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Abstract. A mobile Android application that can automatically recog-
nize wood species from a low quality mobile phone photo under varying
illumination conditions is presented. The wood recognition is based on
the Markovian, spectral, and illumination invariant textural features.
The method performance was verified on a wood database, which con-
tains veneers from sixty-six varied European and exotic wood species.
The Markovian features improvement of the correct wood recognition
rate is about 40% compared to the best alternative - the Local Binary
Patterns features.
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1 Introduction

Each type of wood has its own specific physical, aesthetic and economic proper-
ties; thus correct identification of wood species is required in numerous practical
applications, from construction industry, manufacturing, furniture design, and
restoration to pricing evaluation of wooden items. Fast, reliable, and practical
recognition of wood species is therefore important, having potential impacts in
a range of areas, including: the intended application, construction safety, and
detecting illegal logging of endangered species. The traditional method of iden-
tifying wood species involves manual browsing through digital wooden veneer
catalogues and making a subjective judgement. This is labour intensive, and
concentration problems can lead to errors. Additionally, gradual changes and
changing shades due to variable light conditions are confusing and difficult for
humans to detect.

Several wood recognition systems using grey-scale textural features and
laboratory measurement setups were proposed. A wood recognition system
using macroscopic camera setup, neural networks classifier and grey-level co-
occurrence matrix features is specified in [6]. This system requires large number
(≈ 100) of training images per wood class. Papers [2,12] report similar sys-
tems using also grey-level or rotational invariant grey-level co-occurrence matrix
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features and correlation based classifier. A comparative study [11] reports bet-
ter performance of the Gabor features over the co-occurrence matrix features.
Finally, [15] combines the Gabor and the co-occurrence matrix features for the
neural networks classifier. All these systems ignore textural spectral information,
use obsolete textural features, and require good quality visual measurements
with fixed illumination conditions.

As an alternative, we have developed an application to identify wood species
using a smartphone camera, which returns the resulting species name and a
corresponding high quality database wood specimen image. This computer-
aided wood identification system retrieves a wood template from a digital wood
database, selecting that which most closely resembles the query sample. A
wooden surface is captured by a smartphone camera with the developed Android
application, and the image is transmitted to the server side which computes the
advanced multispectral Markovian textural features and finds the most simi-
lar wood species from its database. The Markovian features are not only very
efficient, compacting the representation of visual wood properties, but they are
simultaneously invariant to illumination colour, robust to illumination hetero-
geneity, and illumination direction, therefore the retrieval result is not influenced
by the unknown and variable illumination properties. Thus we assume that the
wooden texture can be approximated by a surface reflectance field model [4],
i.e., bidirectional texture function with fixed or small viewing angle changes.
The recognized wood species together with its high quality database pattern is
sent back to the user so he or she can verify the classifiers result. The challenging
part of the method is to compare poor quality smartphone images taken under
variable illumination and resolution conditions with high quality high resolution
matte wooden textures stored in the wood database.

2 Markovian Textural Features

Our texture analysis is based on spatial and multimodal relations modelling by
a wide-sense Markovian model. We employ a Causal Autoregressive Random
(CAR) model, because it allows very efficient analytical estimation of its param-
eters. Subsequently, the estimated model parameters are transformed into illumi-
nation/colour invariants, which characterize the corresponding wooden texture.
These colour invariants encompass inter-spectral (in the case of full 3D CAR
model) and spatial relations in the texture which are bounded to a selected con-
textual neighbourhood (see Fig. 1). Wood veneers with similar structure and
spectral properties produce similar features.

Texture Model
Let us assume that multispectral texture image is composed of C spectral planes
(usually C = 3 for colour images). Yr = [Yr,1, . . . , Yr,C ]T is the multispectral
pixel at location r , where the multiindex r = [r1, r2] is composed of r1 row
and r2 column index, respectively. The spectral planes are modelled using a set
of C 2-dimensional CAR models. The set of 2D models is used instead of full 3D
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Fig. 1. Examples of contextual neighbourhood Ir . From the left, it is the unilateral
semi-hierarchical neighbourhood of third and sixth order. X marks the current pixel,
the bullets are pixels in the neighbourhood, the arrow shows movement direction, and
the grey area indicates acceptable neighbourhood pixels.

model, because images from smarthone cameras had degradated interspectral
relations.

The CAR representation assumes that the multispectral texture pixel Yr

can be modelled as a linear combination of its neighbours:

Yr = γZr + εr , Zr = [Y T
r−s : ∀s ∈ Ir]T (1)

where Zr is the Cη × 1 data vector with multiindices r, s, γ = [A1, . . . , Aη]
is the C ×C η unknown parameter matrix with square sub-matrices As . Some
selected contextual causal or unilateral neighbour index shift set is denoted Ir

and η = cardinality(Ir) , see Fig. 1. A unilateral neighbourhood Ir (the left
upper orientation) is defined as Ir ⊂ IU

r = {s : s1 < r1 or (s1 = r1, s2 <
r2)} and similarly ([3]) its subset - the causal neighborhood. The neighborhood
order is based on the Euclidean distance from r. The white noise vector εr has
normal density with zero mean and unknown diagonal covariance matrix, same
for each pixel. In the case 2D CAR models stacked into the model equation (1)
the uncorrelated noise vector components εr are assumed and the parameter
matrices As are diagonal.

The texture is analysed in a chosen direction, where multiindex t changes
according to the movement on the image lattice. Given the known history of
CAR process Y (t−1) = {Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} the parameter
estimation γ̂ for the given pixel position can be computed using statistics [3]:

γ̂T
t−1 = V −1

zz(t−1) Vzy(t−1) ,

Vt−1 =
(∑t−1

u=1 YuYu
T ∑t−1

u=1 YuZu
T∑t−1

u=1 ZuYu
T ∑t−1

u=1 ZuZu
T

)
+ V0 =

(
Vyy(t−1) V T

zy(t−1)

Vzy(t−1) Vzz(t−1)

)
, (2)

λt−1 = Vyy(t−1) − V T
zy(t−1)V

−1
zz(t−1)Vzy(t−1) ,

where the positive definite matrix V0 represents a prior knowledge, see [3] for
details. Moreover, the parameter estimate can be efficiently computed for all
pixel positions using a numerically robust recursive formula [3], which is advan-
tageous for texture segmentation applications. Finally, the optimal contextual
neighbourhood Ir can be found analytically by maximising the corresponding
posterior probability [3].
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Fig. 2. The texture analysis algorithm flowchart using a set of 2D random field models.

Colour Invariant Features
Colour invariants are computed from the CAR parameter estimates to make
them independent on changes of illumination intensity and colours. Moreover,
our invariants are approximately invariant to infrequent changes of local illumi-
nation intensity and experiments show their robustness to variation of illumi-
nation direction (see [13,14] for details). For 2D models, their definition is the
following:

1. trace: tr As, ∀s ∈ Ir ,
2. diagonals: νs = diag As , ∀s ∈ Ir .
3. α1: 1 + ZT

r V −1
zz Zr ,

4. α2:
√∑

r (Yr − γ̂Zr)
T

λ−1 (Yr − γ̂Zr) ,

5. α3:
√∑

r (Yr − μ)T
λ−1 (Yr − μ) , μ is the mean value of vector Yr ,

where the invariants α1 – α3 are computed for each spectral plane separately.
The model parameters γ̂, λ are estimated using formula (2), we omit subsctripts
for simplicity. Feature vectors are formed from these illumination invariants,
which are easily evaluated during the CAR parameters estimation process.

Algorithm
The texture analysis algorithm starts with factorisation of texture image into K
levels of the Gaussian down-sampled pyramid and subsequently each pyramid
level is modelled by the CAR model. The pyramidal factorization is used, because
it enables model to easily capture larger spatial relations. We usually use K = 4
levels of the Gaussian pyramid, if the image size is sufficient (at least 400× 400)
it is possible to improve performance with the additional pyramid level (K = 5).

Although the optimal neighbourhood of the CAR model can be optimally
selected, practically, we use the 6-th order semi-hierarchical neighbourhood (car-
dinality η = 14), see Fig. 1 for details. This neighbourhood size provides good
combination of sufficient support and stable model parameters, which do not
varies for similar textures. Finally, the estimated parameters for all pyramid lev-
els are transformed into the colour invariants and concatenated into a common
feature vector. The algorithm scheme is depicted in Fig. 2.

The dissimilarity between two feature vectors of two textures T, S is com-
puted using fuzzy contrast [10] in its symmetrical form FC3.
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3 Alternative Textural Features

Numerous textural features were published which can be used with greater or
lesser success for wooden texture classification. The proposed Markovian textural
features applied to veneer recognition were compared with efficient and widely
used alternative Local Binary Patterns (LBP) [8] and Gabor textural features
[1,7,9]. Results of the Opponent Gabor features [5] were inferior, so that they
are not included in the paper.

3.1 Local Binary Patterns

Local Binary Patterns [8] are histograms of texture micro patterns. For each
pixel, a circular neighbourhood around the pixel is sampled, P is the number of
samples and R is the radius of circle. The sampled point values are thresholded
by the central pixel value and the pattern number is formed:

LBPP,R =
P−1∑
s=0

sgn (Ys − Yc) 2s, (3)

where sgn is the sign function, Ys is the grey value of the sampled pixel,
and Yc is the grey value of the central pixel. Subsequently, the histogram of
patterns is computed. Because of the thresholding, the features are invariant
to any monotonic grey-scale change. The multiresolution analysis is done by
growing of the circular neighbourhood size. All LBP histograms were normalised
to have unit L1 norm. The similarity between LBP feature vectors is measured
by means of Kullback-Leibler divergence as the authors suggested.

We have tested features LBP8,1+8,3 , which are combination of features with
radii 1 and 3. They were computed either on gray images or on each spectral
plane of color image and concatenated. We also tested uniform version LBPu

16,2,
but their results were inferior.

3.2 Gabor Features

The Gabor filters [1,7,9] can be considered as orientation and scale tunable edge
and line (bar) detectors and statistics of Gabor filter responses in a given region
are used to characterize the underlying texture information. A two dimensional
Gabor function g(r1, r2) : �2 → C can be specified as

g(r1, r2) =
1

2πσr1σr2

exp
[
−1

2

(
r21
σ2

r1

+
r22
σ2

r2

)
+ 2πiWr1

]
, (4)

where σu = 1
2πσr1

, σv = 1
2πσr2

, and σr1 , σr2 are filter parameters. σr1 , σr2 are
variances in r1, r2 directions and W is a modulation frequency parameter.
Gabor wavelet transform is defined as

Wmn(r1, r2) =
∫

Y (s1, s2)g∗
mn(r1 − s1, r2 − s2)ds1ds2, (5)
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where ∗ indicates the complex conjugate. The Gabor features are defined as
the mean μmn and the standard deviation σmn of the magnitude of transform
coefficients.

4 Experiments

The performance of our application was verified on the wood database, which
contains veneers from varied European and exotic wood species, each with two
sample images only. The training set included images of 66 wood species acquired
by a colour scanner device, while the test set was composed of images of 59
wood species acquired by two different smartphones (HTC Desire S and Sam-
sung Galaxy S3). The training set was acquired with controlled condition (stable
illuminations source, aligned position) provided by the scanning machine. On the
contrary, the test set was captured from a hand without controlled conditions,
however, the images were taken from approximately the same distance and with
orientation approximately with the material sample to limit unnecessary varia-
tions. All images were resized to 767 × 1024 pixels aspect ratio were maintained
and redundant pixels were discarded. Lanczos interpolation was employed in
image resize.

We have performed three wood veneers recognition experiments. Naturally,
the proposed textural features and the alternatives were compared in the exactly
same conditions. The computed feature vectors were compared with author sug-
gested distances and classified using the Nearest Neighbour (1-NN) classifier.

4.1 Experiment 1

In the first experiment, we tested recognition of whole images captured by two
mobile phones against training database acquired by the scanner. Separately,
we tested images acquired by the mobile phones with the internal flash ON and
OFF, see examples in Fig. 3. Each of these four setups included 59 test images.

Tab. 1 displays the results, where the recognition accuracy of the images
without flash were worse for all features. The reason is that (a) the images
captured without flash were more blurry (caused by small smartphones lenses
and sensors) (b) additionally, CAR features cancel uneven illumination present
in images with flash. Worse results of the HTC smartphone were caused probably
by its very aggressive JPEG compression, which cannot be adjusted in the used
device model.

Figs. 4–7 illustrate the systems typical performance applied to European
(Figs. 4, 5) and exotic wood (Figs. 6, 7) samples. Fig. 4 illustrates retrieval
results of our method - the most probable results were both apple samples,
which is correct, and the third result was the closest pear wood specimen. In the
same figure, the LBP features retrieved wrongly all three most probable results
(twice a bamboo sample and the macassar wood).
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Scanner HTC no flash HTC flash Samsung no flash Samsung flash

Fig. 3. Images of the following veneer samples: pine, zebrano, and beech, respectively.
The columns correspond to different acquisition setups.

Table 1. Experiment 1, recognition accuracy [%] of whole veneers by both smart-
phones.

HTC flash HTC Samsung flash Samsung

Gabor colour 28.6 8.1 36.7 26.5
LBP gray 24.5 8.2 34.7 16.3
LBP colour 20.4 8.2 38.8 18.4
2D CAR 59.2 30.6 79.6 63.4
2D CAR (K = 5) 65.3 40.8 81.6 67.7

4.2 Experiment 2

In the second experiment, we tested ability of textural features to generalize and
to recognize different parts of material sample. The setup was almost the same
as in the Experiment 1 with the exception that both test and training set was
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Fig. 4. An apple wood sample taken by a smartphone camera and the three closest
query results using either Markovian or LBP textural features.

composed of upper half and lower half of the original images. The recognition
was performed “across” halfs, i.e., in two sub-experiments: (a) trained on upper
halfs from the scanner, tested on the lower halfs from a mobile; (b) trained on
the lower halfs from the scanner, tested on the upper halfs from a mobile. The
results of these two sub-experiments, each with 59 test images, were averaged.

The results are summarized in Tab. 2, where the recognition accuracy of
images without flash were excluded as they were inferior for all tested features
(consistently with the Experiment 1).

4.3 Experiment 3

In the third experiment, we tested classification of upper against lower parts
similarly as in the Experiment 2, however, both training and test images were
from the same acquisition device. Again, the recognition accuracy was evaluated
for 2 × 59 test images. The purpose of this experiment was to asses, what is the
cause of the performance degradation.

The results are displayed in Tab. 3. Recognition accuracy 100%, in the upper
left corner, means that 2D CAR features extract important textural properties
as they are able to perfectly recognise different parts of the same veneer sample.
In fact, this is true for all tested features as the recognition accuracy was always
between 99% and 100%. When compared with the results in Experiment 2,
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Fig. 5. The apple wood sample taken by a smartphone camera and the three closest
query results using either Markovian or Gabor textural features.

Fig. 6. A palisander wood retrieval results comparison between the Markovian and
LBP features.
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Fig. 7. The palisander wood retrieval results comparison between the Markovian and
Gabor features.

Table 2. Experiment 2, recognition accuracy [%] of different veneer parts by the smart-
phones.

HTC flash Samsung flash

LBP gray 29.6 40.8
LBP colour 29.6 48.0
2D CAR 46.9 69.4
2D CAR (K = 5) 49.0 66.3
Gabor color 18.3 27.5

it implies that about 30% of recognition accuracy for 2D CAR features were
lost, probably, by combination of two factors: (a) poor quality of smartphone
cameras, (b) scale and other variations introduced by acquisition from hand.
(For the simplicity, the rest of the first column is left empty, since the results
are included in the Experiment 2.)

To examine more carefully the previous claim about performance lost, the
rest of the table displays results with changing training and testing combinations
of the smartphones (still different half of the veneer sample was used for test
and training). Very good results on the diagonal (89.9% and 94.9%) implies
that degradation by smartphone cameras are consistent. We can speculate that
remaining 7–10% of performance was lost due to image acquisition from hand.
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Table 3. Experiment 3, recognition accuracy [%] of different veneer parts, but with
the same acquisition device (in bold). The results are for 2D CAR, the test set devices
are in rows, while training set devices are in columns.

Scanner HTC flash Samsung flash

Scanner 100
HTC flash 89.8 78.6
Samsung flash 83.7 94.9

More interestingly, Tab. 3 is not symmetric, it seems that better sensor/camera
combination is more important for the test set.

5 Conclusion

Our colour invariant Markovian textural features were successfully applied for
recognition of wood veneers using a smartphone. The method’s correct recogni-
tion accuracy improvements are about 40% and 20% (Experiment 2), compared
to the Local Binary Patterns (LBP) features, which is the best alternative from
all tested standard textural features. However, the actual performance is highly
dependent on the acquisition device, as demonstrated by 15% performed drop
for camera in HTC Desire S compared to Samsung Galaxy S3. In general, smart-
phone cameras have sufficient resolution (up to 10 mega pixels), however, their
poor quality lenses and aggressive JPEG compression result in inferior image
quality and thus a more demanding recognition task. Nevertheless, our high
correct recognition rate (82%), suggests that the proposed method can be suc-
cessfully used in various practical wood recognition applications.

The results can be reviewed in an online demonstration1, which shows
retrieval using images from mobile phones as queries.
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