segmentation algorithm. The whole
image of interest, namely the set of sites S and the correspond-
ing observables y is associated with the root of a tree. A binary
split divides S in two disjoint subsets S left and Sright, each
with its subset of observables, associated with the root children.
Recursion on the newly generated nodes, driven by a suitable
parameter (split gain) to establish split priority/opportunity,
produces a binary tree of classes and the associated segmen-
tation of the image. At each node t, segmentation is carried out
according to the MAP criterion

x̂t = argmax
x

p(xt|yt) = argmax
x

p(yt|xt)p(xt) (1)

where p(·) indicates probability mass/density function (pmf or
pdf) xt is the label map, and x̂t is, therefore, the most proba-
ble map given the observables. The label map is modeled by a
suitable MRF (see [18] for further details) to control the spa-
tial regularity of x̂t, while the data field yt is assumed to be
a spatially independent Gaussian given the labeling xt, i.e.,
p(yt|xt) =

∏
s∈St p(yts|xt

s), with yts|xt
s ∼ N(µt,Ct).

R-TFR, an evolution of the TFR algorithm, is instead oriented
to the segmentation of textured images. TFR, in particular,
comprises three major processing steps:

1) spectral-based segmentation;
2) segment clustering;
3) progressive cluster merging.
The first step detects all elementary spectrally homogeneous-

connected regions by means of any conventional region-based
or edge-based segmenter. The second step forms clusters of seg-
ments that are similar in terms of spectral response, shape, and
contextual interaction with the neighboring segments. The final
step reconstructs the desired textures by progressive pair-wise
merging of clusters. A suitable merging gain (called texture
score) [20] is defined to decide which texture components
should be merged at a given step. In particular, if we choose
to stop this reconstruction process just before the last merging,
we get a binary segmenter, namely the binary-TFR. Now, dis-
posing of a texture-based binary segmentation engine, we can
recursively apply it in a top-down fashion, following the same
paradigm as TS-MRF, obtaining the recursive-TFR. The reader
is referred to [19] for additional details on R-TFR.

DHC shares the split-wise paradigm with TS-MRF and
R-TFR, and, in particular, it inherits their core binary segmenta-
tion engines: a binary-MRF and a binary-TFR. Each node/class
is split in both ways and, according to a given criterion, the
“best” split is accepted. Therefore, the overall segmentation
process switches dynamically between two competing segmen-
tation modeling types, a spectral-based and a texture-based one.

The DHC process is driven by proper “split gains,” assigned
locally to each node of the segmentation tree, which indicate
both the priority of the node split and the most appropriate seg-
mentation engine. The concept of split gain was introduced to
control the TS-MRF evolution [18], and is basically a likelihood
ratio between the split and the nonsplit hypotheses for the given
node: given a partition of the data attached to the node of inter-
est, the split gain balances the statistical fitting gain provided
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by the split with its representation cost. In particular, DHC
defines two different gains by assessing the fitting gain with
two different data models. The former GS,t, where t indicates
the associated node, is the original split gain used in TS-MRF,
where each class is assumed to be normally distributed. In
DHC, GS,t is used to assess the goodness of the spectral-based
split (binary-MRF). GT,t is used, on the other hand, to score
the texture-based split (binary-TFR), and assumes each class to
be a Gaussian mixture (obviously, the hypothesis better suited
for textures). For each node t, the model with the largest score
is chosen and a score Gt = max{GS,t, GT,t} is associated
with node t, fixing the split priority. Eventually, the segmen-
tation proceeds, first splitting the leaves with the higher score.
Accordingly, the output will be a sequence S2, S3, . . . , SM

of segmentations in 2, 3, . . . ,M classes, respectively, i.e., a
hierarchical segmentation.

DHC, as well as TS-MRF and R-TFR, has been tested on
the ALI benchmark in two configurations: 1) DHC/M, where
the segmentation Sk is hand-picked from the hierarchical stack
based on the number of regions singled out; and 2) DHC/K,
where the number of classes k is given a priori.

B. Markovian Parameter Space Segmenter Family

MW3AR is an unsupervised multispectral, multiresolution,
multiple-segmenter [22] for textured images with an unknown
number of classes. The segmenter is based on a weighted com-
bination of several unsupervised segmentation results, each in
different resolution, using the modified sum rule. Multispectral
textured image mosaics are locally represented by four causal
directional multispectral random field models recursively eval-
uated for each pixel. A single local texture model is expressed
as a stationary, causal, uncorrelated, noise-driven, 3-D, and
autoregressive process [23]

Yr = γXr + er (2)

where γ = [A1, . . . , Aη] is the parameter matrix, r = [r1, r2] is
the regular lattice multiindex, Icr is a causal neighborhood index
set with η = card(Icr), and er is a white Gaussian noise vector
with zero mean and a constant but unknown covariance, Xr is
the corresponding vector of the contextual neighbors Yr−s. The
single-resolution segmentation part of the algorithm is based
on the underlying Gaussian mixture model and starts with an
over-segmented initial estimation, which is adaptively modified
until the optimal number of homogeneous texture segments is
reached.

AR3D+EM method [24] is the simplified single-resolution,
single-segmenter version of the MW3AR unsupervised
segmenter.

C. Commercial Segmenters

eCognition software distributed by Trimble [5] provides a
multiscale segmentation algorithm based on region growing
whose detailed description is given in [25]. It starts with each
pixel forming one image object or region. At each step, a pair
of image objects is merged into one larger object. The merging

decision is based on the similarity of adjacent image objects.
A merging cost is hence defined by weighting this similarity
measure with suitable shape priors (size, compactness, etc.).
These costs represent a degree of fitting. At a given step of
the procedure, the degree of fitting is evaluated for each cou-
ple of adjacent objects, and the fusion corresponding to the
lower merging cost is performed if it is smaller than a given
least degree of fitting. The procedure stops when no further
merges are possible. Evidently, a smaller least degree of fit-
ting allows fewer merges than a larger one. Therefore, the
size of the resulting image objects will grow with the least
degree of fitting value, which is why this parameter is often
referred to as a scale parameter. This parameter, together with
the weights related to the shape priors, allows the user to set the
scale of interest. For evaluation, we refer to this technique as
eCognition/M, to specify that segmentation at each step is
achieved by manually choosing the most appropriate scale
parameter, while all other parameters are fixed. This concep-
tually corresponds to a manual pick from a set of hierarchical
segmentation maps.

ENVI (Environment for Visualizing Images) is a commercial
software platform, distributed by Exelis [6], which is widely
employed in RS applications. Among the several functional-
ities embedded, it also provides a region-based segmentation
tool resorting to the proprietary algorithm described in [26].
In particular, ENVI provides a watershed-based segmentation
algorithm where the topographic surface utilized is a modified
gradient magnitude. An initial gradient computed on a prop-
erly (edge-preserving) filtered version of the input image is
somehow made “uniform in scale” in scale through the den-
sity function of the gradient map. Hence, the user interactively
chooses the optimal threshold for the modified gradient to
which the watershed transform is eventually applied. Note that,
unlike eCognition, the selected threshold only indirectly fixes
the scale of the retrieved segmentation map, since no explicit
control of the shape and size of objects is possible. As for
eCognition, the use of different thresholds results in a set of
nested segmentations. Therefore, this technique is referred to
as ENVI/M in experiments, since the thresholds are adaptively
chosen for each test image.

D. Supervised Methods

The compared supervised classifiers implemented in
RapidMiner 5 [27] (kNN, UPGMA+kNN, 1NN, AM+kNN,
Neuralnet) are, respectively, four variants of the k-nearest
neighbor method and a multilayer feed-forward neural network
segmenter, using local means or features selected from the
hierarchical agglomerating unweighted pair group clustering
(UPGMA), followed by the majority filter postprocessing.

IV. COMPARATIVE ANALYSIS

To prove the effectiveness and large-scale potential of the
proposed RS segmentation benchmark, we perform here a com-
parative analysis of several techniques by means of a critical
reading of the related score tables available on the benchmark
website. In particular, several unsupervised techniques from the
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Fig. 1. Sample segmentation results for the ALI dataset. From left to right: the mosaic, the ground-truth, and the segmentations provided by eCognition/M,
DHC/M, R-TFR/M, MW3AR, kNN, and NeuralNet.

two families defined in Section III are compared in detail, which
differ significantly both in the approach and the methodology.

A. ALI Dataset

Fig. 1 shows segmentation results for three selected 512×
512 mosaics from the ALI benchmark comprising from 5 to 11
multispectral satellite textures. The first two columns show the
mosaics and their corresponding ground-truths. The remaining
six show the segmentation maps provided by six alterna-
tive algorithms: 1) eCognition/M; 2) DHC/M; 3) R-TFR/M;
4) MW3AR; 5) kNN; and 6) NeuralNet. Note that the last two
of these segmenters are supervised (kNN and NeuralNet).

Integrated numerical results over the whole normal ALI
benchmark (ten different mosaics) are shown in Table II, where
↑ / ↓ denotes the required criterion direction, and bold numbers
mark the best criterion value achieved from the 15 compared
methods.

The results obtained using the eCognition commercial soft-
ware achieve the highest ranking for most of the proposed
figures. The quality of the corresponding segmentation maps
is easily confirmed by visual inspection (see Fig. 1). However,
despite the large performance gap with the other methods, it
must be considered that eCognition is a region growing method,
hence naturally providing connected component segmentations.
Moreover, the fixed-scale approach allows for the extraction
of regularly shaped objects that do not differ significantly in
size. Both of these facts, which may not be appropriate in
real-world cases, turn out to be advantageous here, where com-
pact ground-truths generated through Voronoi tessellation are
considered. As a matter of fact, eCognition provides a seg-
mentation tool, which is particularly suitable for the proposed
test images. For these reasons, we might reasonably consider
eCognition as a performance “trendsetter” for unsupervised
segmentation in this context. Nevertheless, it must also be
pointed out that user interaction is made considerably heavy by
the manual assessment of the shape weights (fixed for all test
images) and the selection of the scale parameters (adaptively

for each test image). This analysis is confirmed by the fact
that results achieved using ENVI/M, which does not make use
of any “direct” scale prior while adopting a similar connected
component approach, are less satisfying. Over-segmentation is,
in particular, more significant w.r.t. the top ranked techniques.

On the basis of the above-mentioned considerations, a more
equitable comparison can be made among the other techniques.
Standing on the overall scores of Table II, DHC/M ranks just
below eCognition/M on most of the benchmark criteria and
outperforms many of the supervised methods. In conformity
with previous techniques of the same family of methods, which
were previously also tested on the color texture benchmark
[28], this technique once again proves to be effective in extract-
ing large-scale textures. The choice of relying selectively on
spectral and textural properties is particularly rewarding on the
ALI dataset, where textured patches are often intertwined with
areas in which the sole spectral information is more relevant.
In numbers, DHC/M outperforms other techniques on region-
based figures (CS/OS/US and class/object accuracies), helped
by the selection of a segmentation map from the hierarchical
stack whose scale matches that of the ground-truth. The low-
est ranking criteria for DHC/M are error measures (ME/NE
and LCE/GCE). This is mainly caused by the absence of a
connected component approach, which leads to misclassifica-
tion of smaller spectral/textural outliers. This clearly highlights
the tradeoff between the accuracy at higher scales and the
preservation of finer details.

The comparative analysis of DHC limited to its ancestors,
R-TFR and TS-MRF, highlights one of the claimed objectives
of the benchmark (“to check the progress of algorithm devel-
opment”). In this case, the benchmark provided a quantitative
answer to a fundamental question related to the DHC method:
is it right to compare the two gains, GS,t and GT,t, to decide
whether to use a MRF or a TFR engine to split any node t?
Regardless of the theoretical formulation, numerical evidence
states that it is a good choice for the ALI dataset.

Both the techniques of the autoregressive model-based
family, namely AR3D+EM and MW3AR, provide very
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TABLE II
ALI BENCHMARK RESULTS FOR ECOG/M, DHC/M, R-TFR/M, MW3AR, DHC/K, ENVI/M, AR3D+EM, R-TFR/F, TS-MRF/M,

TS-MRF/K, KNN, NEURALNET, UPGMA+KNN, 1NN, AND AM+KNN

Benchmark criteria: CS, correct segmentation; OS, over-segmentation; US, under-segmentation; ME, missed error; NE, noise error; O, omission error; C,
commission error; CA, class accuracy; CO, recall—correct assignment; CC, precision—object accuracy; I, type I error; II, type II error; EA, mean class
accuracy estimate; MS, mapping score; RM, root mean square proportion estimation error; CI, comparison index; GCE, global consistency error; LCE, local
consistency error; dD, Van Dongen metric; dM, Mirkin metric; dVI, variation of information.

interesting error measures, which are worth a deeper insight.
Despite the high over-segmentation (OS criterion), AR3D+EM
ranks first on both the LCE and GCE indicators. These consis-
tency figures are known to provide indications on how much a
given segmentation map can be considered the refinement of the
reference ground-truth. However, in the general case, a deeply
over-segmented map can achieve very low LCE and GCE val-
ues; hence, we need to consider other figures to validate this
possible qualifying point. A positive counter-check is first given
by region based error measures (ME/NE), on which AR3D+EM
exhibits a very good score, confirming that no significant mis-
classification has taken place. The good value of the precision
measure (CC) is another confirmation that most of the extracted
details are relevant, although the low recall (CO) indicates that
some others are missing.

The MW3AR technique shows a significant improvement
of the performance compared to its predecessor, providing out-
standing values for the region-based error measures (ME/NE),
which indicate a distinct potential in avoiding wrong contours.
These two indicators are somehow complementary to the other
region-based figures (CS/OS/US) [14]; it can be interesting to
observe how values for this class of indicators have been redis-
tributed with respect to AR3D+EM. It is immediate to notice
that the higher CS is accompanied by a lower OS and more
significant under-segmentation (US). This behavior is typical
of segmentation particularly sensitive to the scale of objects:
in principle, if the scale of segmentation is fixed, objects
above or below this targeted scale are, respectively, under- and
over-segmented. This observation is confirmed by the visual
inspection of results, whereas the results provided by MW3AR

TABLE III
GEOEYE BENCHMARK RESULTS FOR ECOG/M, R-TFR/M,

DHC/M, AR3D+EM, ENVI/M, TS-MRF/M

For benchmark criteria, see Table II.

exhibit a more uniform scale compared to AR3D+EM, mainly
in terms of spectral differences.

Finally, recall that neither of these methods makes use of any
provided information, which further attests to the quality of the
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Fig. 2. Sample segmentation results for the GeoEye dataset. From left to right: the mosaic, the ground-truth, and the segmentations provided by eCog/M,
R-TFR/M, DHC/M, AR3D+EM, ENVI/M, and TS-MRF/M.

results shown here. In conclusion, AR3D+EM shows a good
potential for finer segmentations, which could either be applied
to object layer extraction or integrated into a hierarchical
framework. MW3AR successfully addresses the problems of
over-segmentation of AR3D+EM, achieving a better overall
score at the price of a reduced flexibility in detecting contours
among regions at different scales.

A similar analysis can be conducted to make comparisons
with other techniques currently reported on the benchmark
websites, both supervised and unsupervised, which will be left
to the reader to explore.

A final remark concerns supervised segmentation techniques:
their results are, unexpectedly, globally less accurate than for
unsupervised ones, except for the technique denoted as kNN.
This outcome is due to the fact that they all use oversimpli-
fied features (local arithmetic averages), which cannot compete
with the state-of-the-art textural features (color Markovian,
LBP) utilized by the unsupervised segmenters. This result
demonstrates the importance of textural representation for mod-
ern high-resolution RS data. Similarly, for the top scoring
kNN technique, the decision rule for clustering is less pre-
cise than the Gaussian-mixture-model-based used in MW3AR
and AR3D+EM methods, as testified by the higher error val-
ues (ME/NE/LCE/GCE) reached using these techniques. In this
case, the benchmark also shows its potential in highlighting
room left for future research, which is probably the ultimate
finality for this class of tools.

B. GeoEye Dataset

The GeoEye dataset has been recently introduced to extend
the capabilities of the benchmark to sensors providing very high
spatial resolution images. This dataset is currently experimen-
tal, and is expected to evolve in the near future.

Switching the resolution up to one-tenth of a meter, one must
deal with the occurrence of very long range textural patterns and
out-of-scale objects, which makes the extraction of regions of

interest a particularly challenging task. In result, all the bench-
marked techniques perform uniformly worse than on the ALI
dataset, as shown in Table III. Segmentation maps provided by
several sample methods are depicted in Fig. 2.

Again, the eCognition segmentation tool performs best for
this type of image. This further proves that, in the absence of a
proper high-level modeling of complex scenes, the prior density
ensuring the desired scale/compactness features of this method
better matches the characteristics of the test images. Needless to
say, the assessment of parameters has required a greater effort
w.r.t. other techniques.

Evidently, spectral-based techniques such as TSMRF/M per-
form poorly on these datasets. Methods which introduce a
fine-to-coarse texture modeling, such as ENVI/M and espe-
cially AR3D+EM, can progressively better capture interactions
among image elements, providing a better CS and low error
measures (ME/NE/LCE/GCE). A higher region-based accuracy
can be achieved with DHC/M and R-TFR/M, which specifi-
cally account for long-range textures, at the price of higher error
figures. R-TFR/M, in particular, outperforms DHC/M, which
in the absence of robust textural information tends to rely on
a spectral-based segmentation, which is unsuitable for these
images.

V. CONCLUSION

The implemented supervised/unsupervised RS segmenta-
tion benchmark is the fully automatic Web application, which
enables us, for the first time, to objectively compare image
segmentation algorithms on extensive test sets, thereby pro-
viding an important tool for the progress of new segmentation
methods. RS classifiers can be ranked based on a best-fitting cri-
terion chosen from the set of 27 distinct criteria. Test mosaics
as well as ground-truths are automatically generated, which
both guarantees the objective evaluation and the easy gener-
ation of extensive test sets which are otherwise infeasible to
achieve. PTSDB verifies single algorithms against others on
multispectral or RGB ALI and high-resolution color GeoEye
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satellite data and tests their noise resistance. The researchers
can quickly and effectively compare their progress and check
their performance characteristics.

Further developments are currently being carried out to
address several issues. On one hand, the generation of ground-
truths, which better approximate real circumstances (varying
scale, spatial distribution, and shape of regions of interest), is
being addressed. Moreover, for the newly introduced GeoEye
dataset, the generation of bigger images, to favor the emergence
of texture patterns, is being taken into account.
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