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Abstract—Visual texture restoration strives not necessarily to
recover the exact pixel-wise correspondence with some original
unobservable texture but rather a texture which is visually
indiscernible from the original one. This differs from the standard
image restoration objective so it can consequently lead to different
restoration techniques. A novel multispectral texture restoration
method, capable to reduce simultaneously additive noise and
to restore missing textural parts is presented. The restoration
method is based on a descriptive, unusually complex, three-
dimensional, spatial Gaussian mixture model. The model is
inherently multispectral thus it does not suffer with the spectral
quality compromises of the most alternative approaches.

I. INTRODUCTION

Physical imaging systems and a recording medium are
imperfect and thus a recorded image represents a degraded
version of the original scene. Similarly an image is usually
further corrupted during its processing, transmission or storage.
The image restoration task is to recover an unobservable image
given the observed corrupted image with respect to some
statistical criterion. Image restoration is the busy research
area for already several decades and numerous restoration
algorithms have been proposed [1], [2], [3], [4]. However, this
ill-defined task is application dependent and far from being
solved.

Visual texture typically represents a surface material ap-
pearance. Although, there is no mathematically rigorous def-
inition of texture, textures share some common determining
properties [5] such as homogeneity, scale dependency, etc.

Texture restoration slightly differs from the general image
restoration in its ultimate goal, which is to recover the ideal
unobservable original image. Texture restoration aim is not to
recover the pixel-wise correspondence with such an original
unobservable texture but rather a texture which is visually
indiscernible from the original one. There are significantly
fewer methods [6], [7], [8], [9], [10], [11], [12] focused on
visual texture restoration and the majority of the model based
techniques are restricted to gray-scale [8], [12] or even binary
textures [11]. Some methods are restricted to noise restoration
[9], [12] only. In-painting techniques cannot reduce noise and
inevitably introduces more or less visible artifacts on restored
scratch areas due to compromised patch replacement, e.g., [10].

The presented contribution is the high quality visual texture
restoration method based on a non-trivial inherently multispec-
tral spatial 3D Gaussian mixture model (3DGMM), which has
the noise restoration as well as the scratch removal capability.

II. SPATIAL 3D GAUSSIAN MIXTURE MODEL

A homogeneous static texture image Y is assumed to
be defined on a finite rectangular N1 × N2 × d lattice I ,
r = (r1, r2, r3) ∈ I denotes a pixel multiindex with the row,
columns and spectral indices, respectively. Let us suppose that
Y represents a realization of a random vector with a proba-
bility distribution P (Y ). The statistical properties of interior
pixels of the moving window on Y are translation invariant
due to assumed textural homogeneity. They can be represented
by a joint probability distribution and the properties of the
texture can be fully characterized by statistical dependencies
on a sub-field, i. e., by a marginal probability distribution of
spectral levels on pixels within the scope of a window centered
around the location r and specified by the index set:

Ir = {r + s : |r1 − s1| ≤ α ∧ |r2 − s2| ≤ β} ⊂ I .

The index set Ir depends on a modeled visual data and can
have any other than this rectangular shape. Y{r} denotes the
corresponding matrix containing all Ys in some fixed order
arrangement such that s ∈ Ir, Y{r} = [Ys ∀ s ∈ Ir],
Y{r} ⊂ Y , η = cardinality{Ir} and P (Y{r}) is the corre-
sponding marginal distribution of P (Y ).

A. 3D Gaussian Mixture

If we assume the joint probability distribution P (Y{r}), in
the form of a normal mixture

P (Y{r}) =
∑

m∈M
p(m)P (Y{r} |μm,Σm) Y{r} ⊂ Y ,

=
∑

m∈M
p(m)

∏
s∈Ir

ps(Ys |μm,s,Σm,s) (1)

where Y{r} ∈ �d×η is d×η matrix, μm is d×η mean matrix,
Σm is d×d× η a covariance tensor, and p(m) are probability
weights and the mixture components are defined as products
of multivariate Gaussian densities

P (Y{r} |μm,Σm) =
∏

s∈I{r}

ps(Ys |μms,Σms) , (2)

ps(Ys |μms,Σms) =
1

(2π)
d
2 |Σm,s| 12

(3)

exp

{
−1

2
(Yr − μm,s)

TΣ−1
m,s(Yr − μm,s)

}
,
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i. e., the components are multivariate Gaussian densities with
covariance matrices (7).

The underlying structural model of conditional indepen-
dence is estimated from a data set S obtained by the step-
wise shifting of the contextual window Ir within the original
texture image, i. e., for each location r one realization of
Y{r}.

S = {Y{r} ∀ r ∈ I, Ir ⊂ I} Y{r} ∈ �d×η . (4)

1) Parameter estimation: The unknown parameters of the
approximating mixture can be estimated using the iterative EM
algorithm [13]. In order to estimate the unknown distributions
ps(· |m) and the component weights p(m) we maximize the
likelihood function corresponding to the training set (4):

L =
1

|S|
∑

Y{r}∈S
log

[ ∑
m∈M

P (Y{r} |μm,Σm) p(m)

]
.

The likelihood is maximized using the iterative EM
algorithm (with non-diagonal covariance matrices):

E:

q(t)(m| Y{r}) =
P̃ (t)(Y{r} |μm,Σm) p(t)(m)∑
j∈M P (t)(Y{r} |μj ,Σj) p(t)(j)

,

M:

p(t+1)(m) =
1

|S|
∑

Y{r}∈S
q(t)(m |Y{r}) , (5)

μ(t+1)
m,s =

1∑
Y{r}∈S q(t)(m |Y{r})∑

Y{r}∈S
Ysq

(t)(m |Y{r}) . (6)

The Mη covariance matrices are:

Σ(t+1)
m,s =

∑
Y{r}∈S,Ys∈Y{r}

q(t)(m |Y{r})∑
Yr∈S q(t)(m |Y{r})

(Ys − μ(t+1)
m,s )(Ys − μ(t+1)

m,s )T

=

∑
Y{r}∈S,Ys∈Y{r}

q(t)(m |Y{r})YsY
T
s∑

Yr∈S q(t)(m |Y{r})

−
p(t+1)(m) |S|μ(t+1)

m,s

(
μ
(t+1)
m,s

)T

∑
Yr∈S q(t)(m |Y{r})

. (7)

The iteration process is stopped when the criterion in-
crements are sufficiently small. The EM algorithm iteration
scheme has the monotonic property: L(t+1) ≥ L(t), t =
0, 1, 2, . . . which implies the convergence of the sequence
{L(t)}∞0 to a stationary point of the EM algorithm (local
maximum or a saddle point of L).

B. Texture Synthesis

The advantage of a mixture model is its simple synthesis
based on the marginals:

pn | ρ(Yn |Y{ρ}) =
M∑

m=1

Wm(Y{ρ}) pn(Yn |m) , (8)

where Wm(Y{{ρ}) are the a posteriori component weights
corresponding to the given submatrix Y{ρ} ⊂ Y{r}:

Wm(Y{ρ}) =
p(m)Pρ(Y{ρ} |m)∑M
j=1 p(j)Pρ(Y{ρ} | j)

, (9)

Pρ(Y{ρ} |m) =
∏
n∈ρ

pn(Yn |m) .

The unknown multivariate vector-levels Yn can be synthesized
by random sampling from the conditional density (8) or the
mixture RF can be approximated using the GMM mixture
prediction.

1) Prediction-Based Synthesis: There are several alterna-
tives for the 3DGMM model synthesis. The proposed method
uses the 3DGMM model approximation by computing the
conditional GMM expectation:

E{Yn} =

∫
Yn pn | ρ(Yn |Y{ρ})dYn

=
M∑
j=1

Wj(Y{ρ})μjn . (10)

This is a fast non-iterative alternative for a GMM model
synthesis.

III. EXPERIMENTAL RESULTS

The proposed method is compared with an alternative,
high-quality descriptive model-based restoration method [14]
which can also restore additive noise as well as missing
textural parts [15]. The performance of the tested methods
is compared on artificially degraded textural images (so that
the unobservable data are known) using the criterion of the
mean absolute difference between undegraded and restored
pixel values:

MAD =
1

n1n2d

n1∑
r1=1

n2∑
r2=1

d∑
r3=1

|Yr − Ŷr| , (11)

where d = 3 for color static textures (but d can be
easily larger for hyperspectral textures), n1 = N1, n2 = N2

for additive noise restoration and n1n2 is the number of
missing pixels for the scratch restoration task. This criterion
is not ideal because our texture restoration goal is not to
recover the pixel-wise version of the original texture, but we
accept any other original texture realisation which would be
visually indiscernible from the original unobservable texture.
Unfortunately, there is no any other reliable texture quality
criterion as it was demonstrated in recent paper [16].
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original noise corruption median
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Fig. 1. Additive noise restoration results for the carpet texture.

The presented model has time consuming parameter es-
timation part compared with the fast analytic 3DCAR (Sec-
tion III-A) alternative. The 3DGMM model has large set of
parameters to be iteratively learned, which is the most time
and computer memory demanding part of the method. The
3DGMM model has more parameters to be be learned than
the 3DCAR model and thus it requires also larger learning
set (|S|). The analytical part of the EM algorithm can be
speed up by K-means based components initialization. The
model synthesis is not iterative and thus relatively fast. Another
difference is that the 3DGMM model is global, while 3DCAR
model restores textures locally. This is a disadvantage in
strictly homogeneous textures where the global model uses
better learned parameters, but it may be advantageous for
slowly changing textures. The efficiency of the 3DCAR model
is at the cost of possible artifacts due to model causality, while
the presented model is non-causal and also multimodal.

A. Spatial CAR Model Based Texture Restoration

A spatial multispectral causal simultaneous autoregressive
model based restoration was introduced [17] and [14]. Texture
scratch removal can be performed using a modification of the
same model (see details of the monospectral version of the
scratch removal method in [15]).

The 3D causal simultaneous autoregressive model

(3DCAR) is the wide-sense Markov model which can be
written in the following regression equation form:

Ỹr =
∑
s∈Ic

r

AsỸr−s + er ∀r ∈ I (12)

where As are matrices (13) and the zero mean white Gaussian
noise vector er has uncorrelated components with data
indexed from Icr but noise vector components can be mutually
correlated with a constant covariance matrix Σ. Icr ⊂ I is a
causal or unilateral neighbourhood of pixel r, i.e.

Icr ⊂ ICr = {s : 1 ≤ s1 ≤ r1, 1 ≤ s2 ≤ r2, s 
= r} .

As1,s2 =

⎛
⎜⎝
as1,s21,1 . . . as1,s21,d

...
. . .

...
as1,s2d,1 . . . as1,s2d,d

⎞
⎟⎠ (13)

are d× d parameter matrices.

The model can be expressed in the matrix form

Yr = γXr + er ,
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Fig. 2. Additive noise restoration results for the matting texture.

where

Xr = [Ỹ T
r−s : ∀s ∈ Icr ] , (14)

Xr is a dζ × 1 vector, ζ = cardinality(Icr) and γ

γ = [A1, . . . , Aζ ] (15)

is a d× dζ parameter matrix.

Additive noise is restored using (16). Pixels with steep step
discontinuities are left unrestored to avoid excessive blurring,
i.e.,

Ŷr =

⎧⎨
⎩
E{Yr |Y (r−1)} if (17)

Yr otherwise

, (16)

|E{Yr} − Yr | < 1

ns

∑
s

|E{Yr−s} − Yr−s | , (17)

where ns is a selected adaptive threshold memory and Y (r−1)

is the past process history of the model. Scratches are restored
using the conditional predictor

Ŷr = E{Yr |Y (r−1)} . (18)

The 3DCAR model is directional and thus it is advantageous to
restore larger scratches using the nearest directional predictor
(18) from the last completely known data.

B. Additive Noise Removal

Figs. 1, 2 demonstrate two typical performance examples
of additive noise texture restoration. The original textures were
corrupted with additive Gaussian noise N (0; 70) independently
for all spectral bands (the upper row middle image in both
Figs.). Textures were restored using either the median filter,
3DCAR model, or the proposed method. The corresponding
MAD criterion numerical values are listed in Tab. I. The 3×
3, 5×5, 7×7 median filters were tested and the best performing
filter using the MAD criterion is listed in Tab. I and illustrated
in Figs. 1, 2.

Tab. I demonstrates the best noise removal performance
of our method and Fig. 1 illustrates the advantage of the
presented global model over the locally restored texture using
the 3DCAR method which slightly compromises the spectral
quality of the restored texture.
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Texture Method MAD

carpet noise 51,75

carpet median 16.85

carpet 3DCAR 21.82

carpet 3DGMM 13.12

matting noise 51,34

matting median 27.17

matting 3DCAR 30.84

matting 3DGMM 23.33

TABLE I. NOISE RESTORATION RESULTS ON THE CARPET AND

MATTING TEXTURES.

C. Scratch Removal

Fig. 3 demonstates scratch removal capability of the pre-
sented method in comparison with the 3DCAR method [15])
which is also based on a spatial descriptive Markovian model.
Although the 3DCAR method uses local adaptive prediction
and performs well on purely stochastic textures, it is outper-
formed by the presented method on regular or near-regular
textures and if there is large patch to be reconstructed. This
visual observation is also confirmed numerically in Tab. II
which is computed from the presented images in Fig. 3.
Clearly visible deficiencies can be observed in the area of large
removed texture rectangle.

Texture Method MAD

carpet 3DCAR 13,66

carpet 3DGMM 10,36

cobra 3DCAR 21,06

cobra 3DGMM 16,00

tiles 3DCAR 28,78

tiles 3DGMM 25,60

TABLE II. SCRATCH RESTORATION RESULTS ON THE CARPET, COBRA

SKIN, AND TILES TEXTURES.

IV. CONCLUSIONS

The proposed color texture reconstruction method is capa-
ble to simultaneously reduce additive noise and restore missing
textural parts. It produces high quality results especially of
regular or near-regular color textures where it outperforms
the alternative method based on Markovian descriptive model
or median filter using the mean absolute difference between
undegraded and restored pixel values criterion as well as
visual observation. The presented model has time consuming
parameter estimation part and requires larger learning set than
the alternative simpler 3DCAR method. The model synthesis
is not iterative and thus relatively fast.

The method can be also easily generalized for hyperspectral
or bidirectional texture function (BTF) textures.
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Fig. 3. Scratch restoration results for the carpet, cobra skin, and tiles textures.
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