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Abstract When operating a device which is a subject to degradation, we want to estimate
the distribution of the time to failure for maintenance optimization. Our aim is to describe
the dependency of the failure time distribution on applicable regression variables. Models
commonly used in survival analysis, such as the Cox model or the Accelerated failure time
model, need to be adjusted to accommodate repairs and maintenance. For instance, we may
use the number of repairs or maintenance actions or their cost as time-varying covariates. In
this work we describe such models and demonstrate their application on real data.
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1 Introduction

We study data describing a service record of one ore more devices which degrade over
time. When a device breaks down, it is necessary to perform a repair. We want to avoid
breakdowns by performing preventive maintenance, and to optimize the maintenance costs,
it is desirable to estimate the time to failure distribution with the help of available infor-
mation. In this work we focus on methods of modeling the life time of the device with
available regression models of survival analysis with suitable covariates. The models need to
be adjusted to accommodate recurring repairs and maintenance actions. One such approach
was described by Percy and Kobbacy (1998) and Percy and Alkali (2005) for the Cox
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e-mail: novakp@karlin.mff.cuni.cz

P. Novák
Institute of Information Theory and Automation - Academy of Sciences of the Czech Republic,
Pod Vod’arenskou vvevz’i 4, 182 08 Praha 8, Czech Republic

mailto:novakp@karlin.mff.cuni.cz


964 Methodol Comput Appl Probab (2015) 17:963–972

proportional hazards model with covariates multiplicatively influencing a parametric base-
line hazard. In a similar way, we show the use the Accelerated failure time model with
time-varying covariates (Lin and Ying 1995), which states that the covariates influence
multiplicatively the flow of the internal time of the device. Further, we showmethods of esti-
mating the cumulative baseline hazard nonparametrically if we have data on more devices,
which allows us to estimate the regression parameters without assumptions on the shape of
the baseline. Finally, we show the application of all described methods on real data from oil
industry.

2 Modeling the Life Time of One Device

Let T1, ..., Tn be random variables representing the ordered times of actions performed on
the observed device, both repairs and preventive maintenances. Denote �1, ..., �n the indi-
cators whether in j-th time a repair (�j = 1) or a preventive maintenance (�j = 0)
was performed and let Z(t) be a vector of additional explanatory variables, possibly
time-varying.

The data is available either in form of the ordered times of actions (Tj , �j )
n
j=1 or in the

form of times elapsed between the actions (Tj − Tj−1, �j )
n
j=1 with T0 = 0, along with the

covariate values Z(t). We assume that the time elapsed during an action does not contribute
to the total time elapsed, as the device is considered not to be under workload when a repair
or maintenance action is being done. The duration of an action may even not be available if
the data is presented in the second form.

We work with counting processes denoting the number of repairs N•(t) and maintenance
actions M•(t) up to time t :

N•(t) =
n∑

j=1

I (Tj ≤ t, �j = 1), M•(t) =
n∑

j=1

I (Tj ≤ t, �j = 0).

Our aim is to model and possibly predict the distribution of the time to failure, depending on
the history of the device and available covariates. We work with hazard function denoting
the limit probability of immediate breakdown of the device (an increase of N•(t)) given
its history:

λ(t) = lim
h→0

P(N•(t + h) − N•(t) ≥ 1|H(t))/h

where H(t) is the history of events up to time t . Further denote the cumulative hazard
function �(t) = ∫ t

0λ(s)ds and S(t) = exp(−�(t)) and f (t) = −S′(t) corresponding
survival function and density of the time to failure distribution. We assume that each repair
returns the device to a working state as it was directly before the failure, and that each
subsequent repair or maintenance action somehow affects the hazard function. The aim is to
determine whether repairs and maintenance actions increase or decrease the hazard and by
howmuch.We parametrize the hazard function and estimate the parameters using maximum
likelihood method.
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The times of actions are mutually dependent, however, if we take the distribution of each
(Tj ,�j ) conditional on the service history until Tj−1, we get independent parts. The joint
distribution of the data can be written as

g((Tn, �n), ..., (T1, �1)) = g((Tn,�n)|(Tn−1, �n−1), ..., (T1,�1))

·g((Tn−1, �n−1)|(Tn−2, �n−2), ..., (T1,�1)) · ... · g((T1,�1))

with g standing for the respective distributions. The breakdowns of the device (�j = 1)
can be seen as realizations of the conditional distribution of the time to failure, given that

the device survived up to the last action, resulting in terms
f (T −

j )

S(Tj−1)
. The survival func-

tion in the denominator is included because the device is returned to a working state after
a repair and the next action at Tj happens after the time Tj−1. The maintenance actions
(�j = 0) can be interpreted as right censoring of that distribution, since we do not know
for how long would the device operate until breakdown without the preventive mainte-

nance. This contributes to the likelihood with terms
S(Tj )

S(Tj−1)
. Therefore the likelihood can be

written as

L =
n∏

j=1

(
f (T −

j )

S(Tj−1)

)�j (
S(Tj )

S(Tj−1)

)1−�j

=
n∏

j=1

λ(T −
j )�j · S(Tn)

and the log-likelihood has the form

l =
n∑

j=1

�j log λ(T −
j ) −

∫ Tn

0
λ(t)dt.

At this point, we want to incorporate the available history and covariates N•(t), M•(t) and
Z(t) into the likelihood through the hazard function, possibly in an easily interpretable way.

2.1 Cox Model

In the Cox model the covariates affect the hazard function multiplicatively. We assume that
a baseline hazard function λ0(t) is multiplicatively increased or decreased by each repair,
maintenance action and other explanatory variables. We work with the hazard function in
the form (Percy and Alkali 2005)

λ(t) = λ0(t)e
M•(t)ρ+N•(t)σ+ZT (t)β = λ0(t)(e

ρ)M•(t)(eσ )N•(t)(eβT
)Z(t).

As the explanatory variable Z(t) we can use for instance the cost of the last repair. If the
covariate values change only in the times of observed events and the baseline hazard λ0(t)

is parametric, it is possible to insert the hazard function into the log-likelihood and maxi-
mize. This approach was suggested by Percy and Alkali (2005) as the generalization of the
proportional intensities model of Cox (1972). Given the conditional structure of the data
explained above, under certain regularity assumptions and conditionally independent distri-
bution of the maintenance times, the parameters estimated by maximizing the likelihood are
consistent and their asymptotic distribution is normal.
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2.2 Accelerated Failure Time Model

We can also assume that each repair or maintenance causes that the internal time of the
device flows faster or slower (Accelerated Failure Time model, AFT). We use the time
transformation (Lin and Ying 1995)

t→
∫ t

0
eM•(s)ρ+N•(s)σ+ZT (s)βds =: h(t, β),

where β = (ρ, σ, β)T . In this framework t represents the observed age and h(t, β) the
internal age of the device. The hazard function has the form

λ(t) = λ0(h(t,β))eM•(t)ρ+N•(t)σ+ZT (t)β .

It is again possible to insert into the log-likelihood and obtain the parameter estimates by
its maximization. The consistency and asymptotic normality follows in a similar way. If the
baseline hazard function is constant (corresponding with the exponential distribution), both
models coincide.

3 Inference When Observing More Devices

If we have data on m independent devices, we work with joint likelihood. On each device
i = 1, ..., m, we have observed ni events. Let us have λi(t), Tij , �ij , j = 1, ...ni and Zi(t)

the hazard function, times of events, repair indicators and covariate values for the i-th device
respectively. The j-th event on the i-th device occured at the time Tij and it was a repair if
�ij = 1 and a preventive maintenance if �ij = 0. Denote

Nij (t) = �ij I (Tij ≤ t),

Mij (t) = (1 − �ij )I (Tij ≤ t),

Yij (t) = I (Ti,j−1 < t ≤ Tij )

the indicators, whether on the i-th device at time t the j-th action already occured and it was
a repair (Nij (t)) or a maintenance (Mij (t)) or that the device is still at risk before the i-th
action (Yij (t)). We get the log-likelihood in form

l =
m∑

j=1

⎛

⎝
ni∑

j=1

�ij log λi(T
−
ij ) −

∫ Tini

0
λi(t)dt

⎞

⎠

=
∑

ij

∫ ∞

0

(
log λi(t

−)dNij (t) − Yij (t)λi(t
−)dt

)
.

The hazard function λi will contain the counts of repairs and maintenance actions Ni•(t)
and Mi•(t), where • means the sum over corresponding index.

At this point, two options are available. We can either parametrize the baseline hazard
and proceed as above, or it is possible to estimate the baseline hazard nonparametrically.
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This may be desirable, since we then do not need to pose any assumptions on the form of
the baseline and focus on the regression parameters.

3.1 Semiparametric Cox Model

Denote XT
i (t) = (Ni•(t),Mi•(t), ZT

i (t)). Then the likelihood under the Cox model has the
form

l =
∑

ij

∫ ∞

0

(
(log λ0(t

−) + XT
i (t−)β)dNij (t) − Yij (t)e

XT
i (t−)βλ0(t

−)dt
)

and we obtain the score function by taking derivative with respect to the regression
parameters:

U(β) =
∑

ij

∫ ∞

0

(
XT

i (t−)dNij (t) − Yij (t)XT
i (t−)eX

T
i (t−)βd�0(t)

)
.

The score depends on an unknown cumulative baseline hazard �0(t). This can be replaced
by the Nelson-Aalen type estimate

�̂0(t,β) =
∑

ij

∫ t

0

dNij (s)
∑

kl e
XT

k (s−)βYkl(s)
.

Inserting the estimate we get the score function in form

U(β) =
∑

ij

∫ ∞

0

(
Xi (t

−) −
∑

kl Xk(t
−)eX

T
k (t−)βYkl(t)

∑
kl e

XT
k (t−)βYkl(t)

)
dNij (t)

and we find the parameter estimates by solving the equations U(β) = 0. The asymptotic
properties are obtained in a different way. Firstly, we consider processesMi (t) defined as

dMi (t) = dNi•(t) − Yi•(t)eX
T
i (t−)βd�0(t).

It follows, that the expectation of dMi (t) is zero for all t , motivating the Nelson-Aalen
estimate. With some algebra, the score can be rewritten as

U(β) =
∑

i

∫ ∞

0

(
Xi (t

−) −
∑

kl Xk(t
−)eX

T
k (t−)βYkl(t)

∑
kl e

XT
k (t−)βYkl(t)

)
dMi (t).

Under regularity assumptions similar to those of Lin et al. (2000) it can be then be shown
with the help of the functional central limit theorem of Pollard (1990), that with m → ∞
the score process 1√

m
U(t, β0) obtained by integrating the score up to t instead of infinity

converges weakly to a zero-mean Gaussian process with a finite covariance function. Fur-
thermore, using Taylor expansion we get that

√
m(β̂−β0) converges to a zero-mean normal

distribution and
√

m(�̂0(t, β̂) − �0(t)) converges also weakly to a zero-mean Gaussian
process with a finite covariance. The idea or the proof is similar to the one for the recurrent
event data studied by Lin et al. (2000), but had to be extended to accommodate Ni•(t) and
Mi•(t) as covariates.

3.2 Semiparametric AFT Model

We assume that the internal time flows differently for each device and its rate changes at
different moments. Therefore for each device we need its time transformation t → hi(t, β).
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Our aim is to do the inference with respect to the transformed, virtual time. We work with
time-transformed processes

N∗
ij (t, β) = �ij I (hi(Tij ,β) ≤ t),

M∗
ij (t, β) = (1 − �ij )I (hi(Tij , β) ≤ t),

Y ∗
ij (t, β) = I (hi(Ti,j−1,β) < t ≤ hi(Tij ,β)),

X∗
i (t, β) = Xi (h

−1
i (t, β)).

The score obtained by taking the derivative of the log-likelihood with respect to β has the
form

U(β) =
∑

ij

∫ ∞

0
Wi(t

−, β)
(
dN∗

ij (t, β) − Y ∗
ij (t, β)d�0(t)

)
,

where Wi(t, β) = λ′
0(t)

λ0(t)

∫ h−1
i (t,β)

0 XT
i (s)eX

T
i (s)βds + X∗

i (t, β). This form is relatively com-
plicated, with terms λ′

0 and λ0 not easy to estimate. The exact score can be replaced by the
approximate score (Lin and Ying 1995)

U(β) =
∑

ij

∫ ∞

0
X∗

i (t
−,β)

(
dN∗

ij (t, β) − Y ∗
ij (t, β)d�0(t)

)
.

We can again insert the estimate of the cumulative baseline hazard function

�̂0(t, β) =
∑

ij

∫ t

0

dN∗
ij (s,β)

∑
kl Y

∗
kl(t, β)

.

Note the analogy with the Nelson-Aalen estimate of the cumulative hazard for iid survival
data. We get

U(β) =
∑

ij

∫ ∞

0

(
X∗

i (t
−,β) −

∑
kl X

∗
k(t

−,β)Y ∗
kl(t, β)

∑
kl Y

∗
kl(t, β)

)
dN∗

kl(t,β).

Because the score is not continuous in β, we obtain the parameter estimates by minimizing
‖U(β)‖. The asymptotic properties are obtained in a similar manner, with

dM∗
i (t, β) = dN∗

i•(t, β) − Y ∗
i•(t, β)d�0(t)

having zero mean for all t and the score taking the form

U(β) =
∑

i

∫ ∞

0

(
X∗

i (t
−, β) −

∑
kl X

∗
k(t

−, β)Y ∗
kl(t, β)

∑
kl Y

∗
kl(t, β)

)
dM∗

i (t, β).

Again we obtain the asymptotic normality of
√

m(β̂ − β0) and
√

m(�̂0(t, β̂) − �0(t))

with the help of the functional central limit theorem. The covariance function of the latter
depends on unknown functions λ0 and λ′

0 and therefore cannot be estimated easily.

4 Modeling Lifetime of Oil Pumps

We explore data on the service of oil pumps during several years, see Kobbacy et al. (1997)
and Percy and Alkali (2007). For one device we have detailed data on n1 = 65 times of
repairs, maintenance actions and the cost of each action in man-hours. This data has been
studied by Percy and Alkali (2005) using the parametric Cox model. We try to model the
lifetime using both the Cox and the AFT model as shown above with various parametrized



Methodol Comput Appl Probab (2015) 17:963–972 969

baseline hazard functions and compare the results. In the parametric case, it is possible to
directly maximize the likelihood for all cases and see in which it was largest.

For four other pumps we have only the times of actions at disposal, with (n2, ..., n5) =
(51, 90, 30, 30). We use both the semiparametric methods and parametrized baseline haz-
ards with the two described models to estimate the regression parameters utilizing data of
all the five pumps. The likelihood in semiparametric methods depends on the unknown
baseline hazard and therefore is not available for comparison of the used methods.

The data is given as the time elapsed between each of the successive actions. We assume
that the duration of each action does not contribute to the total time elapsed, because the
pumps are inoperable and not under workload at that time. It can still be argued that the
devices do age even during a repair or maintenance action, but that could possibly lead
to failures occuring at that time, necessitating further repairs, which would require more
complex models.

4.1 Parametric Modeling of the Service of One Pump

We have the times of repairs, maintenance actions and cost of each action for one pump.
Using methods from section 2 we estimate the parameters ρ, σ and β in both the Cox
model and the AFT model. We try to maximize the likelihood for exponential, Weibull
λ0(t) = aλata−1, gamma f (t) ∝ ta−1e−λt , truncated Gumbel λ0(t) = λat and log-normal
baseline distributions.

Comparing the likelihood values in Table 1 we find that it is highest for both the Cox and
AFTmodel with the truncated Gumbel distribution. Further we see that the more each action
did cost, the more it increased the hazard function or accelerated the internal time, because
eβ̂ > 1. Each man-hour of the action means an increase of hazard or acceleration of time
by about 0.5 − 0.7%. A repair itself has a positive influence (eσ̂ < 1), with the exception
of the AFT model with log-normal baseline distribution, but that is the case with the lowest
likelihood value. It is interesting that according to all cases except the Gumbel distribution
in Cox model, the maintenance actions tend to have a negative influence (eρ̂ > 1). This

Table 1 The log-likelihood and parameter estimates from parametric models of the lifetime of one oil pump

Model λ0 log - lik eρ̂ eσ̂ eβ̂ λ̂ â

Exp. -213.8 1.407 0.980 1.0066 0.0015 −

Cox Weibull -213.5 1.266 0.924 1.0064 0.0017 1.672

Gamma -213.8 1.405 0.918 1.0066 0.0016 1.027

Gumbel -210.2 0.701 0.745 1.0063 0.0006 1.010

LN -214.8 1.541 0.913 1.0069 μ̂=6.3 σ̂=1.66

AFT Weibull -212.7 1.278 0.918 1.0061 0.0014 1.639

Gamma -213.8 1.418 0.916 1.0066 0.0014 0.918

Gumbel -210.2 1.318 0.877 1.0050 0.0005 1.001

LN -218.1 1.300 1.050 1.0070 μ̂=5.25 σ̂=0.89
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could be due to repairs often taking much more man-hours than maintenances (on average,
a repair took 26.8 whereas a maintenance action took only 9.4 man-hours), resulting in
negative influence of both.

4.2 Semiparametric Modeling of the Lifetime of Five Pumps

For five devices we have only the times of repairs and maintenances available. The data
on the cost of the actions was not available for all pumps, therefore we estimate only the
regression parameters ρ and σ . We tried the Cox and the AFT models, both parametric with
the same baseline distributions as above and semiparametric. In the parametric cases we
maximize the log-likelihood whereas in the semiparametric approach we insert the estimate
of the cumulative baseline hazard into the score function and solve the equations U(β) = 0
for the Cox model and minimize ‖U(β)‖ for the AFT model.

In Table 2 we see that in all cases each repair increases the hazard or accelerates the
internal time (eσ̂ > 1). Among the parametric models, the Gumbel distribution with AFT
model has the highest likelihood. In that case and also in the cases with log-normal base-
line hazard and the semiparametric models, the maintenance actions have also a negative
influence, whereas in the other cases it is positive. In Fig. 1 we see the estimates of the
cumulative baseline hazard for both Cox and AFT models. The time in the AFT model is
on the transformed scale t → h(t, β̂).

4.3 Possible Model Selection and Validation Methods

When comparing two models, it is possible to perform a χ2 test based on scaled
deviance D = 2 · (l1 − l2). Based on the asymptotics explained in Section 2, we get

2
(
l(β̂) − l(0, β̂(2,...p))

)
→ χ2

1 for testing β1 = 0 to see whether one particular covari-

ate significantly improves a model or not. For the one pump data using Cox model with
Gumbel baseline, no significant improvement was found when adding the influence of
the cost of the action (β) to a model containing only the regression parameters ρ and

Table 2 The log-likelihood and parameter estimates from modeling the lifetime of five pumps

Model λ0 log - lik eρ̂ eσ̂ λ̂ â

Exp. -880.3 0.985 1.016 0.016 −

Cox Weibull -880.2 0.976 1.016 0.014 1.063

Gamma -880.1 0.988 1.016 0.015 0.811

Gumbel -880.3 0.994 1.016 0.016 0.999

LN -894.4 1.090 1.016 μ̂=3.22 σ̂=0.89

AFT Weibull -880.2 0.980 1.015 0.014 1.038

Gamma -880.1 0.988 1.016 0.015 0.812

Gumbel -875.1 1.022 1.036 0.013 0.999

LN -879.5 1.284 1.158 μ̂=2.67 σ̂=1.56

Cox nonparam. − 1.043 1.020 − −
AFT nonparam. − 1.028 1.084 − −
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Fig. 1 Estimates of the cumulative baseline hazard in semiparametric Cox and AFT models

σ (Percy and Alkali 2005), while it can be argued that the covariate still adds some
relevant information. It can be also tested, whether a Weibull or Gamma baseline haz-
ard can be simplified to exponential with a = 1. This approach is, however, not usable
when comparing models with different baseline hazards or the Cox model with the AFT
model.

Aside from the likelihood value, we do not have direct means to determine which
model fits the data best, especially when comparing the parametric and semiparametric
approaches. For classic survival regression data, goodness-of-fit tests have been developed
for parametric versions of both models by Lin and Spiekerman (1996), for the semiparamet-
ric Cox model by Lin et al. (1993) and for the semiparametric AFT model by Novák (2013).
This methods could be adapted to accommodate repairs and maintenance actions. They are
however, based on resampling approach and asymptotic convergence of certain martingale
processes, and therefore it remains to be seen how well they would perform in such cases
as with above data representing only a few independent devices.

5 Conclusion

We explored methods for modeling the influence of maintenance and repairs on the life-
time of the observed device. In the Cox model the covariates representing the count and size
of repairs and maintenance actions influence the hazard function multiplicatively, whereas
in the AFT model they accelerate or decelerate the flow of the internal time of the device.
When we parametrize the baseline hazard function, the service record of one device is
enough to obtain the estimates of the regression parameters. If we have data on more
devices, it is possible to estimate the cumulative baseline hazard function nonparametri-
cally. Further research could concern developing goodness-of-fit tests or testing whether
a nonparametric estimate may be replaced by a suitable parametrized baseline hazard. It
would be also possible to explore other transformations in the accelerated failure time
model.
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