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Stochastic Geometric Wave Equations

Zdzistaw Brzezniak and Martin Ondrejat

Abstract. In these lecture notes we have attempted to elucidate the ideas
behind the proof of the global existence of solutions to stochastic geometric
wave equations whose solutions take values in a special class of Riemannian
manifolds (which includes the two-dimensional sphere) published recently by
the authors, see [10]. In particular, we aimed at those readers who could be
frightened by the language of differential geometry.

Mathematics Subject Classification (2010). Primary 60H15; Secondary 35R60
58J65.
Keywords. Stochastic wave equation, Riemannian manifold, homogeneous
space.

1. Introduction

The aim of these Lecture Notes is to present in a clear pedagogical way the re-
sults obtained by the authors in a recently published paper [10]. Let us begin with
some historical background. Research on the topic of randomly perturbed (or sto-
chastic) geometric wave equations (SGWEs) began with our 2007 paper [6] where
we proved the existence and uniqueness of solutions of stochastic wave equations
with a one-dimensional space variable and an arbitrary target compact Riemann-
ian manifold. The proof from that paper was motivated by an earlier result (still
unpublished) by the first named author and A. Carroll [3], see also [12], for ran~
dom perturbation of the geometric heat equation (considered in Slobodetski-Besov
spaces W*P) and [5] (considered in Slobodetski—Besov spaces H':?). The paper
[10] is the second one and it was followed by (an earlier published) paper [8]. In

/[10] we extended the earlier results by proving the existence (but not uniqueness)

of a solution for an arbitrary dimension of the space variable but for a restricted
class of target manifolds: compact homogenous Riemannian manifolds. This class
is however general enough to contain the most classical manifold: the sphere. In
the current Lecture Notes we have tried to present the main ideas of the proof

The second named author’s research was supported by GACR grant P201/10/0752.



158 7. Brzezniak and M. Ondrejat

together with some explanation of differential geometry background. In the earlier
mentioned paper [8] we improved the results from our first paper [6] by allowing
the initial velocity to belong to the physically natural space H%:2. In this paper the
issue of uniqueness was also left open. Anyone interested in the history and results
obtained for deterministic geometric wave equations can read the Introductions to
the above-mentioned papers, bearing in mind the existence of a beautiful book [59]
by Shatah and Struwe. Moreover, the Introductions to our earlier papers contain
a lot of references to stochastic wave equations in linear spaces. For completeness,
we have decided to keep a long list of references at the end of the paper.

2. Differential Geometry background

We assume that the reader is familiar with notions of a differentiable (and Rie-
mannian) manifold, a tangent space and a vector field. From now we assume that
M, or rather (M, g), is a compact Riemannian manifold. By T,M, p € M, we will
denote the tangent space to M at p, and by 7 : TM — M we will denote the
tangent vector bundle. The space of all smooth vector fields on M, i.e., sections of
m, will be denoted by X(M). The space of all smooth R-valued functions on M will
be denoted by F(M). If I C R is an open interval and vy : I — M is a smooth map,
then by 8yy(t) € TywyM, or simply by +'(t), we will denote the tangent vector to
v at t € I. One should recall an alternative equivalent definition of a vector field,
namely a vector field on M is a smooth R-linear map X : §(M) — F(M) such
that

(D0) X(fh) = X(f)h + fX(h), for all f,h € F(M).
We will exchangeably use these two different approaches to a vector field. In what
follows we will use the following notation for Y, Z € X(M):

(¥, 2)(p) = 9(Y (p), Z(p)), p€ M.

A connection on M is a function V : X(M) x X(M) — X(M) such that
(D1) for each Y € X(M), the map X(M) > X — VxY € X(M) is F(M)-linear,
(D2) for each X € X(M), the map X(M)>Y — VxY € X(M) is R-linear,
(D3) for all X,Y € (M) and f € §(M), Vx(fY) = (Xf)Y + fVxY.
The vector field VxY is called the covariant derivative of Y with respect to X for
the connection V. In view of [51, Proposition 2.2], the axiom (D1) implies that for
any Y € X(M) and each p € M and each individual tangent vector u € T,(M), a
tangent vector V,Y € Tp(M) is well defined. To be precise, V,Y = VxY(p), for
every X € X(M) such that X(p) = u. A fundamental result due to Levi-Civita
is, see [51, Theorem 3.11], there exists a unique connection V on M, called the
Levi-Civita connection such that for all X,Y,Z € X(M),

(D4) [X,Y]=VxY —VyX
and
(D5) X(Y, Z) = (VxY,Z) + (Y, Vx Z).
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Let us also recall the following result about differentiating along a curve. For
a smooth map « : I — M we will denote by X(-y) the space of all smooth vector
fields on v and if V € X¥(M) then (V,)(t) = V(v(t)), t € I. By §(I) we will
denote the space C*°(I,R). One can show, see [51, Proposition 3.18], that if V is
the Levi-Civita connection on M, I C R is an open interval and y: 7 —+ M is a
smooth map, then there exists a unique linear map ' : X(y) — X(vy) such that for
all he §(0), Z,72 € X(v), V € X(M)
(i2) (hZ) = ()72 +hZ',
(1) ()’ () = Vo (V), t € 1,

and
(14) %(Za ZZ) = (Z,7 ZZ) + <Z7 Zé)
We will denote Z'(t) by Vg, ) (Z)(t). In particular, if Z(t) = yy(t), t € I, is the
velocity field of v, then Vg, ()(0¢7)(t) is called the acceleration of the curve v at
t € I and will be denoted in this paper by D;0;v(t). Let us note that the time
variable will sometimes be denoted by s and also that the same construction works
for a space variable x.

Example 1. The Euclidean space M = R?¢ equipped with a trivial metric g is
a Riemannian manifold. For each p € R?, the tangent space T,R? is naturally
isometrically isomorphic to R%. Hence a vector field X on R? is simply a function
X :R? = R?. A function V : R? x R? — R? defined by (VxY)(p) := (d,Y)(X(p))
is the corresponding Levi-Civita connection and is called the natural connection
on R?. In particular, the acceleration of a smooth curve v : I — R¢ with respect to
the natural connection on M = R? satisfies Vg, 1) (0:7)(t) = 02v(t) = #(¢), t € I.

Example 2. The d — 1-dimensional unit sphere M = S%~! embedded into the Eu-
clidean space R? and equipped with the following Riemannian metric g: gp(u,v) :=
(u,v), where p € M C R% and u,v € T,M C R? and (-,-) is the scalar product
in R%. Note that for p € M, T,M = {u € R? : (u,p) = 0} and let us denote by
mp : R? 3w u—(u,p)p € T, M the orthogonal projection from the ambient space
R? onto the tangent space T, M. The acceleration of a smooth curve v : I — M
with respect to the Levi-Civita connection satisfies

Vo) (@1 (t) = Ty (7)) = #() + (O Pr(2), tel. (2.1)
In the special case of d = 3, we can use the notion of the vector product in R and
have

Vorro@1)() = =1(8) x (1(8) x 5(1)), te .

In our context, the integration by parts formula takes the following geometric
form. If ¢ : I — R is of C3-classand u: I — M is C' and Z € X(M), then

_ / Z—i(m)(ﬁmu(x), Z(u(@))) do (2.2)
I

= / o(@)(DaByu(z), Z(u(x))) d + / 0(2)(0e1(z), Vo, uiayZ) da-
I J
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Example 3. Let us fix p,q € M and consider a set M, 4 of all continuous functions
v : [0,1] = M such that v(0) = p, v(1) = q, v is absolutely continuous and
E(y) = fol |8;y(¢)|? dt is finite, where |9py(£)[?> = gy (Osv(t), Bey(2)), t € [0,1].
Then, it is known that M, , is a Hilbert manifold and that F is a smooth map
from My, 4 to R. Using the integration by parts formula (2.2) one can prove that
if v € My 4 is a stationary point of £, then Dd;u(t) = 0 for all ¢ € (0, 1).

According to the celebrated Nash embedding theorem, see [45], there exists
an isometric embedding i : M < R? for some d € N. Hence M can be identified
with its image in R%. In this case, i.e., when M is a Riemannian submanifold of
R?, one introduces the second fundamental form S of the submanifold M of R¢
in such a way that S, : T,M x T,M — N,M = T,M*, p € M. If V is the
Levi-Civita connection on M and X is a vector field on M and X is a smooth
R%-valued extension of X to an R neighbourhood V of some p € M, then, see see
[51, p. 100],

(dpX)(1) = Vo X ©8p(X(p),m),  ne€TpM. (2.3)
Ify:1— MisaC' curve and X € Xp(y), ¥ =407 and X :=i,(X) € Xpa(7) is
defined by X (t) := (dy(5)1) (X (7(¢)), t € I, then, see [51, Proposition 4.8], for all
tel,

Vo)X = Vo)X & Sy (X (7(2)), 0:v(1)),

X'(t) = X'(t) + Va1 X ® Syry (X (7(2)), ey (1)),
where ’ : Xga — X¥ga and * : Xy — X are the linear maps introduced earlier and
V is the natural connection on R? as in Example 1.

In particular, but see also [51, Corollary 4.8], by applying the equality from
Example 1 we infer that for any smooth curve v : I — M, where I C R,

(Ouv(1), 0y (1)) = (Ouy(t) — Soy(e) (Oe¥(2), Bev(8)), Bey(8)) =0, tel.  (2.5)

(2.4)

3. Homogenous Riemannian manifold
We now present the standing assumption for the remaining part of the paper.

Assumption 3.1. Let us assume that M is a compact Riemannian manifold and G
compact Lie group, with the unit element denoted by e, such that G acts transitively
by isometries on M, i.e., there exists a smooth map

m:GxM>(g9,p)—>gpeM (3.0)
such that

(i) 7(e;p) = p and m(gog1,p) = m(gom(g1,p)), for all p € M and go, g1 € G,
(ii) there exists po € M such that {m(g,po) : g € G} = M,
(iii) for every g € G, the map 7y : M > p+— w(g,p) € M is an isometry.
Conditions (i-ii) are equivalent to conditions (i-ii’), where
(ii") for all po € M such that {m(g,p0) : g € G} = M.
In what follows we will often write gp instead of 7(g,p).
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Example 4. The manifold M = S? = {z € R® : |z| = 1} and the Lie group
G=803)={A€GL(3): AtA=1, det A= 1} satisfy Assumption 3.1.

Proposition 3.2. Assume that M and G satisfy Assumption 3.1. Then for every
p € M, the stabiliser
| Gp={9€G:n(g,p) =p}
is a closed Lie subgroup of G and the map
. Gsg—rgpeM (3.2)
is a locally trivial fibre bundle over M with fibre Gy, in particular, for everyp € M,
the map P is a submersion.

Proof. Follows from [36, Theorem 2.20 and Corollary 2.23]. g

We deduce from the celebrated Moore—Schlaﬂy Theorem [43] that in some
sense Example 4 is general.

Theorem 3.3. Assume that M and G satisfy Assumption 3.1. Then there exists a
natural number n, an isometric embedding

®: M—R", (3.3)
and an orthogonal representation, i.e., a smooth Lie group homomorphism,
p: G — SO(n), (3.4)
such that
®(gp) = p(9)®(p) for allpe M and g € G. (3.5)

The above theorem implies that up to an isomorphism, we can assume the
following.

Assumption 3.4. We assume that M is a compact Riemannian submanifold of R™,
for some n € N, i.e., M is a Riemannian manifold with the induced metric, and
G compact Lie subgroup of SO(n), with the unit element denoted by e, such that
the natural action of G on M is transitive (and obviously isometric).

The Lie algebra g & TG is naturally identified with a subspace of the so(n),
which is the Lie algebra associated with SO(n). Let us denote by v the right-
invariant Haar measure on G, the unique probability measure on G that is invariant
with respect to right multiplication, i.e., satisfying '

/ f(gh) v(dg) = / f(9)v(dg), heG, feC(G).
Je G

Remark 3.5. Let us fix the canonical ONB {ez,...,en} of R*. Then each matrix
A € SO(n) can be identified with a linear operator on R"™. This operator, also
denoted by A, is an orientation preserving isometry. Analogously, every element
A of so(n) can be identified with a skew symmetric (i.e., skew-self-adjoint) (and
hence of trace 0) operator. Let {A; : i € I} be a basis in T.G C so(n). Let us
choose a smooth function f : R™ — [0,1] such that M = f~1({0}) and f~*([0,1))
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is bounded and define a function
F:R"S g / F(9z) v(dg) € R. (36)
e’
We have the following results whose proofs are explained in [10], see the original
papers [59], [33], [26] or [43].
Claim 1. (o) If p € M, then linspan{A;p : i € I} = T, M.

Claim 2.
(i) The function F is of C*-class,
(i) 0< F <1and F1([0,1)) is bounded.
(i) M = F~1({0}),
(iv) the function F is G-invariant, i.e., F(gz) = F(z) for all g € G and z € R™.
Claim 3.
(v) for every i € I and z € R™, (VF(z), A;x) =0,
(vi) for every ¢ € I and each p € M, A;p € T,M.

Claim 4. (vii) There exists a family (hz’,j)?’jﬂ of C*°(M,R) functions such that

E=) > hii(0)€ Aap)Asp, pEM, €€ T,M. (3.7)
a B

Claim 5. (viii) If fzij a smooth compactly supported extension of the function hij
to the whole ambient space R"™ and, for k =1,...,N, Y* is the restriction to M
of Y¥: R > 2+ YN | hyj(z)Aiz € R™, then

N
£=) (&A™ Y*p, pe M, € € T,M. (3.8)
k=1 )

Identity (3.8) is a close reminiscence of formula (7) in [33, Lemma 2].
Remark 3.6. Let us note here that the condition (vi) is a consequence of the
condition (v) if the normal space (T,, M) is one dimensional (which is not assumed
here), e.g., if M = S*~1 c R".

Let us also observe that Claim 1 implies part (vi) of Claim 3.

Example 5. It follows from Remark 3.5 that the properties listed in Claims 1-4 are
satisfied when M = §"~! C R", see for instance [60]. This can be seen as follows.

For i,j € {1,...,n} such that i < j let A¥ be a skew-symmetric linear operator
in R™ whose matrix in the canonical basis {es, ..., e, } is equal to [a}]% 1=1, where
1, if (k,1) = (4,9),
a;jl =< -1, if (k1) = (4,1), (3.9)
0, otherwise.

Let a function ¢ : Ry — Ry be such that ¢(z) = 0 iff z = 1 and p(z) = 1 iff
z € [0,1] U [2,00). Define then a function F : R® 3 o(|z]?) € Ry. Tt is easy
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to verify that
<VF(:c),Aij:c> =0, for every x € R",Ap e T,S* ! ifpe s, (3.10)
e= Y (6 AUp)AUp ifpesTh £ TS (31

1<i<j<n

Example 6. In the case n = 3 the three matrices A% from Example 5 can be
relabeled as (A;)3_;, so we have
Ax=xzxe, z€R, 1=1,23.

Let us note that now formula (3.11) takes the particularly nice form

3
522 (€,p X e;) p X &, if p € §? and (¢,p) =0. (3.12)
i=1

One can prove directly the following useful later result.

3
—lePp=Y" (£, pxe) Exes HfpeS and (6,p) =0. (3.13)
i=1
In view of Claim 5 and identity (3.12) we may put hy; = dx;1 and so, with
¢ : R — R being a Cg° function such that supp (¢) = [-1,1], 71 ({0}) = 1, 2],
hije(z) = ¢(|z[> — 1)d5%. Then, we infer that YF(z) = Agz, for z € R® and
Yep=Ap=pxeyforpe M = 52, In particular, formula (3.8) takes the form

3

£=> (&pxer)pxer, p€M, E€TM (3.14)
k=1

which coincides with (3.12). Let us observe that
d,Y*(y)=Ary=y x e, T,Yy€ R3.
The following lemma will prove most useful in the identification part of the

proof of the existence of a solution.

Lemma 3.7 ([10, Lemma 5.4]). For every p € M we have

N
Sp(€,6) = Y (& AFp) dY™(E), € € TM, (3.15)

k=1
where dpY*(£) == dpY*(€) and dpY'* is the Fréchet derivative of the map Y* at p.

In the framework of Example 6 we have
3

Sp(6,6) = (€. xex) € X ex, pES*EETS,

k=1
Hence, by taking into account formula (3.13) we infer that

Sp(6,€) = —|¢Pp,; p € 5%, € € T, (3.16)
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4. It6 formula in the L2

ioc SPace

4.1. The Wiener process
Given a stochastic basis (2, #,F,P), where F = (%;);>¢ is a filtration, an .7/
valued process W = (W), is called a spatially homogeneous Wiener process
with a spectral measure u which, throughout the paper we always assume to be
positive, symmetric and to satisfy u(R?) < oo, if and only if the following three
conditions are satisfied (with L2(u) = L?(R?, u; C)):

o Wy := (VVtgo) +>0 18 a real F-Wiener process, for every ¢ € &;

o Wi(ap + v) = aWi(p) + Wi(eh) almost surely for all @ € R, ¢ € Ry and

©, 1 €
® E{Wt(plmwg} = t(@l, 9/52)1/2(#) for all £ > 0 and ¢y, o € F.

Remark 4.1. The reader is referred to the works by Peszat and Zabczyk [53, 54]
and BrzeZniak and Peszat [11] for further details on spatially homogeneous Wiener
processes. B

Let us denote by H, C .’ the reproducing kernel Hilbert space of the .#'-
valued random vector W (1), sce, e.g., [23]. Then W is an H,-cylindrical Wiener
process. Moreover, see [53] and [11], then the following result identifying the space
H,, is known.

Proposition 4.2.
Hy={yp: ¢ L{,R%,p)},

i P, = | W@ dule), € L@, ).

See [46] for a proof of the following lemma that states that under some
assumptions, H), is a function space and that multiplication operators are Hilbert—
Schmidt from H, to L2.

Lemma 4.3. Assume that u(R?%) < co. Then the reproducing kernel Hilbert space
H,, is continuously embedded in the space Cy(R?) and for any g € L (R4 R™) and
a Borel set D C R, the multiplication operator mg ={H, 5 ¢~ g-& € L?(D)}
is Hilbert-Schmidt. Moreover, there exists a universal constant cu such that

Imgll 2s(a,,22(Dy) < cullgllrepy- (4.1)

4.2. It6 formula

In general, neither mild nor weak solutions of SPDEs are semimartingales on their
state spaces. Hence, if we need to apply smooth transformations, the It formula
cannot be applied directly and certain approximations need to be done to justify
the formal Ansatz. The aim of this section is to formulate such an Ansatz which is
in fact a special form of an It6 formula, see [9]. The regularity assumptions on the
processes make this a new and hopefully interesting result. It is certainly crucial
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for our purposes, see the proof of Theorem 5.4. This result shows the key idea of
the main existence result of this paper.
To this end, let us introduce the trilinear form

(u,v),, = / (u(z), v(@))rm 9() do (4.2)
RE
defined for ¢, u and v such that the integral on the RHS of (4.2) converges.

Lemma 4.4. Assume that g € (1,2], ford=1,2 and q € [%,2] for d > 3.
Assume that U is a separable Hilbert space. Assume that

(i) ho is a progressively measurable LL _(R% R¥)-valued process,

(i) h1,...,ha are progressively measurable L} (R R¥)-valued processes and
(iii) g s an LU, L} (R% R*))-valued process such that for every £ € U, g§ s

L} (R RF)-valued progressively measurable.

Assume that the processes u, v and z are, respectively,
(iv) adapted Hi (R% R™)-valued weakly continuous,
(v) progressively measurable L} (RY,R™)-valued,

(vi) progressively measurable LI _(R%; R*)-valued, which moreover satisfy the fol-

lowing integrability condition. For every T > 0, P-almost surely,

T
/O (I a(saian) + 15 aqarmy + 196 5 0iacarmen § 45 < 0
(4.3)

T d
[ {1 lsscaras + 3 Wslaziaran pds <o (0

k=1
Assume finally that for each ¢ € PD(R?) and for every t > 0, P-a.s.,

(w(®), ) = w0) ) + [ (0(s). ) ds
t d
(=0, 0) = 0 9) + [ {(hole). ) + 3 {he(s),Omu) s (45)
0 k=1
+ [t am.

Let Y : R™ — RF be a C?-class function such that

Y’ is bounded. (4.6)
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Then for every t > 0 and each ¢ € D(R?), P-a.s.,

(=), Y (u(t)), = ((0), Y (u(0)), + / (ho(s), Y (u(s), ds @.7)
d t

+;/0 (his(5), Y (u(9))),, (pds—l—Z/ (hi(s), Y (u(s))Or, u(s ), ds
+/0 <z(s),Y’(u(s))v(s)>¢ds+/0 <g(s)dVV,Y(u(s))>‘p.

Remark 4.5. The assumption on the exponent g is motivated by the need to have
the bilinear map

H'(Bgr) x LY(Bg) > (u,h) — /B u(z)h(z)dr € R

where Br C R?, bounded.

Remark 4.6. Roughly speaking, the result says that, if du = v dt and
d
dz = [ho — ) _ Ou;hj] dt + gdW = [ho — div h] dt + gdW
j=1
where h = (h1, ..., hy), then, with (z,u) = (z,u>¢, we have

d(z,Y (u)) = (z,dY (u)) + (dz,Y (u))
= (gdW, Y (u)) + [<z,y'(u)v> + (ho, Y (u))
+ (B, Y () V) — (div (hY (x)), 1)] dt

5. The main result

Roughly speaking our main result states that for each reasonable initial data the
equation

Opu = Au + Su(atu, 6tu) — ZZ:l Su(uazka 'Ul:z:/c) + fu(Du) -+ gu(DU) W,
(u(0), 8¢u(0)) = (uo,vo)

has a weak solution both in the PDE and in the Stochastic senses. By a weak
solution to equation (5.1) in the PDE sense we mean a process that satisfies a
variational form identity with a certain class of test functions. By a weak solution
in the Stochastic Analysis sense to equation (5.1) we mean a stochastic basis, a
spatially homogeneous Wiener process (defined on that stochastic basis) and a
continuous adapted process z such that (5.1) is satisfied, see the formulation of
"Theorem 5.4 below. We recall that S is the second fundamental tensor/form of the
isometric embedding M C R"™.

(5.1)
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Definition 5.1. A continuous map A : TM — TM is a vector bundles homomor-
phism iff for every p € M the map Ap : TpM — T, M is linear.

In our two previous papers [6, 7] we introduced and discussed two different
notions of a solution, the intrinsic and the extrinsic, to following the stochastic
geometric wave equation

d
Didyu =Y Day 0o, u + f(u, 00U, 02,1, -, Ogt)
k=1 (5.2)
+ g(u, Oy, Oy 4, - . ., O 1) W,

In the framework of those papers we proved that these two notions are equivalent.
Contrary to those papers, in the present article as well as in [10], we only deal
with the extrinsic solutions, since we refer to the ambient space R™. Hence, since
we do not introduce (neither use) an alternative notion of an intrinsic solution, we
will not use the adjective “extrinsic”. We will discuss these issues in a subsequent
publication.

Assumption 5.2. We assume that fo, go are continuous functions on M, f1,..., f4,
gi,---,9d are continuous vector bundles homomorphisms and fay1, ga+1 are con-

tinuous vector fields on M. We set, for (&)?:0 € [T,M]4+

d
f(o,&0,---16a) = fo(P)o + ka(l’)ﬁk + fa+1(p), pEM, (5.3)
k=1
d

90,60, -, €4) = Go(D)é0 + Y _ gk (D)&k + gar1(p), P E M. (5.4)
k=1

In the following, we will use the following notation.
2= HYRE,RY) @ [A(RRY), Hoc(RY) = Hb(RER™) © L (RERY),
Hoo(M) = {(u,v) € Hoc(R™) : u(z) € M, v(z) € Tye)M for ae. x € R%}.
The strong, resp. weak, topologies on %O~C(M ), are by definition the traces of
the strong, resp. weak topologies on J#oc. In particular, a function u : [0,00) —

Hoc (M) is weakly continuous, iff u is weakly continuous viewed as a Hoe-valued
function.

_ Definition 5.3. Suppose that © is a Borel probability measure on J#oc(M). A sys-

tem $ = (€, #,F,P, W, z) consisting of a stochastic basis (Q, Z,F,P), a spatially
homogeneous Wiener process W and an adapted, weakly-continuous Hoc(M)-
valued process z = (u,v) is called a weak solution to equation (5.2) if and only if
for all ¢ € (R, the following equalities hold P-a.s., for allt >0

(u(t), 0) = (u(0), @) + / (w(s), @) ds, (5.5)
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(w(t), 0) = ((0), ) + / (Sugey (0(5),v(5)) , )

+ / (F(2(s), Vu(s)), ) ds + / (u(s), Ag) ds
(5.6)

d  pt
B I;A <SU(S) (aﬂvku(s)v aﬂcku(s)) 790>

" /O (9(2(s), Vu(s)) W, @)

where we assume that all integrals above are convergent and we use the notation
(5.3)—(5.4).

We will say that the system 4l is a weak solution to the problem (5.2) with
the initial data ©, if and only if it is a weak solution to equation (5.2) and

the law of z(0) is equal to ©. (5.7)

Theorem 5.4. Assume that u is a positive, symmetric Borel measure on R% such
that p(R?) < oco. Assume that M is a compact Riemannian homogeneous space.
Assume that © is a Borel probability measure on #oc(M) and that the coefficients
[ and g satisfy Assumption 5.2. Then there exists a weak solution to problem (5.2)
with the initial data ©.

Remark 5.5. We do not claim uniqueness of a solution in Theorem 5.4, cf. Freire
[26] where uniqueness of solutions is not known in the deterministic case either.

Remark 5.6. Note that the solution from Theorem 5.4 satisfies only u(t,w,-) €
HL (RE,R™), t > 0, w € Q. Hence, for d > 2, the function u(t,w, ) need not be
continuous in general.

Remark 5.7. In the above theorem we assume that fy and gg are real functions
and not general vector bundles homomorphisms. We do not know whether our
result is true under these more general assumptions.

Theorem 5.4 states the mere existence of a solution. The next result tells
us that, among all possible solutions, there certainly exists one that satisfies the
“local energy estimates”.

In order to make this precise we define the following family of energy functions
ez, 7t ), x € R®, T >0 and ¢t € [0,T], by for (u,v) € S,

et = [ (GG + FIVuP + )P+ . (59)

[n the above the constant s2 is defined by

? = max {[| far1ll pooqarys | a1l oogary + 9as1lF 00 ary }- (5.9)
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Theorem 5.8. Assume that p, M, ©, f and g satisfy the assumptions of Theorem
5.4. Then there evists a weak solution (Q, Z,F,P,z, W) of (5.2) with initial data
O such that

E {1A(z(0)) sup L(em,T(s,z(s)))} < 4e“*E {14(2(0))L(es,7(0,2(0)))} (5.10)

s€[0,2]

holds for every T € Ry, x € R%, ¢ € [0,T], A € B(Hoc) and every nonnegative
nondecreasing function L € C[0,00) N C%(0,00) satisfying (for some c € Ry)

L' (t) + max {0,#>L" (¢)} < cL(t), t > 0. (5.11)

The constant C in (5.10) depends only on c, ¢, and on the L*(M)-norms of
(fi,gi)ie{o,...,d+1}- :

Remark 5.9. We owe some explanation about the meaning of the energy inequality
(5.10). First of all please note that for z = (u,v) € Hoc We have

e;1(0,2) =e;r(0,u, v)

- /B( T) {%'“(y)lz + %Ivu(y)l2 + %Iv(y)P n 52} dy

v o T, (5.12)
= §IU|W1,2(B(m,T)) + §|U|L2(B(m,T)) 358
- T 4
= §|Z|%B(E,T) L
Similarly, we have for z = (u,v) € Hoc,
1 T—35s
e, 1(s,2) = §|z|2%3(xm_s) + ; &2, (5.13)

Hence, if a system (Q, Z,F,P,2,W) is a solution to the problem (5.2) and A €
PB(Hy.) then the inequality (5.10) becomes

1 T—s
E {1,4(2(0)) sup L (§|z|3f3($’T_s) =5 S2>}

s€[0,2]

1 T
< 4eCt/A [L <§|z|§fB(I’T) + 552>} do(z).

In particular, if we take a function L : Ry 5 ¢ Vt € R, which satisfies the

‘inequality
1. T—5s . 1/2
1 ~NELE X
IE{ A(z(O))SS[lOI?t] (QIZI#’B(E,T_S) Tt ® )

(5.14)

(5.15)

2

ot 1 T e ¥
<4 12| +ls d0(2)
S 4€ 4 2 ”B(m,T) 2 g
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6. Some non-rigorous digressions

The wave equation on R® with values in R?

ug + (m? — A)u + Vf(u) =0 (6.1)
where f : R? — R, can be written in the “gradient” form
ugt + VyE(u) =0 (6.2)
where F is the energy defined by
1 :
E(u) = 5 /Rs [|Y7u(:v)|2 +m?|u(z)]? + 2f(u(m))] dz

and the gradient V,F of E is with respect to the Hilbert space L?(R3).
Similarly, the geometric wave equation on R? taking values in M

d
D;0u — Zkzl Dg, 0z, u =0, (6.3)

where D is the covariant derivative on M, can also be heuristically written in the
“gradient form”
D.0iu + VyE(u) =0, (6.4)

where E is the restriction of E to M-valued functions:

x 1 ~
E(u) = E(u) = 5 /RS |Vu(z)|? dz, uwe HY?(RY, M)

and V.E is the gradient of E with respect to “Riemannian” structure on
HY2(R?) M) with the L2(R?) inner product
If » is a solution to problem (6.1) (or equivalently (6.2)), then the Hamiltonian

E(u(t)) / luz(t, z)|? da

is constant with respect to time.
Similarly, if u is a solution to problem (6.3) (or equivalently (6.4)), then the
Hamiltonian

Blu(t) + /R fua(t,2)? d

is also constant with respect to time. An heuristic proof of this fact can be easily
accomplished by using formulae (i4) on page 159, (2.2) and (2.5).

7. The fundamental equivalence lemma
The main idea of the proof of Theorem 5.4 can be seen from the following result.

Proposition 7.1. Assume that M is a compact Riemannian homogeneous space and
that the coefficients f and g satisfy Assumption 5.2. Suppose that a system

(Q, Z,F,P,W, (u, v)) (7.1)



Stochastic Geometric Wave Equations 171

is a weak solution of (5.2). Assume that A : R? — R? is a skew-symmetric linear
operator satisfying condition (vi) of Claim 3. Define a process M by the formula

= (v(t), Au(t))r», t > 0. (7.2)
Then for every function ¢ € Hclomp the following equality holds almost surely:
d t
(M) = (6, MO) ~ 3 (205, [ (Ouyu(e) Aue))ge ds)
k=1 0
t
+ (i, [ (7(a(e) v(e) V(s Au(e) ds) (73)
0

+(o [ *(otu(s), v(s), (s, Au(s) dW(s) ), 120,

Conversely, assume that a system (7.1) satisfies all the conditions of Definition 5.3
of a weak solution to equation (5.2) but (5 6). Suppose that there exists a function
F:R% = R and a finite sequence (AYN., of skew symmetric linear operators in
R™ satisfying Claims 1 to 4. For each i € {1,..., N} define a process M:* by the
formula (7.2) with A = A*. Suppose that for every function ¢ € HY o €aich M
satisfies equality (7.3) with A= A" and that

: N
v(t,w) Z hij(a(t,w))M(t, w)Alu(t,w), weQ,t>0. (7.4)

Then the process (u,v) satisfies the equality (5.6).

Remark 7.2. Let us note that neither formula (7.4) nor (7.2) contains the gradient
term Vu.

Example 7. For M = S? < R3, the formula (7.4) takes form
v(t) = Z M (t)A*u ZM’ Hu(t) x e; (7.5)

Proof. The proof of this result follows by applying our new It6 formula from
Lemma 4.4 and using the material discussed in Section 3. Details are as follows.
First let us note that

(o, M(1)) = (v(t), Au(?)),,, t>0

Since dAu = Avdt and

dv = [Su (v,v) + f(u,v, Vu) + Au — Z Su (6mku,5‘a,ku)] dt + g(u,v, Vu) dW
k=1



2 Z. Brzezniak and M. Ondrejat

r applying the Itd6 Lemma 4.4 in the form from Remark 4.6 we get

d{v(t), Au(t)) = [(v(t), Av(t)) + (Su (v,v) + f(z,Vu) + Au

- i Su Oz, 6, O, 1) ,Au(t))] dt + {g(z, Vu) dW, Au(t)).
k=1

>cause A is skew-symmetric, (v, Av) = [(v(z), Av(z))r~ ¢(z) dz = 0. Moreover,
1ce Sy, (v,v) is normal to T, M and by part (vi) of Claim 3, Au € T,, M, we infer
at (Sy (v,v), Au) = 0 as well. Similarly, (Sy (0z,u, 85, u) , Au(t)) = 0. Finally,
ith respect to the term containing Awu, we have

(Au, Au) = <Au,Au>£p =— Z/@zkuamk(flugo) dz
k
=-> / Ory u0r, (Au)pdz — / O, wAUD,, 0 dz:
k k
=-> / O, uAUD,, o da,
k

1ce O, U0z, (Au) = (O, U, Oy, (A))rn = (O, u, A(Oz,u))grn = 0 by the skew-
mmetricity of A. Summarising, we proved that

d{v(t), Au(t)) = = Y (Onu(t), Au(t)),, dt
k

+ (f(z,Vu), Au(t)) dt + (g(z, Vu) dW, Au(t)).

1e proof of (7.3) is thus complete.

We now present the proof of the converse part. It is based on the proof of
mma 9.10 from [10]. Let us fix ¢ € Z(R?). We will show that, almost surely for
ery t > 0,

(v(t), ) = (v(0), ) + /0 (u(s), Ag) ds + / (Suey (V(5),¥(s)) , 0) ds

LI
- / (Su(s) (Oz,u(s), 8z, u(s)) , ) ds
o (7.6)

4 / (F(u(s), v(s), Vu(s)), @) ds

+ [ (o), v(), Vuls)) i),
0

Let us consider the functions h;; from Claim 4 the vector fields Y?¢, i =
...,n defined in Claim 5. Let M! be a process defined in a formula with A
slaced by A, i.e., define a process M by the formula

M (t) := (v(t), A'u(t))gn, t > 0. (7.7)
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Then by applying Lemma 4.4 to the processes u and M and the vector field Y
we get the following equality, P-almost surely for every ¢ > 0,

N

> (MY ), e)
(0)Y(u(0) +Z/ (M (5)(du(s) Y ) (V(5)) ) s

/Dﬂz

i

Mz j
M=

[ ({000, A9} Y (1), 1) s

il

A

T

I
S— S—

5

&0

<<axlu ), A°(5)) g (dugsy V) (B511(5))  0) ds

s
Mg

s
Il
i
Il
&

(F(a(s), v(s), Vu(s)), A'u(s) ) Y (u(s)), o) ds

2y ST
P

__|_.
= [[M]=

+Z/ (g(u(s),v(s), Vu(s)), Au(s))g, Y (u(s)) dW, g0>.

Next, by identity (7.4) we have, for each t > 0 and w € 2,
N . .
S (MY (), p) = (v(t:w), ¢) (7.9)
=1

and by identity (3.8) we have, for each s > 0 and w € ,

i Xd: <<8xlu(s), Atu(s))g, Y (u(s)), (9zltp> = Ed: <c‘)mlu(5), Bmlg0>. (7.10)

i=1 I=1 =1
Furthermore, from Lemma 3.7 we infer that for each s > 0 and w € {2,

d

N
Z Z <<a$lu(3)7 Aiu(s»Rn (dU(“S)Yi) (89“11(8)) ) 90>

== ] (7.11)
55 (Bt 0009) ),

Similarly, by the identities (7.7) and (3.15) we infer that for a.e. s > 0, a.s.

N

Z: <M (8)(du(s) Yi)(v(s)),so> = i <<V(5),Aiu(5)>Rn (du(s)Yi)(V(S)),(p>
:< u(s) (V(5), v(5)), >: <Su(s)(v(s),v(s)),go>. (7.12)
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Moreover, by a similar argument based on (3.8) we can deal with the integrands
of the last two terms on the RHS of (7.8). Indeed by the definition of Y'* given in
Claim 5, we get

N

>~ ((F(s), v(s), Vu(s), Au(s))y, Y (u(s)), ¢) = (£(u(s), v(s), Vu(s)), ¢,
i=l
(7.13)

N
>~ {(g(a(s), v(s), Vu(s)), A'u(9)) Y (u(s)), ¢) = (g(u(s), v(s), Vu(s)), ¢).
= (7.14)

Summing up, we infer from the equality (7.8) and the other equalities which follow
it that for every ¢ > 0 almost surely

t d
(7)) = 01 = 3 (Beule) ) s

[ E o) o
/ <f(u(s), ), Vu(s)), SO>
+/0 <g(u(s),v(s),Vu(s))dW(S)a90>-

This concludes the proof of Proposition 7.1. O

8. Brief description of the main steps of the existence proof
8.1. The first step
We begin with introducing a penalized and regularized stochastic wave equation
0uU™ = AU™ —mVF{U™)
+ U™, Vi) U™ + 9™ (U™, Vi, U™) dW™
with law of (U™(0),0,U™(0)) = ©, where the C*-class function F' has been de-

fined in (3.6) and (f™) and (g™) are sequences of approximating smooth functions,
such that

f(;nago Rn%R fz ag%n:Rnﬁg(Rn7Rn)afﬂl7gz"in+an%Rn7

(8.1)

such that for some Rg > 0 Ud+1 UmEN [supp (f™)U supp (¢; )] C B(0, Rg) C R™,
and the L* norms of f77, and g7} ; do not exceed the L* norms of fq41 and gg.1
respectively and f]* — f; and g — g; as m — oo uniformly on R".
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Now, it follows that each approximating problem has a unique solution. Thus
for every m € N, there exists

(i) a complete stochastic basis (2™, F™,F™,P™), where F™ = (FI)e>0;
ii) a spatially homogeneous F™-Wiener process W™ with spectral measure p;
U
(iii) . an F™-adapted #,c-valued weakly continuous process 2™ = o™, vm)

such that © is equal to the law of Z™(0) and for every ¢t > 0 and ¢ € 2(R,R™)
the following equalities hold almost surely:

™), P)re = (U™ (0), @ / (V™ (5), @)z ds (82)
(V™) o)z = (V7(0), @)rn + /0 (~mVE(U™(s))

+ f™(Z™(s), VU™ (s)), ¢)rn ds—l—/ot(Um(s),Ago)Rn ds

+ [ @6, ST W e 5.3

We can assume that for each m € N, Z™(0) is FJ*-measurable Foc(M)-
valued random variables whose law is equal to ©. In particular, our initial data
satisfy Uf"(w) € M and V{™(w) € Tyg(w)M a.e. for every w € .

In the analysis of the problem above we will use a Lyapunov type functional
€z 17.mF, Where £ € R", T > 0, m € N, defined by, see also (5.8), by

ez, 7,mr(t,u,v) = eg,7(t,u,v) +m F(u)dy,t € (0,7, (u,v) € Hoc-

B(z,T—t)
(8.4)
A nondecreasing function I € C[0,00)NC?(0, 00) is called a good function iff there
exists ¢ = ¢(L) > 0 such that

tL'(t) + max {0,#>L" (1)} < cL(t),  t>0. (8.5)
Lemma 8.1. There exists a weak solution °

@m, g™ (Fm), P, 2™ = U™, V™), W)
to problems (8.2)~(8.3) such that for all T >0, A € B(Hoc), m €N,

E™ [14(Z2™(0)) P L(es,rmr(s, 2™(5)))]

< 4eP'E™ [14(Z™(0)L (ex,r,mr (0, 2™(0)))], t €[0,T7, (8.6)

for every good function L. The constant p depends on c(L), ¢y and on || f|lzee,
llgllzeo-
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Example. A function L(t) = /% is a good function with c¢(L) = %. Note that
L"(t) < 0 for ¢ > 0. In this case the above energy inequality becomes

Lo T—s \2
E < 14(2(0 =|z[5 3
{ alz( ))SZL[})I;] (2| I.#B(x’T_s) + 5 S )

1 N
pt .12 . =2
< de /A [<2|z|ﬂ3mn + 38 )

Our next ingredient is the following lemma. The spaces Cy and L will be
introduced later in Subsection 9.1.

dO(z).

Lemma 8.2. Assume thatr <2 andr < dfdl. Then

(1) the sequence {U™} is tight on Cy(Ry; HL);

(2) the sequence {V™} is tight on L = L (Ry; L2 );

(3) and, for everyi € {1,...,N}, the sequence (V™, AAU™)pa

is tight on Cp,(Ry; Li, ).

Remark 8.3. Had we been able to prove that the sequence {V™} is tight on
Cw(Ry; L2 ), then part (3) of Lemma 8.2 would follow easily from part (1). How-
ever such a stronger version of part (2) is rather not true and part (3) is the most
essential ingredient of the proof of the existence of a solution. The proof of this
part hangs upon the special properties of the auxiliary penalisation function F'
listed in Claim 3.

The proof of the above lemma uses the new version of the It6 formula pre-
sented in Lemma 4.4 together with the properties of function F' and operators A*
listed earlier. By applying next the Gagliardo—Nirenberg inequality and the Holder
inequality we get that for every R > 0, the equality

(V™ (t), ATU™ ())r = (V™ (0), AU™(0))e

4 ¢
+ Zawk l:/o <am,cUm(S),AiUm(s)>Rn d3:|
o , (8.7)
+ /0 (F™(Z2™(5), VU™ (s)), A'U™(s))gn ds

+ /O (g™(Z™(5), VU™ (s)), A"U™(5))gn AW

holds in W;l’r for every ¢ > 0, almost surely.
Let us consider, as before, the approximating sequence of processes (Z m)m N’
where Z™ = (U™, V™) and the following representation of Wiener processes W™:

Wit=3 (e, 20, (8.8)

where 8 = (B, 4?,...) are independent real standard Wiener processes and {e; :
i € N} is an orthonormal basis in H,.
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Fix r as before. Then Lemma 8.2 together with some other results which we
state later on (Corollary 9.5, Proposition 9.9 and Corollary 9.2) implies that there
exists

e a probability space (02, Z,P),
e a subsequence my,
o the following sequences of Borel measurable functions

(u*)gen | with values in C(Ry, HiS,)
(v*)gen | with values in C(Ry, L) (8.3)

(w*)ren | with values in C(Ry, RY)

o the following Borel random variables

vo with values in L
u with values in Cw(Ry; HLL,)
0] with values in L2, (R4; L2 ) (8.10)
w with values in C(R, RN)
Mt i=1,...,N | with values in Cy(Ry; Li,.)

such that, with the notation z* = (u*,v*), k € N and
M = (W*, A%F)gn, i =1,...,N, k€N, (8.11)
the following conditions are satisfied.
(R1) VEkeN,
Law ((Z™, f™)) = Law ((z",w")) on B(C(R+, #oc) X C(R+,RY));
(R2) pointwise on € the following convergences hold:
uF s u in Cu®i;HL)
v* 59 in LRy L)
vk(Q) — v in L2 (8.12)
Mlzc — M* in CW(R-HLTOC)
w* > w in GR4,RY);
(R3)  the law of (u(0),vo) is equal to ©.
In particular, the conclusions of Lemma 8.1 hold for this new system of

processes.

Proposition 8.4. If L is a good function and p is the constant from Lemma 8.1,
then inequality (8.6) holds, i.e., for every k € N, t € [0,T], z € Re, A € B(Hoc).

Zk 'u e k
E [14( (0))32[0%]!3( o, 7mi. (8:27(5))) (8.13)

< 4¢P'E [14(2*(0))L (ez,7,m, (0,2°(0)))].
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Before we continue, let us observe that the compactness of the embedding
H}_ < L2 and properties (8.10) and (8.12) imply the following auxiliary result.
Proposition 8.5. In the above framework, all trajectories of the process u belong to
C(Ry,L},) and for every t € Ry, uk(t) — u(t) in LY.

We also introduce the following filtration F = (%), , of o-algebras on the
probability space (2, %,P):

F = o{o{vo,u(s),w(s) : s € [0,t]}U{N : P(IV) =0}}, ¢t >0.

Our first result states, roughly speaking, that the limiting process u takes

values in the set M. To be precise, we have the following.

Proposition 8.6. There exists a set Q, € F such that P(Q,) = 1 and, for every
wE Qy and t >0, u(t,w) € M almost everywhere on R,

Beginning of the proof. Let us fix T > 0 and § > 0. In view of the definition (8.4) of
the function eg r,m, the inequality (8.13) yields that for some finite constant Cr s,

mi, B [1 e (25) /B Ft(0)da] <Crs, 1€ (0,7) (8.14)

Since my, * oo the result follows. O
The last result suggests the following definition.

Definition 8.7. Set

>
u(t,w) = {u(t,w), fort >0 and w € Qy,

8.15
P, fort >0 and w e N\ Qy, (Blo)

where p(z) = p, x € R? for some fixed (but otherwise arbitrary) point p € M.

Let 7 be the L-valued random variable as in (8.10) and (8.12). Then we proved
that there exits a measurable L2 -valued process v such that for every w € €, the
function v(-,w) is a representative of 7(w).

In the next result we show that the process (u, V) takes values in the tangent

bundle TM.

2

ioc-valued process V such

Lemma 8.8. There exists an F-progressively measurable L
that Leb @ P-a.e., V = v and, P-almost surely,

¢
u(t) = u(0) +/ V(s)ds, in LL., for allt>0.
0
Moreover V(t,w) € TyuwyM, Leb-a.e. for every (t,w) € Ry x Q. Finally, there
ezists an Fo-measurable leoc—valued random variable vq such that
Vo = vo, P almost surely

and, for every w € QQ,
vo(w) € Ty(o,w)M, Leb-a.e..
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In order to prove the existence of a solution we will exploit the assumption
that M is a compact homogenous space. The processes we have introduced so far
could be identified in the following way. Before we formulate the next result let us
define a process v by the following result.

Lemma 8.9. There ezists a P-conegligible set Q € F such that if the process Mt is
defined by M* = 1gM?, i € {1,..., N}, then the following properties are satisfied.

(i) For every i € {1,...,N} there is an L2 .-valued F-adapted and weakly con-
tinuous.
(ii) The following three identities hold for every w € Q,

Mi(t,w) = (V(t,w), Aiu(t,w)>Rn , forae t>0,
N
vow) = Y hi;(u(0,w))M*(0,w) A u(0,w),
i,j=1
V(t,w) =v(t,w), fora.e t>0,
v(t,w) € Tu(t,w)M; t>0,

where

N
v(t,w) = Y hij(u(t,w))M (¢t w)Aut,w), weQt>0. (8.16)

i,j=1
Moreover, with z = (u,v), for every w € Q, for almost every t > 0,

hm <fm" “(t,w)), Aty I”(t w))Rn = <f z(t,w), Vu(t,w)), Atu(t, w))Rn,
klggo (g™ (z’”(t,w)),A‘uk(t,w»Rn (9(z(t,w), Vu(t, (t,w)), A'u t,w))Rn ,

where the limits are with respect to the weak topology on LZ .

[l

8.2. Construction of the Wiener process

The second crucial step is the following result. Its proof bears upon the 1dent1ty
(8.7) derived earlier in the proof of the tightness of the auxiliary processes M; =
(Vvm, A'U™), see part (3) of Lemma 8.2.

Proposition 8.10. The processes (w;)i2, are i.i.d. real F-Wiener processes. More-
over, if (e;)2, is an ONB of the RKHS H,, then the process

Wy => we), ¥ € SR (8.17)
=1



180 7. Brzesniak and M. Ondrejat

15 a spatially homogeneous F-Wiener process with spectral measure pi, and for every
function @ € H} the following equality holds almost surely:

comp

(0, ME(®) = (0, ME(0)) - 2<W, / (Bex(e), Au(6))g ds)

<<p, / (f(u( Vu(s)), A'u(s)) ds> (8.18)
<(p’/ {g(u(s), V(s), Vu(s)), A*u(s)) dW(S)>, t>0.

The third crucml step is to apply Proposition 7.1.

8.3. Conclusion of the proof of Theorem 5.4

Lemma 8.11. The L2 _-valued process v introduced in (8.16) is F-adapted and
weakly continuous. Moreover, v(t) € TywyM for every t > 0 almost surely and
for every ¢ € D(R?), equality (7.6) holds almost surely for every t > 0.

Proof. Obviously the process v is L -valued. The F-adaptiveness and the weak
continuity of v follows from its definition (i.e., (8.16)) and Lemma 8.9. The re-
maining parts follow from Proposition 7.1.

This concludes the proof of Lemma 8.11. O

To conclude the proof of the existence of a solution, i.e., the proof of Theorem
5.4 let us observe that the above equality is nothing else but (5.6). Moreover, (5.5)
follows from (8.8) and (8.16). This proves that if the process z := (u, v) then
(9, Z,F,P,W, z) a weak solution to equation (5.1).

Thus the description of the proof of the main result of this review is finished.

9. Some topological considerations

9.1. The Jakubowski’s version of the Skorokhod representation theorem

Theorem 9.1. Let X be a topological space such that there exists a sequence {fm}
of continuous functions fn, : X — R that separate points of X. Let us denote by
% the o-algebra generated by the maps {fm}. Then

(j1) every compact subset of X is metrizable,

(j2) every Borel subset of a o-compact set in X belongs to 7,

(j3) every probability measure supported by a o-compact set in X has a unique
Radon extension to the Borel o-algebra on X,

(j4) if (um) is a tight sequence of probability measures on (X,), then there
ezists a subsequence (my), a probability space (2, F,P) with X -valued Borel
measurable random variables Xy, X such that pm, is the law of Xy and X,
converge almost surely to X. Moreover, the law of X is a Radon measure.

Proof. See Jakubowski’s paper [34]. O
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Corollary 9.2. Under the assumptions of Theorem 9.1, if Z is a Polish space and
b:Z — X is a continuous injection, then b[B) is a Borel set whenever B is Borel
in Z.

See Corollary A.2 in [50]. Since the map F' = (fi, f2,...) : X — RY is a contin-
uous injection, F ob: Z — RY is also a continuous injection. Let us take a Borel
set B C Z. Since both Z and RY are Polish spaces, we infer that (¥ o b)[B] is a
Borel set. Therefore b[B] = F~1[(F o b)[B]] C X is Borel set too. O

9.2. The space L, (Ry5 L2)

Let L = LS (Ry; L2 ) be the space of equivalence classes [f] of all measurable
functions f: Ry — LZ . = L (R4, R™) such that || f||z25,) € L(0,n) for every
n € N. The space L is equipped with the locally convex topology generated by
functionals

F ._)/ / (¢, z), f(t,z))r~ dz dt, (9.1)

where n € N and g € L* (R, L2(R9)).
Let us also define a space

Yy, = LY((0,m), L?(Bn)), (9.2)

Let us recall that L>((0,m), L?(By,)) = Y,:. Consider the following natural re-
striction maps:

Tm - LQ(Rd) EN s g|Bm € Lz(Bm)a (9'3)
Im = L3 f= (Tmo flom € Vm,w"). (9.4)

The following results describe some properties of the space L.

Lemma 9.3. A map | = (lm(f))meN t L= [Ten(Ym, w*) is a homeomorphism
onto a closed subset of T],,,cn(Yom, w™)-

Proof. The proof is straightforward. O

Corollary 9.4. Given any sequence (am)Se_{ of positive numbers, the set
{f €L | Flleo(om).L2(Brm)) < Gm, m € N} (9.5)
is compact in L.

Proof. The proof follows immediately from Lemma 9.3 and the Banach-Alaoglu
theorem since a product of compacts is a compact by the Tychonov theorem. [

Corollary 9.5. The Skorokhod representation Theorem 9.1 holds for every tight
sequence of probability measures defined on (L,o(L*)), where the o-algebra o(L*)
is the o-algebra on L generated by L*.



182 7. Brzezniak and M. Ondrejét

Proof. Since each Y, is a separable Banach space, there exists a sequence
(Jm,k)3;, such that each jm ik : (Y, w") — R is a continuous function and
(Jm,k)$2, separate points of Y* Consequently, such a separating sequence of
continuous functions exists for product space [](Y;:,w*), and, by Lemma 9.3,
for the L as well. Existence of a separating sequence of continuous functions is
sufficient for the Skorokhod 1ep1esentat10n theorem to hold by the Jakubowski
theorem [34]. O

Proposition 9.6. Let £ be an L-valued random variable. Then there exists a mea-
surable L2, _-valued process & such that for every w € €,

[(,w)] = €(w). (9.6)

Proof. Let (cpn) , be an approximation of identity on R. Let us fix £ > 0 and
n € N*. Then the hnear operator

L) :L>fe / " ult — 5)f(s) ds € L2, (RY) (9.7)

is well defined and for all ¢ € (L3 (R%))* = L2, (R?) and ¢ > 0, the function
Y oI, (t) : L — R is continuous. Hence in view of Corollary E.1 from [10] the map
I,,(t) is Borel measurable. We put

I:Lsfes {hmn_mo A (t)(t), provided the limit in LZ (R?) exists, 9.8)

; otherwise.

Then (by employing the Lusin Theorem [57] in case (ii)) we infer that given f € L
(i) the map Ry 2 ¢+ I,(t)f € LE . is continuous, and
(ii) limy 00 In(t)f exists in LY for almost every t € Ry and [I(-)f] = f.
If we next define L2 -valued stochastic processes £n, forn € N* and € by &, (¢, w) =
I.(t)(€(w)) and £(t,w) = I(t)(§(w)) for (t,w) € Ry x Q, then by (i) above we infer
that &, is continuous and so measurable. Hence the process £ is also measurable
and by (ii) above, given w € 2, the function {R4+ >t > £(t,w)} is a representative
of £(w). The proof is complete. O

9.3. The space Cy(R4; X) and a generalised Arzeld—Ascoli Theorem

If X is a locally convex space then by Cy (R ; X)) we denote the space of all weakly
continuous functions f : Ry — X endowed with the locally convex topology
generated by the a family | - ||m,o, m €N, ¢ € X*, of pseudonorms defined by

[ fllm.e = sup (&, f(E))]. (9.9)
t€[0,m)]

For | > 0, R > 0 and p,p* € (1,00) satlsfymg =+ L =1, let WhP(Bg) =
WHP(Bgr; R™) be the standard Sobolev space over the ball B r- Let us recall that by
(W*P(Bgr), w) we mean the space W*P(Bg) endowed with the weak topology and
that W,"P = WP (R?) is the space of all elements u € Lf,  whose weak derivatives

loc
up to order k belong to LY . The latter space is a metrizable topological vector

loc*
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space equipped with a natural countable family of seminorms (p;);en defined by
pi(u) = |lullwres;), v € W,>P. The dual of WP can be identified with Whe",
i.e., the space of compactly supported distributions from W—k»"  We now formu-
late the first of the two main results in this subsection. Their proofs are based on
the second author’s paper [50, Corollary B.2 and Proposition B.3].

Lemma 9.7. The maps J and L defined by

T (WEP w) 3 f s (Fflan) ey € 1T (WHP(Br), w),
m=1

loc

L: Co(®e; W) 3 b (BB )lio.m)) ey € 1] Cul(0,m), WE*(Brn))
m=1

are both homeomorphisms onto closed sets.
Proof. Straightforward and hence omitted. O

Corollary 9.8. Assume that v € (0,1], 1 <r,p < 0o, —oo <1 <k satisfy
r d
l—=<k—-. 9.10
7 <k—2 (9.10)
Then for any sequence a = (Gm )=y Of positive numbers the set

K(a)={f¢€ Cw(RJr;Wl’Zf NN F Nl oo (o,m), W (Bm))
+| fllev(o,ml,wir(Bm)) < @m; M € N}
is a metrizable compact subset of Coy(Ry; W'{;Cp :

Proposition 9.9. The Skorokhod representation Theorem 9.1 holds for every tight
sequence of probability measures defined on the o-algebra generated by the family
of maps

{CuR; WD) 3 f > (0, (1)) € R} : 9 € D(RY,R™), L € [0,00).
Proof of Corollary 9.8. Let us define a set Am, m €N, by
A, = {h € Co([0,m], WFP(Br)) : [|All oo ((0,m), w2 (B.n))
Hlhll o (o,mpwir(Br)) < Gm}-

Then K(a) = L7(I1,, Ap). It is enough to show that each Ay, is a metrizable
compact in Cy ([0, m], W*P?(B,,)). Indeed, if this is the case then A := IL.Am
is a metrizable compact and hence, since by Lemma 9.7 the range R(L) of L is
closed, AN R(L) is a metrizable compact. Therefore, since by Lemma 9.7 the
map L' : R(L) = Cyu(Ry; WEP) is continuous, K(a) = LA NR(L)] is a
metrizable compact. To this end let us fix m € N and let {¢;} be a dense subset of
(W¥?(Bp,))*. Denote by T the locally convex topology on Cyw([0,m], WkP(B,,))
generated by the semi-norms f + SUPse(o,m] [{¥s: f (t))]- It is easy to see that



184 7. Brzezniak and M. Ondrejat

7 coincides with the original topology of Cy([0,m], W*P(By,)) on the set A,
defined by

A, = {h € Cw([0,m], Wk’p(Bm)) Rl oo fo,m, whe (Bm)) < Gm}-

Hence the set A, is metrizable. The compactness of A, follows from the
classical Arzeld—Ascoli Theorem in the form given in [35, Theorem 7.17, p. 233].
Let us denote by Fi, resp. Fy the closed ball of radius am, resp. (Km V 1)am,
where K,, will be defined below, in W*P(B,y,), resp. W (By,), endowed with
the weak topology. Since the spaces WP(By,) and W (By,) are reflexive and
separable, by the Banach—Alaoglu Theorem, see [56, Theorems 3.15 and 3.16], both
F, and F, are compact. Moreover, since in view of the assumption (9.10) by the
celebrated Gagliardo-Nirenberg inequalities, see, e.g., [27], WP (B,,) € WH(Byy,)
continuously, the natural embedding i : Fy <+ Fj is continuous. Let us denote by
K,, the norm of the embedding W*?(B,,) C W""(By,). Since Fy is compact,
§(F1) is compact as well and the function i : F1 — (1) is a homeomorphism.
Hence, in order to prove equicontinuity of the set A, in C([0,m]; FY), it is enough
to prove equicontinuity of the set An, in C([0,m]; F3). However this easily follows
from the second part of the definition of the set Ap,. Since for each ¢ € [0,m], the
set {h(t) : h € Am} is a subset of F; and hence relatively compact, the claimed
result follows. |

Proof of Corollary 9.9. By the Jakubowski theorem [34], it is sufficient to ver-
ify that there exists a sequence ji : Cw(R+; I/Vllgf) — R of continuous functions
thai separate points of C’W(R+;Wflﬁ’ép). For, let ¢ be a countable sequence in
(WoP(R?))* separating points of WP (R?). Then jiq(f) = @r(f(9), k € N,

O

g € Q4 do the job.
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Abstract. Reflection of a path is a perturbation that is sufficiently powerful
to substantially change many properties of a stochastic process and yet suf-
ficiently structured to be amenable to rigorous analysis. There seems to be
no well-defined theory of reflected processes in the same sense as there is no
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of incarnations and generates many interesting questions. These notes contain
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1. Introduction

Reflection of a path is a perturbation that is sufficiently powerful to substantially
change many properties of a stochastic process and yet sufficiently structured
to be amenable to rigorous analysis. There seems to be no well-defined theory of
reflected processes in the same sense as there is no well-defined theory of Brownian
motion. Instead, the basic idea has a number of incarnations and generates many
interesting questions. These notes contain a review of some directions of research
concerned with reflected paths. )

The notes are not meant to be an elementary introduction to the theory of
reflected processes. They do not contain basic standard results on, for example,
existence and uniqueness of solutions to the Skorokhod equation defining reflected
Brownian motion in sufficiently smooth domains. Instead, the notes review four
diverse topics concerned with reflected paths. The author hopes that the reader
will be inspired by at least some of these research topics.

The first topic, presented in Section 2, is foundational in nature. This section
is concerned with some questions related to and inspired by the definition and
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