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Abstract. Modeling real-world acoustic signals and namely speech sig-
nals as piecewise stationary random processes is a possible approach to
blind separation of linear mixtures of such signals. In this paper, the
piecewise AR(1) modeling is studied and is compared to the more com-
mon piecewise AR(0) modeling, which is known under the names Block
Gaussian SEParation (BGSEP) and Block Gaussian Likelihood (BGL).
The separation based on the AR(0) modeling uses an approximate joint
diagonalization (AJD) of covariance matrices of the mixture with lag 0,
computed at epochs (intervals) of stationarity of the separated signals.
The separation based on the AR(1) modeling uses the covariances of lag 0
and covariances of lag 1 jointly. For this model, we derive an approxi-
mate Cramér-Rao lower bound on the separation accuracy for estimation
based on the full set of the statistics (covariance matrices of lag 0 and
lag 1) and covariance matrices with lag 0 only. The bounds show the con-
dition when AR(1) modeling leads to significantly improved separation
accuracy.

Keywords: Autoregressive processes · Cramér-Rao bound · Blind
source separation

1 Introduction

Blind source separation has found applications namely1 in biomedical signal
processing, for separating signals of interest from unwanted parasitic signals
and noises, and in acoustical signal processing [6]. Modeling real-world acoustic
signals and namely speech signals as piecewise stationary random processes is
a possible approach to blind separation of linear mixtures of such signals. It
appears that many times (depending on properties of the separated signals),
methods utilizing nonstationarity of the separated signals outperform the more
classical methods based on non-Gaussianity of the separated signals, or perform
1 This work was supported by The Czech Science Foundation through Project
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equally well but with much lower computational complexity [5,10]. The methods
using signal nonstationarity divide the received signals (mixtures) to epochs, in
each epoch the signals are modeled as stationary, but properties of the signals
(namely their power) are assumed to change significantly in different epochs
[1,7–9].

The separation is called determined or overdetermined, if the number of the
available mixtures is higher or equal to the number of the sources, and is called
underdetermined otherwise. The latter case is studied in [4]. In this paper we
focus on the squared mixtures, where the number of the mixtures is equal to the
number of the sources.

The simplest nonstationarity-based separation methods use only covariance
matrices with lag 0. The mixing/demixing matrix can be found through an
approximate joint diagonalization of these matrices [1]. This method can be
statistically efficient (attaining a Cramér-Rao lower bound, CRB) [2,8], if the
separated data obey the assumed model, i.e. when the signals are i.i.d. in all
epochs. Real-world signals such as speech signals rarely obey the condition. Our
experiments with natural speech signals sampled at 16 kHz show that the cor-
relation between two consecutive samples of the signals is typically 0.75 – 0.95.
This fact indicates that the separation methods using only the covariance matri-
ces with lag 0 may not be optimal, and more accurate modeling of the separated
signals may increase accuracy of the separation.

A method called Block-AutoRegressive Blind Identification (BARBI) [11]
uses an autoregressive model of a general order n in each epoch of the source
signals. We refer to the method as BARBI(n). The number of the estimated
parameters grows with increasing model order n and the method seems to suffer
of overfitting, if n > 2. In this paper we provide a theoretical justification for
improved performance of BARBI(1) compared to BARBI(0) through the CRB
analysis.

2 Data Model

Consider linear instantaneous square mixing model

Xt = AZt, (1)

where Zt denotes a single time instance of the input signals, A ∈ R
d×d is a mixing

matrix and Xt ∈ R is a time instance of the resulting mixtures. The input signals
are modeled by mutually independent piecewise stationary processes. We divide
the data into M epochs of the length T and assume that on each epoch the i−th
signal zit takes a form of order one autoregressive process

zit = −ρimzit−1 + σimwit, (2)

for t = (m − 1)T + 1, . . . mT , where wit is a Gaussian white noise with zero
mean and unit variance, ρim is an autoregressive coefficient corresponding to
the i−th input signal and the m−th epoch, and white noise sequences satisfy
independence relation
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Cov[wit, wjt′ ] = δijδtt′ .

The covariance of the input vector Zt in the m−th epoch with lag 0 is then
given by

Dm = Cov [Zt, Zt] = diag(d1m, d2m, . . . ddm), (3)

where

dim =
σ2

im

1 − ρ2im
.

Covariance of the mixture Xt with lag 1 in the m−th epoch is

Cov [Zt, Zt+1] = DmQm (4)

where Qm = −diag(ρ1m, ρ2m, . . . ρdm) is a diagonal matrix of the m−th epoch
autoregressive coefficients. The covariance matrices of the mixture Xt in the
m−th epoch with lag 0 and with lag 1

Rm = ADmAT , Sm = ADmQmAT (5)

are estimated from the data as

R̂m =
1
T

mT∑

t=(m−1)T+1

XtX
T
t , Ŝm =

1
T − 1

mT−1∑

t=(m−1)T+1

Xt+1X
T
t . (6)

The vector of the unknown parameters is

θ = [vec(A)T ; vec(D)T ; vec(Q)T ]T (7)

where D and Q are d × M matrices with elements dim and ρim, i = 1, . . . , d,
m = 1, . . . ,M , respectively. Matrix A is the main parameter of interest and
D, Q are nuisance parameters. Since each change in scale of the signals can
be compensated by adequate change of the mixing matrix, the parameter D is
constrained by the condition

∑
m dim = 1 for all i = 1, . . . , d. It means that

the sum of the variances of each signal over all epochs is 1. Indeed, there are
inequality constraints 0 ≤ dim and −1 < ρim < 1 so that all signals in all epochs
are stable AR processes.

3 Cramér-Rao Bound

The Cramér-Rao Bound is defined as an inverse of the Fisher information matrix.
We shall assume, for simplicity, that the available data are Gaussian. It holds
that for normally distributed data with a mean μ(θ) and covariance matrix C(θ)
the Fisher information matrix has elements

Fθiθj
=

(
∂μ

∂θi

)�
C−1

(
∂μ

∂θj

)
+

1
2

tr
(

C−1 ∂C

∂θi
C−1 ∂C

∂θj

)
. (8)
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In our case, the data have zero mean and only its covariance matrix C depends
on the estimated parameter. In particular,

C = Cov([X1, . . . , XMT ]) = blockdiag(C1, . . . , CM ) (9)

where

Cm = btoeplitz(ADmAT , ADmQmAT , . . . , ADmQ(T−1)
m AT ). (10)

Cm is the covariance matrix of the data in the m−th epoch, it is a symmetric
block-Toeplitz matrix with the displayed first block-row.

Now, the CRB on vec(A) is given as the left-upper corner submatrix of F−1

of the size d2 × d2, obeys

CRB(vec(A)) = CRBA = (A−1 ⊗ I)CRBI (A−T ⊗ I). (11)

CRBI is esentially (i.e. after a suitable re-ordering its columns and rows) block
diagonal, with diagonal blocks of size 1 × 1 and 2 × 2,

CRBI (Akk) =
1
T

(12)

for k = 1, . . . , d, and

CRBI ([Ak�, A�k]) =
1

MT

1
φk�φ�k − 1

[
φk� −1
−1 φ�k

]
(13)

for k, � = 1, . . . , d, k �= �, where [11]

φk� =
1
M

M∑

m=1

dkm

d�m

1 − 2ρkmρ�m + ρ2�m
1 − ρ2�m

. (14)

Note that in the special case of all autoregressive parameters identical, ρkm = ρ
for k = 1, . . . , d, m = 1, . . . ,M , the resultant CRB expressions are independent
of ρ.

3.1 CRB for Estimates Based on the Statistics

In this subsection, we investigate the maximum possible accuracy of the sep-
aration using only the statistics {R̂m} and {R̂m, Ŝm}, respectively. Thanks to
the central limit theorem it holds that for T → ∞ these statistics have asymp-
totically normal distribution with the asymptotic mean equal to the theoretical
covariances {Rm} and {Rm, Sm}, respectively, and have asymptotical covariance
of errors proportional to 1

T . The CRB for the estimates based on the statistics
means computing the information content about the estimated parameter θ in
the “concentrated” data {R̂m} and {R̂m, Ŝm}, assuming that the noise in the
“concentrated” data is exactly zero mean and has exactly Gaussian distribution
with the covariance structure that follows from analysis of the true statistics.
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For computing the CRB as the inverse of the Fisher information matrix we
will use the general formula (8) again. In this case, both the mean μ and the
covariance matrix C depend on the estimated parameter. A detailed computa-
tion, not included here due to lack of space, shows that only the former term
in (8) is dominant, has asymptotic order O(T ) for large T , and the latter term
is negligible, having the order O(1) only. The O(1) terms will be neglected with
respect to the leading term proportional to T . The asymptotic CRB is inversely
proportional to T .

The concentrated data using the covariances with only lag 0 denoted Ŷ0 are
composed of L(R̂m) for m = 1, . . . , M , where L(R) is the vector of elements of
a lower triangular part of a matrix R,

L(R) = [R11, R21 . . . Rd1, R22, R32 . . . Rd2, R33 . . . Rdd]T . (15)

The concentrated data using the covariances with lag 0 and 1 denoted Ŷ0+1 will
be composed of L(R̂m) and L((Ŝm + ŜT

m)/2) for m = 1, . . . ,M . Note that while
Sm is symmetric, its sample estimate Ŝm may not be symmetric and thus we
symmetrize it.

The covariance matrices of Ŷ0 and Ŷ0+1 can be computed as functions of
parameter θ in (7). Again, they are block diagonal, having M blocks, because
data in individual epochs and also the sample covariance matrices in them are
mutually statistically independent. A straightforward but lengthy computation
leads to the result that the asymptotic CRB for estimates based on the statistics
Ŷ0+1, denoted CRB(0+1)(A) are identical to those in (13). It follows that Ŷ0+1 is
asymptotically sufficient. CRB for estimates based on Ŷ0, denoted CRB(0)(A),
is higher, sometimes significantly. In particular,

CRB(0)(vec(A)) = CRB(0)
A = (A−1 ⊗ I)CRB(0)

I (A−T ⊗ I) (16)

where CRB(0)
I is block diagonal and independent of A again, and

CRB(0)
I ([Ak�, A�k]) =

1
MT

1
ϕk�ϕ�k − ω2

k�

[
ϕk� −ωk�

−ωk� ϕ�k

]
(17)

for k, � = 1, . . . , d, k �= �, with

ϕk� =
1
M

M∑

m=1

dkm

d�m

1 − ρkmρ�m

1 + ρ2�m
, ωk� =

1
M

M∑

m=1

1 − ρkmρ�m

1 + ρ2�m
. (18)

In the special case ρin = ρ for all i = 1, . . . , d, m = 1, . . . , M , it holds

CRB(0)(A) = CRB(A)
1 + ρ2

1 − ρ2
. (19)

If ρ is close to ±1, the difference is significant.
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4 Estimating A

From (10) it follows that A−1 can be sought as a matrix that jointly diagonalizes
the matrices R̂m and Ŝm, m = 1, . . . ,M [3]. The ordinary (unweighted) approx-
imate joint diagonalization algorithms as UWEDGE [1] produce consistent but
not optimal estimates of A. The asymptotically optimum estimate of θ can be
found by minimizing the expression

θ̂ = argminθ(Ŷ0+1 − Y0+1(θ))T [Cov(Ŷ0+1)]−1(Ŷ0+1 − Y0+1(θ)). (20)

The matrix C0+1(θ) = Cov(Ŷ0+1) is a function of the unknown parameter θ. In
practice, C0+1(θ) can be replaced by C0+1(θ̂c), where θ̂c is a consistent estimate
of θ, to achieve an asymptotically optimum estimate. Note that C0+1(θ) is nearly
block diagonal if its columns and rows are appropriately sorted and A ≈ I.
The weighted AJD algorithm WEDGE [1], and also BARBI [11] estimate a
demixing matrix V . Let V [i] be an estimate of V = A−1 from the i−th iteration.
Then, the partially demixed covariance matrices are given as R̂

[i]
m = V [i]R̂mV [i]T

and Ŝ
[i]
m = V [i]ŜmV [i]T . These matrices are used to estimate parameters of the

separated signals, i.e. d
[i]
jm = (R̂[i]

m)jj and ρ
[i]
jm = −(Ŝ[i]

m )jj/(R̂[i]
m)jj where (X)jj

means the (j, j)−th element of matrix X.
The main iteration of WEDGE is

V [i+1] = [A[i]]−1V [i],

where the diagonal elements of A[i] are set to 1, and the off-diagonal elements
of A[i] obey the 2 × 2 linear systems

[
A

[i]
k�

A
[i]
�k

]
=

{
M∑

m=1

[
p̂T

��mWk�mp̂��m p̂T
kkmWk�mp̂��m

p̂T
kkmWk�mp̂��m p̂T

kkmWk�mp̂kkm

]}−1 M∑

m=1

[
p̂T

��mWk�mp̂k�m

p̂T
kkmWk�mp̂k�m

]
,

(21)
where p̂k�m = [(R̂[i]

m)k�, (Ŝ
[i]
m )k�] and Wk�m should be proportional to the inverse

of a 2 × 2 covariance matrix of p̂k�m for k, � = 1, . . . , d, k �= �. We use the choice

W−1
k�m =

dkmd�m

1 − ρkmρ�m

[
1 + ρkmρ�m −ρkm − ρ�m

−ρkm − ρ�m (1 + (ρkm + ρ�m)2 − ρ2kmρ2�m)/2

]
. (22)

In BARBI, the relation (21) is replaced by

[
Â

[i]
k�

Â
[i]
�k

]
=

{
M∑

m=1

[
p̂T

��mqkm p̂T
kkmqkm

p̂T
kkmqkm p̂T

kkmq�m

]}−1 M∑

m=1

[
qT
kmp̂k�m

qT
�mp̂k�m

]
, (23)

where qkm = Wk�mp��m, and in the case of the AR order 1 it reads

qkm =
1

2dkm(1 − ρ2km)

[1 + ρ2km

−2ρkm

]
. (24)
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5 Simulations

In the first simulation we consider a mixture of three piecewise AR(1) signals.
The signals are composed of M = 10 epochs, each of the length T = 100.
The signals have the same AR coefficient ρ in all epochs. The variances of the
signals are increasing, 1, 2, ..., 10, decreasing 10, 9, . . . , 1 and constant 5, . . . , 5,
respectively, in the 10 epochs. We mix the signals using a random orthogonal
(for simplicity) mixing matrix and demix them by BARBI(0) and BARBI(1)
algorithms. The resultant average interference-to-signal ratios (ISR) obtained
in 100 independent trials and corresponding CRB and CRB(0) are plotted as
function of ρ in Fig. 1. We can see that BARBI(1) is nearly statistically efficient
unless ρ is in a vicinity of −1. BARBI(0) does not achieve the CRB(0) except
for ρ close to zero, but it follows the trend of CRB(0).
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Fig. 1. Average ISR for separation of a mixture of artificial piecewise AR(1) signals
achieved by BARBI(0) and BARBI(1) and corresponding CRBs versus the AR coeffi-
cient.
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Fig. 2. Average ISR for separation of a mixture 16 natural speech signals achieved by
BARBI(0) and BARBI(1) versus the number of epochs.
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In the second simulation, we consider a mixture of 16 natural speech signals
sampled at 16 kHz of the total length of 8.375 s, taken from the database in [4].
The average correlation between two consecutive samples in these signals is from
0.65 to 0.95, and the overall average is 0.81. Average ISR achieved by BARBI(0)
and BARBI(1) versus the number of epochs is shown in Fig. 2.

6 Conclusions

We have proved that in blind separation of natural signals, piecewise AR(1)
modeling represented by the algorithm BARBI(1) gives significantly improved
separation accuracy if the sample lag-1 correlation of the original signals is close
to 1. We plan to extend these results to underdetermined mixtures.
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