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1 Introduction
Blind Source Separation (BSS) represents a wide class of models and algorithms
that have one goal in common: to retrieve unknown original signals from their
mixtures [8]. In the instantaneous linear mixture model, the relation between
unobserved original signals and observed measured signals is given by

X = AS, (1)

where X and S are, respectively, matrices containing samples of the measured and
the original signals. Their ijth element corresponds to the jth sample of the ith
signal. We will consider the regular case where the numbers of rows in X and S
are the same and are equal to d. A is a d × d regular mixing matrix representing
the mixing system. The instantaneous model says that the jth original signal
contributes to the ith measured signal with an attenuation factor of Aij , which is
the ijth element of A.

Independent Component Analysis (ICA) solves the BSS task on the basis of
an assumption that the original signals S are statistically independent. Since the
original signals are mixed through A, the observed signals X are, in general,
dependent. The ICA task thus can be formulated as the one to estimate the mixing
matrix A or, equivalently, W

4
= A−1, called the de-mixing matrix, so that signals

Y = WX are as independent as possible1.

0This work was supported by the Czech Science Foundation through Project No. 14-13713S.
1The beginnings of ICA can be dated to 1986 when Herault and Jutten published their paper

[18] on a learning algorithm that was able to separate independent signals. Later, the concept
of ICA was most clearly stated by Comon in [10], which is one of the most cited papers on
ICA. Presently, there are several books and proceedings devoted to this important topic of signal
processing [8, 9, 11, 23, 30].
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The solution of the ICA task is not uniquely determined. Any matrix W of
the form

W = ΛPA−1, (2)

where Λ is a diagonal matrix with nonzero diagonal entries and P is a permutation
matrix, separates the original signals from X up to their original order, scales,
and signs. Therefore we can later assume, without any loss of generality, that
the variance of the source signals is equal to one. Furthermore, the mean of the
signals is irrelevant for purposes of the signals’ independence and can be assumed
equal to zero, or may be removed from the data in case it is nonzero.

Statistical (in)dependence can be measured in various ways depending on the
assumptions applied to the model of the original signals. There are three basic
models used in ICA/BSS2. The first one assumes that the signal is a sequence of
identically and independently distributed (i.i.d.) random variables. As the condi-
tion of separability of such signals requires that no more than one signal is Gaus-
sian, the approach is called non-Gaussianity-based [16]. The second approach
takes the nonstationarity of signals into account by modeling them as indepen-
dently distributed Gaussian variables whose variances are changing in time. The
third basic model considers weakly stationary Gaussian processes. These signals
are separable if their spectra are distinct; therefore, it is said to be based on the
spectral diversity or non-whiteness.

1.1 Non-Gaussianity-based model
In this model, each original signal is modeled as an i.i.d. sequence. Therefore,
the nth sample of the ith original signal, which is the nth element of the ith row
of S, also denoted as si(n), has the probability density function (pdf) fsi . Since
the signals are assumed to be independent, the joint density of s1(n), . . . , sd(n) is
equal to the product of the corresponding marginals,

fs1,...,sd =
d∏
i=1

fsi . (3)

The corresponding notation of distributions and pdfs will also be used for the
measured signals X and the separated signals Y.

2Some authors associate the non-Gaussianity-based model with ICA only. They classify meth-
ods using other models as belonging under the general flag of BSS.
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A common criterion for measuring independence of separated signals is the
Kullback-Leibler divergence between their joint density and the product of marginal
densities, which is indeed their mutual information defined as

I(Y) =

∫
Rd
fy1,...,yd(ξ1, . . . , ξd) ln

fy1,...,yd(ξ1, . . . , ξd)∏d
i=1 fyi(ξi)

dξ1, . . . , dξd. (4)

Assume for now that the components of Y are not correlated and are normal-
ized to have variances equal to one. Then, it holds that

I(Y) =
d∑
i=1

H(yi) + const., (5)

where H(yi) is the entropy of the ith separated signal defined as

H(yi) = −
∫
R
fyi(ξ) ln fyi(ξ)dξ. (6)

Hence, the minimization of (4) is equivalent to the minimization of the entropies
of all signals, which is the principle also used by FastICA.

1.2 The FastICA Algorithm
FastICA is one of the most widely used ICA algorithms for the linear mixing
model, a fixed-point algorithm first proposed by Hyvärinen and Oja [19, 21].
Following (5), it is based on the optimization of a contrast function measuring
the non-Gaussianity of the separated source. We will show later that an optimal
measure of the non-Gaussianity requires knowledge of the density function. In
FastICA, a nonlinear contrast function is chosen so that it can be appropriate for
large-scale of densities.

1.2.1 Preprocessing

The first step of many ICA algorithms, including FastICA, consists of removing
the sample mean (the mean is irrelevant for the signals’ dependence), scaling the
signals to have unit variances (the original scale is also irrelevant as it cannot
be retrieved due to the indeterminacy of ICA), and de-correlating them. The de-
correlation is a necessary condition for independence. Such a transformation is
appropriately expressed as

Z = Ĉ−1/2 (X−X) (7)
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where

Ĉ = (X−X)(X−X)T/N (8)

is the sample covariance matrix; X is the sample mean, X = X · 1N1TN/N and
1N denotes the N × 1 vector of ones. Another popular solution is to apply the
Principal Component Analysis to rows of X−X.

Now, the output Z contains de-correlated and unit variance data in the sense
that ZZT/N = I (the identity matrix) and their mutual information can be written
as in (5). This property remains valid if and only if Z is multiplied by a unitary
matrix U. Therefore, the separating transform can be searched through finding an
appropriate U such that UUT = I and UZ are as independent as possible. The
constraint on U is called the orthogonal constraint.

1.2.2 The FastICA algorithm for one unit

The algorithm estimates one row of the de-mixing matrix U as a vector uT that is
a stationary point (minimum or maximum) of

Ê[G(uTZ)]
def
= G(uTZ)1N/N

subject to ‖u‖ = 1, whereG(·) is a suitable nonlinear and non-quadratic function,
is applied element-wise to vector arguments. The latter expression is indeed the
sample mean of G(·) over samples of uTZ; and Ê[·] denotes the sample mean
operator.

Finding uT proceeds iteratively. Starting with a random initial unit norm vec-
tor u, the algorithm iterates

u+ ← Zg(ZTu)− u g′(uTZ)1N (9)
u ← u+/‖u+‖ (10)

until convergence is achieved. Here, g(·) and g′(·) denote the first and second
derivatives of the function G(·). The application of g(·) and g′(·) to the vector
uTZ is also element-wise. Classical widely-used functions g(·) include “pow3”,
i.e., g(x) = x3 (then the algorithm performs kurtosis minimization), “tanh”, i.e.,
g(x) = tanh(x), and “gauss”, g(x) = x exp(−x2/2).

It is not known in advance which column of U is being estimated: it largely
depends on the initialization. If all independent components were estimated in
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parallel, the algorithm could be written as

U+ ← g(UZ)ZT − diag[g′(UZ)1N ] U (11)
uk ← u+

k /‖u
+
k ‖, k = 1, . . . , d, (12)

where u+
k stands for the kth row of U+, uk stands for the kth row of U, and

diag[v] stands for a diagonal matrix with diagonal elements taken from the vector
v. A result of this iterative process will be denoted as U1U .

1.2.3 The symmetric FastICA algorithm

The symmetric FastICA is designed to estimate all separated signals simultane-
ously. One step of the parallel estimation proceeds through (11) and each is com-
pleted by a symmetric orthonormalization. Specifically, starting with a random
unitary matrix U, the method iterates

U+ ← g(UZ)ZT − diag[g′(UZ)1N ] U (13)
U ← (U+U+T )−1/2U+ (14)

until convergence is achieved. Note that U is orthogonal due to (14). The resulting
matrix of the symmetric algorithm will be denoted as USYM .

The stopping criterion is typically

1−min(|diag(UTUold)|) < ε (15)

for a suitable positive constant ε; here Uold denotes the resulting matrix of the
previous iteration.

Besides the symmetric algorithm, there also exists Deflation FastICA that es-
timates all signals. The deflation approach, which is common for many other
ICA algorithms [12], estimates the components successively under orthogonality
conditions. The accuracy of Deflation FastICA depends on the order of compo-
nents as they were separated by the algorithm. The order is determined by the
initialization.

1.2.4 Summary

The separated signals (independent components) are finally equal to

Ŝ = UZ = UD(X−X) (16)
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where D stands for the preprocessing transform, e.g., D = C−1/2 as in (7). The
whole separating (de-mixing) matrix is thus equal to

W = UD. (17)

Note also that the mean WX could be added back to Ŝ.
Since U is orthogonal, sample correlations of the separated signals Ŝ are ex-

actly equal to zero. This is the consequence of the orthogonality constraint.

1.3 Later Developments of FastICA
Since the first papers on the FastICA algorithm were published, the algorithm has
become one of the most successful and most frequently used methods for ICA.
It was subject to intensive interest of many researchers, which gave rise to many
theoretical and practical analyses of its behavior and modifications. Here we refer
to some of them.

Statistical properties of the algorithm, especially its accuracy when finite data
are available, were studied in [15, 20, 44] and later in [38, 41, 47]. The results
were often compared with the corresponding Cramér-Rao bound derived, e.g., in
[5, 11, 24, 44].

The algorithm was also adapted for operation with complex-valued signals
[2, 31, 50]; the Cramér-Rao bound for such a case was studied in [32], and iden-
tifiability issues were studied in [17].

Speed of the algorithm was improved for FastICA with “pow3” nonlinearity
in a novel method called robustICA [49]. Another way of speed enhancement for
FastICA with general contrast functions was achieved by replacing the nonlinear
contrast functions such as “tanh” or “gauss” by suitable rational functions [45].
With these functions, the statistical properties of FastICA remain nearly the same
but the evaluation of rational function is faster on most processors.

Stability issues were studied in [42] where it was shown that in the case that
the separated independent components have multimodal distributions (the pdf has
two or more peaks), it happens with nonzero probability that deflation FastICA
gets stuck in a false solution which does not correspond to the separation of all
sources. Only the algorithm with the “pow3” nonlinearity (kurtosis) can guarantee
a zero probability of this phenomenon. For the deflation FastICA, the order of the
separated components appeared to be crucial for stability of the algorithm. An
improved algorithm which optimizes the order of the separated components in
FastICA was proposed in [35]. For symmetric FastICA there was a simple test of
saddle points proposed to improve the success rate of the algorithm in [44].
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An improved FastICA with adaptive choice of nonlinearity is the subject of the
EFICA algorithm [25]. The fact that the nonlinearity influences the algorithm’s
statistical accuracy was already known, and other FastICA variants endowed with
an adaptive choice had previously been proposed; see e.g. [7, 13, 33, 35].

FastICA properties were also studied in the presence of additive noise. In [22],
an unbiased variant was proposed based on the assumption of known covariances
of the noise. Later, it was shown in [27] that One-unit FastICA tends to estimating
the minimum mean square solution rather than to identifying the inversion of the
mixing matrix.

2 Accuracy of One-unit and Symmetric FastICA

2.1 Performance Evaluation
The accuracy of separation can be evaluated through a comparison of the esti-
mated mixing matrix with the original one or of the separated signals with the
original ones. The original quantities must be known, which happens only in sim-
ulated experiments: Some independent signals are mixed by a generated mixing
matrix, an ICA algorithm is applied to the mixed signals, and the resulting sep-
arating matrices or separated signals are evaluated. The evaluation method must
take into account the ICA indeterminacy, especially the random order of separated
signals.

Let G be the so-called gain matrix defined as

G = WA. (18)

Ideally, G is equal to ΛP as follows from (2). Here Λ is the diagonal matrix
representing the signals’ scale indeterminacy, while P is the permutation matrix
determining their order. In practice, G ≈ ΛP due to estimation errors in W.

The Amari’s index evaluates the separation accuracy as a whole with the aid
of a non-negative value

I =
d∑
i=1

(∑d
j=1 |Gij|

maxk |Gik|
− 1

)
+

d∑
j=1

(∑d
i=1 |Gij|

maxk |Gkj|
− 1

)
. (19)

The criterion reflects the fact that G should contain one and only one dominant
element per row and column.
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To evaluate each separated signal individually, it is popular to use standard
measures such as Signal-to-Interference ratio (SIR). However, before the com-
putation of SIR, the separated signals must be correctly assigned to the original
ones. A straightforward way is to match the separated and original signals based
on dominant elements of G under the condition that the matched pairs of sig-
nals are disjoint. The most common approach, called greedy, finds the maximal
(in absolute value) element of G, assigns the corresponding signals, and repeats
the process until all signals are paired. A more sophisticated non-greedy pairing
based on the Kuhn-Munkres algorithm was proposed in [43].

Once the permutation matrix P is found, and the separated signals are re-
ordered, the kth separated signal, denoted as ŝk(n), is equal to

ŝk(n) = Gk1s1(n) + · · ·+ Gkksk(n) + · · ·+ Gkdsd(n).

The SIR of the kth separated signal equals

SIRk =
|Gkk|2σ2

k∑d
i=1,i 6=k |Gki|2σ2

i

(20)

where σ2
i is the variance of the ith original signal. Henceforth, the variances will

be assumed equal to one, that is σ2
i = 1, i = 1, . . . , d. This assumption can

be used without any loss of generality because of the indeterminacy in signals’
scales.

The reciprocal value of SIR is named the Interference-to-Signal Ratio (ISR)

ISRk =

∑d
i=1,i 6=k |Gki|2

|Gkk|2
. (21)

2.2 Cramér-Rao Lower Bound
Cramér-Rao lower bound (CRLB) is a general bound for the variance of an un-
biased estimator [40]. Consider a vector of parameters θ being estimated from
a data vector x, where the latter has probability density fx|θ(x|θ). Let θ̂ be an
unbiased estimator of θ. If the following Fisher information matrix (FIM) exists

Fθ = Eθ

[
1

f 2
x|θ

∂fx|θ(x|θ)

∂θ

(
∂fx|θ(x|θ)

∂θ

)T]
, (22)

then, under mild regularity conditions, it holds that

cov θ̂ ≥ CRLBθ = F−1
θ ,
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where cov θ̂ is the covariance matrix of θ̂.
Now we apply the idea of the Cramér-Rao theory to the elements of an ISR

matrix whose ijth element is defined as

ISRij = E
[
|Gij|2

|Gii|2

]
, (23)

to derive an algorithm-independent lower bound on values of its elements.
Let the separated signals be already re-ordered and scaled so that G = I + ε

where ε is a “small” matrix of errors. Then the elements of the ISR matrix can be
approximated as

ISRij ≈ E[|εij|2], (24)

and the lower bound can be defined as the CRLB for ε; see also [14]. Note that
we are only interested in the non-diagonal elements of (24), because the asymp-
totic behavior of the ISR is independent of the diagonal terms (assuming “small”
errors).

2.2.1 Non-Gaussian i.i.d. Signals

Details of the computation of the CRLB is given in [24] with a small correction in
[46]. The bound says that

ISRij ≥
1

N

κj
κiκj − 1

, i 6= j, (25)

where
κi = E

[
(ψi(x))2] (26)

and

ψi(x) = −f
′
i(x)

fi(x)
(27)

is the so-called score function of fi. The same result was also observed elsewhere
in the literature; see, e.g., [11, 5, 37]; for the complex-domain case see [32].

It can be shown that κi ≥ 1 where the equality holds if and only if fi is
Gaussian; see Appendix E in [44]. Hence, the denominator of (25) becomes equal
to zero only if both κi and κj are equal to one, which means that both the ith and
jth signals have Gaussian distributions. This is in accordance with the primary
requirement that only one original signal can have the Gaussian pdf. It can also
be seen that the bound is minimized when κi → +∞ and κj → +∞, which can
be interpreted as the signals being non-Gaussian as much as possible.
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2.2.2 Piecewise Stationary Non-Gaussian Signals

The above CRLB, indeed, follows from a more general bound that was derived for
a piecewise stationary non-Gaussian model of signals in [6, 29]. In that model,
signals are assumed to obey the i.i.d. model separately within M blocks. Let the
blocks have, for simplicity, the same length. Then, the bound says that

ISRij ≥
1

N
· Aij
AijAji − 1

·
σ2
j

σ2
i

, i 6= j, (28)

where

Aij =
1

M

M∑
`=1

σ2(`)
i

σ2(`)
j

κ
(`)
j (29)

σ2
i =

1

M

M∑
`=1

σ2
i

(`)
. (30)

σ2
i

(`) denotes the variance of the ith signal within the `th block, and κ(`)
i is defined

as

κ
(`)
i = E

[(
ψ

(`)
i (x)

)2
]

(31)

where ψ(`)
i = −

(
f̄

(`)
i

)′
/f̄

(`)
i . f̄ (`)

i denotes the PDF of the ith original signal on

the `th block, i.e., f (`)
i , but normalized to the unit variance (the variance of f (`)

i

is involved in σ2
i

(`)). Recall the simplifying assumption that the original signals
have unit scales, which means that σ2

i = 1, i = 1, . . . , d.
The shapes of the expressions on the right-hand sides of (25) and (28) are anal-

ogous to those of other (more general) Cramér-Rao bounds derived for ICA/BSS
or related disciplines, such as Independent Vector Analysis (IVA); an interested
reader is referred to [1, 48].

2.3 Asymptotic Behavior of FastICA
Let G1U and GSYM , respectively, be the gain matrices obtained by One-unit
and Symmetric FastICA using the nonlinear function g(·). Let the function be
even, which means that the corresponding G(·) is symmetric, and also let the
pdfs of signals be symmetric. It was shown in [44] that, for i 6= j, elements of
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N1/2G1U
ij and N1/2GSYM

ij have asymptotically Gaussian distribution N (0, V 1U
ij )

and N (0, V SYM
ij ), where

V 1U
ij =

βi − µ2
i

(µi − ρi)2
(32)

V SYM
ij =

βi − µ2
i + βj − µ2

j + (µj − ρj)2

(|µi − ρi|+ |µj − ρj|)2
(33)

with µi = E[sig(si)], ρi = E[g′(si)], βi = E[g2(si)], and g′(·) being the first
derivative of g(·). It is sufficient to assume that the above derivative and expec-
tations exist. The expressions for non-symmetric distributions were derived in
[47].

Next, it can be shown that (32) achieves its minimum for g(·) being equal to
the score function of the distribution fi, i.e., for

g(x) = ψi(x) = −f
′
i(x)

fi(x)
.

In that case, it is easy to compute that µi = 1 and ρi = βi = κi.
Assume for now that the distributions of all signals are the same, which means

that the above quantities are independent of the index i. That is, g(x) = ψ(x) and
ρi = βi = κ, and then, according to (32) and (33),

var[G1U
ij ] ≈ 1

N
V 1U
ij =

1

N

1

κ− 1
(34)

var[GSYM
ij ] ≈ 1

N
V SYM
ij =

1

N

(
1

4
+

1

2

1

κ− 1

)
. (35)

For the same case, the CRLB from (25) takes the form

ISRij ≥
1

N

κ

κ2 − 1
, i 6= j. (36)

Comparisons of (34) and (35) with (36) for κ ≥ 1 are shown in Fig. 1. One-
unit FastICA for the optimum case approaches the CRLB when κ → ∞, while
Symmetric FastICA is nearly efficient for κ lying in a neighborhood of 1. The
latter case, however, means that the distributions of signals are close to the Gaus-
sian distribution, so the signals are hard to separate, and the CRLB itself goes to
infinity. For κ→∞, the performance of Symmetric FastICA (35) is limited by a
constant, which is due to the orthogonal constraint (the sample covariance matrix
of the separated signals is exactly equal to the identity matrix).
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Figure 1: A comparison of One-unit FastICA, Symmetric FastICA and the cor-
responding CRLB for the case when all signals have the same distributions and
g(x) = ψ(x). The expressions are plotted as functions of κ ≥ 1 (here N = 1).

2.4 Choice of the Nonlinearity
From the previous analysis it follows that it is not possible to suggest a nonlinear-
ity that would be optimum for all signals, because they need not have the same
distribution. The distributions need not be known as we face a blind problem;
moreover, score functions of the distributions need not be smooth as required
by FastICA. Improved variants of FastICA therefore endow the algorithm by an
adaptive choice of the nonlinearity [7, 13, 33, 35].

It is also not possible to choose a nonlinearity that would enable FastICA to
separate all non-Gaussian distributions. An example was shown in [45]: Consider
signals having the same pdf as s = βb+

√
1− β2q where b and q stand for binary

(BPSK) and Laplacean random variables, respectively, and β ∈ [0, 1]. For many
nonlinearities (e.g. “tanh”) it holds that µi − ρi > 0 for β = 0 while µi − ρi < 0
for β = 1 (if not, other distributions of b and q can be chosen). It then follows that
there exists β ∈ (0, 1) such that τi = µi − ρi = 0. From (32) and (33) it follows
that FastICA cannot separate such a distribution (although being non-Gaussian)
using the given nonlinearity.

The original variants of FastICA use general-purpose nonlinearities such as
“tanh”, because it is useful for many signals’ distributions that are met in practice.
In [45], it was suggested to replace “tanh” by rational functions that are simi-
larly appropriate for separating long-tailed distributions. One such nonlinearity,
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henceforth referred to as “rati”, is

g(x) =
x

1 + x2/4
. (37)

The advantage of using the rational function is that it requires a significantly lower
computational burden than “tanh” due to its evaluation on most CPUs. As a result,
FastICA using the rational function is typically twice as fast as the algorithm with
“tanh”.

The suitability of any rational function to separate a given distribution with
FastICA can be easily inspected and compared with “tanh” using the analytical
expressions on the right-hand side of (32) or (33).

3 Global Convergence
The global convergence of FastICA was theoretically proven in special cases only.
For example, if the nonlinearity is “pow3”, the global convergence of Symmetric
FastICA was proven in [36] but only for the theoretical case in which an infinite
amount of samples is available. In practice, the behavior of FastICA is also known
to be quite good when “tanh” or other nonlinearities are used.

Nevertheless, if it is run, for instance, 10 000 times from random initial de-
mixing matrices, the algorithm gets stuck in an unwanted solution in 1–100 cases.
These cases are recognized by an exceptionally low value of SIR achieved. The
rate of false solutions depends on the dimension of the model, on the stopping rule,
and on the length of the data. But it never vanishes completely. For example, when
separating d signals all having uniform distribution, the failure rates of Symmetric
FastICA using the stopping rule (15), respectively, with ε = 10−4 and ε = 10−5

are shown in Table 1.

3.1 Test of Saddle Points
A detailed investigation of the false solutions showed that they lie approximately
halfway (in the angular sense) between a pair of original signals, thus, in saddle
points. Although these points are not stable, the algorithm can stop when getting
to their close neighborhood as the following iteration step is too small.

Specifically, the false solutions typically contain two components u1(n) and
u2(n) that are close to (sk(n) + s`(n))/

√
2 and (sk(n) − s`(n))/

√
2, for certain
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N=200 N=500 N=1000 N=10000
d = 2 & ε = 10−4 85 57 59 46
d = 2 & ε = 10−5 49 16 15 12
d = 2 & s.p.check 0 0 0 0
d = 3 & ε = 10−4 49 5 4 6
d = 3 & ε = 10−5 43 0 1 0
d = 3 & s.p.check 0 0 0 0
d = 4 & ε = 10−4 95 9 4 11
d = 4 & ε = 10−5 85 2 0 5
d = 4 & s.p.check 5 0 0 0
d = 5 & ε = 10−4 166 2 4 11
d = 5 & ε = 10−5 151 1 2 2
d = 5 & s.p.check 17 0 0 0

Table 1: Number of failures of Symmetric FastICA with the “tanh” nonlinearity
among 10 000 trials; d is the dimension of the signal mixture; ε is the stopping
parameter in (15); the acronym “s.p.check” denotes the algorithm endowed by the
test of saddle points.

k, ` ∈ {1, . . . , d}. Thus, they should be transformed into

u′1(n) = (u1(n) + u2(n))/
√

2 and u′2(n) = (u1(n)− u2(n))/
√

2. (38)

It was suggested in [44] to complete the algorithm by checking all
(
d
2

)
pairs of

the estimated independent components for a possible improvement via the saddle
points. If the test for a saddle point is positive, it is suggested to perform several
additional iterations of the original algorithm, starting from the improved estimate
(38).

The selection between given candidates (uk, u`) and (u′k, u
′
`) can be done by

maximizing the criterion (a measure of total non-Gaussianity of the components),

c(uk, u`) = (Ê[G(uk(n))]−G0)2 + (Ê[G(u`(n))]−G0)2

whereG0 = E[G(ξ)] and ξ is a standard Gaussian variable; Ê[·] stands for the sam-
ple mean operator. For example, in the case of the nonlinearity “tanh”, G(x) =
log cosh(x) and G0 ≈ 0.3746.

The number of failures after this test of saddle points is compared in Table 1.
This Table shows zero rate after the test except for the most difficult case when
the data length is N = 200. Nevertheless, even in this case the rate of failures has
significantly dropped compared to the original FastICA.
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4 Approaching Cramér-Rao Bound
The analysis of the FastICA variants and the comparison with the corresponding
CRLB showed that there is room for improvements in terms of accuracy. Highly
non-Gaussian signals can be accurately separated using an appropriate nonlinear-
ity that is close to the score function of the distribution. Since distributions of
signals can be different, the nonlinearity should be chosen different for each sig-
nal. However, the accuracy of Symmetric FastICA is limited by the orthogonal
constraint, which mainly limits the separation of highly non-Gaussian signals. By
contrast, One-unit FastICA is less effective when separating signals having distri-
butions that are close to the Gaussian. Only the symmetric version can guarantee
global convergence, that is, the separation of all signals.

These conclusions gave rise to a new, more sophisticated, algorithm named
EFICA [25]. EFICA is initialized by the outcome of Symmetric FastICA endowed
by the test of saddle points described in the previous section. The partly separated
signals are used to select optimal nonlinearities gi, i = 1, . . . , d, for each separated
signal, and used in fine-tuning of rows in W. Finally, the whole W is refined using
weighted symmetric orthogonalizations in a way that the orthogonal constraint is
avoided. This is done with optimal weights derived from an analysis of a weighted
symmetric algorithm.

4.1 Weighted Symmetric FastICA
Consider a variant of the symmetric algorithm where different nonlinear functions
gk(·), k = 1, . . . , d are used in (13) to estimate each row of U+. Then, before the
symmetric orthogonalization step (14), the rows of U+ are re-weighted by positive
weights. One iteration of such algorithm is thus

U+ ← g(UZ)ZT − diag[g′(UZ)1N ] U (39)
U+ ← diag[c1, . . . , cd] ·U+ (40)
U ← (U+U+T )−1/2U+ (41)

where g(· · · ) is an element-wise function applying gk(·), k = 1, . . . , d, to the
corresponding rows of the argument.

The key step in deriving EFICA is to analyze this algorithm, which was done
in [25] in the same way as in [44]. The result is that the non-diagonal normalized
gain matrix elements for this method, N1/2GWS

ij , have asymptotically Gaussian
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distribution N (0, V WS
ij ), where

V WS
ij =

c2
i γi + c2

j(γj + τ 2
j )

(ciτi + cjτj)2
, i 6= j. (42)

where γi = βi − µ2
i and τi = |µi − ρi|.

4.2 EFICA
EFICA utilizes the weighted symmetric orthogonalization within its last refine-
ment stage, that is, after the initialization, choice of nonlinearities and fine-tuning.
One such orthogonalization is performed for each separated signal. The weights
in (40) are chosen such that V WS

ij is minimized, specifically, for the ith separated
signal, ci is put equal to one, and

cOPTj = arg min
cj ,ci=1

V WS
ij =

τjγi
τi(γj + τ 2

j )
, j 6= i. (43)

Since cOPTj also depends on i, the weights must be selected different for each
signal. Only the ith row of U after (41) is then used as the ith row for the fi-
nal de-mixing transform. Consequently, the rows of the final transform are no
more orthogonal in general, which means that the algorithm is not constrained to
produce exactly orthogonal components.

By putting (43) into (42), we arrive at the asymptotic variance of the non-
diagonal normalized gain matrix elements by EFICA, which is

V EF
ij ≈ 1

N

γi(γj + τ 2
j )

τ 2
j γi + τ 2

i (γj + τ 2
j )
, i 6= j. (44)

Comparing (44) with (32) and (33), the former can always be shown to be smaller
than the latter two, provided that the same nonlinearity is used for all signals.

If the nonlinearities gi, i = 1, . . . , d, match the score functions of the signals,
then

τi = γi = κi − 1

and (44) becomes equal to the CRLB (25). It means that EFICA is asymptotically
efficient in that special case3.

3It should be noted that the analysis of FastICA as well as EFICA is local. Therefore, to be
more precise, we should say that the asymptotic efficiency of EFICA is ensured when its global
convergence is guaranteed.

16



10
−1

10
0

10
1

0

10

20

30

40

50

60

α

M
ea

n 
S

IR
 [d

B
]

 

 

EFICA
FastICA
NPICA
JADE
CRB

Figure 2: The average SIR of 13 components having the generalized Gaussian
distribution with α, respectively, equal to 0.1, 0.3, 0.5, 0.8, 1, 1.5, 1.9, 2, 2.1, 2.5,
4, 8, and 10.

EFICA can be implemented to work efficiently only with a class of distribu-
tions for which it is possible to choose appropriate nonlinearities supplying the
score functions. The original EFICA implementation from [25] assumes signals
having a generalized Gaussian distribution; see Appendix for the definition of
this distribution family. A more general implementation using Pham’s parametric
score function least-square estimator [39] was proposed in [33].

In principle, EFICA does not differ much from FastICA in terms of computa-
tional complexity, so it retains its popular property, which is high speed. On the
other hand, it outperforms FastICA in terms of accuracy and global convergence
(stability), which was demonstrated by various experiments even with real-world
signals. Some further improvements of EFICA in terms of speed and accuracy
were proposed in [45] and [33].

4.2.1 Example

A simulated example was conducted where 13 signals of the generalized Gaussian
distribution, each with a different value of the parameter α, respectively, equal to
0.1, 0.3, 0.5, 0.8, 1, 1.5, 1.9, 2, 2.1, 2.5, 4, 8, and 10, were mixed by a random
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mixing matrix and separated. The experiment was repeated 100 times with a fixed
length of data N = 5000. The achieved average SIR of the signals separated by
EFICA and by other ICA methods (Symmetric FastICA with the “tanh” nonlin-
earity, JADE by J. F. Cardoso [4], and NPICA by Boscolo et al. [3]) was computed
and is shown in Fig. 2 as a function of α (one value per separated signal). Like-
wise, the CRLB computed using (25) and (62) is shown in Fig. 2.

The CRLB exists only for α > 1. EFICA approaches the bound, which con-
firms its efficiency for the generalized Gaussian family. FastICA and JADE do not
approach the CRLB, which is mainly caused by the orthogonal constraint. NPICA
is close to the CRLB up to some failures that deteriorate the average SIR. How-
ever, NPICA requires a much higher computational load than EFICA as it utilizes
a nonparametric modeling of the signals’ distributions.

4.3 Block EFICA
Block EFICA is a generalization of the EFICA algorithm for piecewise station-
ary non-Gaussian signals proposed in [29]. The model, first mentioned in Sec-
tion 2.2.2, assumes that the original signal can be partitioned into a set of M
blocks, so that the signals are i.i.d. within each block. The distributions may have
different variances and even different distributions on distinct blocks.

Block EFICA searches for appropriate nonlinearities similarly to EFICA, but
separately for each block of the pre-separated signals. Assuming that the selected
nonlinearities match true score functions and that variance of the signals is con-
stant over the blocks, the asymptotic variance of the non-diagonal normalized gain
matrix elements by Block EFICA was shown to be

V BEF
ij =

κj
κi κj − 1

, i 6= j (45)

where κi = 1
M

∑M
`=1 κ

(`)
i . This result corresponds with the CRLB in (28) when

taking (σ2)
(`)
i = 1 for all i and `.

5 FastICA in Presence of Additive Noise
In this section, we will assume that the mixed signals also contain additive noise,
so the mixing model is

X = AS + N (46)
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where N has the same size as X and its rows contain samples of noise. The noise
signals are assumed to be Gaussian i.i.d. and uncorrelated4 with the covariance
matrix equal to σ2I. It is worth noting that when σ2 > 0, the tasks to identify
A and to separate S are no longer equivalent. We will henceforth focus on the
separation of S; an unbiased estimation of A through FastICA assuming known
σ2 was studied in [22].

5.1 Signal-to-Interference-plus-Noise Ratio
An appropriate criterion for the evaluation of separated signals by W is now the
Signal-to-Interference-plus-Noise ratio (SINR)5. For the kth separated signal, the
SINR is equal to [26]

SINRk =
|Gkk|2∑d

i=1,i 6=k |Gki|2 + σ2
∑d

i=1 |Wki|2
. (47)

The values of SINR are bounded unless σ2 = 0. The maximum SINR is achieved
for

WMMSE = AT (AAT + σ2I)−1, (48)

which simultaneously minimizes the mean square distance between the original
and separated signals, i.e.,

WMMSE = arg min
W

E[‖S−WX‖2
F ]. (49)

By putting WMMSE into (47), the ultimate bound for the SINR of the kth signal is

V2
kk∑d

i 6=k V2
ki + σ2

∑d
i=1(VA−1)2

ki

(50)

where V = (I + σ2(ATA)−1)−1. It is worth noting that the latter bound depends
on A unlike the Cramér-Rao bounds for the noise-free cases (Section 2.2).

The asymptotic expansion of (50) for “small” σ2 was derived in [26] and gives

min SINRk =
1

σ2‖bk‖2
−Bk +O(σ2), (51)

4The case when noise signals have general covariance matrix CN can be transformed into the
mixing model with uncorrelated noise where the unknown mixing matrix is σC−1/2

N A.
5Note that SIR does not take into account the presence of the residual noise in separated signals.
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where

Bk = 2 +
1

‖bk‖4

(
d∑
i 6=k

(BBT )2
ki − 2

d∑
i=1

Bki(BBTB)ki

)
,

B = A−1, and bTk denotes the kth row of B.
The first term in (51) reveals that if the rows of A−1 have the same norm, the

ultimate bound (50) is approximately the same for each signal (provided that A is
well conditioned).

5.2 Bias from the Minimum Mean-Squared Error Solution
Without analysis, it is not clear whether FastICA aims to approach the de-mixing
transform WMMSE or A−1 when noise is present. A more practical method seems
to be the former transform as it yields the optimum signals in terms of SINR, that
is, the minimum mean-squared error solution

SMMSE = WMMSEX. (52)

We therefore define the bias of an estimated separating matrix W as

E[W](WMMSE)−1 −D (53)

where D is the diagonal matrix that normalizes SMMSE to unit scales. The defi-
nition of D comes from the fact that an optimum blind algorithm is expected to
yield normalized SMMSE since their original scales are unknown to it.

It was shown in [27] that, for “small” σ2, D satisfies

D = I +
1

2
σ2diag[H11, . . . ,Hdd] +O(σ3), (54)

where H = (ATA)−1.

5.2.1 Bias of algorithms using the orthogonal constraint

The orthogonal constraint requires that

E[WX(WX)T ] = W(AAT + σ2I)WT = I, (55)

so the bias of all constrained algorithms is lower-bounded by

min
W
‖W(WMMSE)−1 −D‖F w.r.t. W(AAT + σ2I)WT = I. (56)
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It was shown in [28] that W solving the minimization problem (56) has the prop-
erty that

W(WMMSE)−1 = I + σ2Γ +O(σ3)

where Γ is a nonzero matrix obeying Γ + ΓT = H.
It follows that the bias (53) of ICA algorithms which use the orthogonal con-

straint has the asymptotic order O(σ2).

5.2.2 Bias of One-unit FastICA

Consider the situation that FastICA is applied to SMMSE. An optimum unbiased
solution in the sense of (53) is the diagonal matrix D. It was shown in [28] that

E[w1U
k ] ∝ ek +O(σ3) (57)

where w1U
k denotes the kth row of the de-mixing transform by One-unit FastICA

(when initialized by D and then applied to SMMSE); ek denotes the kth row of the
identity matrix.

It follows that the asymptotic bias of the one-unit approach has the order
O(σ3), that is, lower than O(σ2).

5.2.3 Bias of Symmetric FastICA and EFICA

The biases of FastICA and EFICA derived in the same way satisfy [28]

E[Walg](WMMSE)−1 −D =
1

2
σ2H� (1d×d − I + Malg) +O(σ3), (58)

where the superscript alg signifies the algorithm (either Symmetric FastICA or
EFICA). In both cases, M is not diagonal; 1d×d is the d × d matrix of ones. It
follows that the bias of both algorithms has the order O(σ2); hence the bias is
asymptotically higher than that of One-unit FastICA.

5.3 1FICA
EFICA is an optimal estimator of the separating matrix in terms of the estimation
variance when the mixed signals do not contain any noise. However, if the noise
is present, the estimate by EFICA is biased and need not be optimal in terms of
SINR. By contrast, the above results show that the bias of One-unit FastICA has
at least the order O(σ3).
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The only problem is to modify One-unit FastICA to guarantee the estimation
of all components. The 1FICA algorithm derived in [27] (also for complex-valued
signals) was designed to meet this requirement. It proceeds in three steps.

1. Because of a good global convergence behavior, the initialization is taken
from Symmetric FastICA using nonlinearity “tanh” or “rati” followed by
the test of saddle points.

2. Each row of the de-mixing transform is fine-tuned through performing few
one-unit iterations using an adaptively chosen nonlinearity.

3. To restrain the global solution, the resulting row is accepted if not being too
distant from the initialization; otherwise the solution will be the outcome of
the first step.

Under mild assumptions, it follows that 1FICA has the same asymptotic bias as
One-unit FastICA.
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Appendix - Generalized Gaussian Distributions
The normalized random variable distributed according to the generalized Gaussian
law has the density function with a shape parameter α > 0 defined as

fα(x) =
αβα

2Γ(1/α)
exp {−(βα|x|)α} (59)

where Γ(·) is the Gamma function, and

βα =

√
Γ(3/α)

Γ(1/α)
. (60)

This generalized Gaussian family encompasses the ordinary standard normal dis-
tribution for α = 2, the Laplacean distribution for α = 1, and the uniform distri-
bution in the limit α→∞.
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Figure 3: The moment κ of the generalized Gaussian pdf as a function of the shape
parameter α according to (62).

The score function of the distribution is

ψα(x) = −
∂fα(x)
∂x

fα(x)
=
|x|α−1sign(x)

Eα[|x|α]
, (61)

which is continuous only for α > 1. It can be shown that κ defined similar to (26)
depends on α as

κα = Eα[ψ2
α(x)] = {Eα[|x|α]}2 =


Γ(2− 1

α)Γ( 3
α)

[Γ(1+ 1
α)]

2 for α > 1/2

+∞ otherwise.
(62)

The dependence of κα on α ∈ [0.5, 100] is displayed in Fig. 3. For α < 0.5, κα
goes to infinity and the CRLB does not exist. It may follow that, for α < 0.5, there
might be estimators whose variances decrease faster than N−1 as N → +∞.
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[24] Z. Koldovský, P. Tichavský and E. Oja, “Cramér-Rao lower Bound for Lin-
ear Independent Component Analysis”, IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 2005), Philadelphia, vol.
III, pp. 581–584, March 2005.
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