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Abstract. This paper addresses the estimation of Relative Transfer
Function (RTF) between microphones from noisy recordings. We uti-
lize an incomplete initial measurement of the RTF, which is known for
only several frequency bins. The measurement is completed by finding
its sparsest representation in the time domain. We propose to perform
this reconstruction by solving a Second-Order Cone Program (SOCP).
Free parameters of this formulation represent distance of the completed
RTF from the initial estimate. We select these parameters based on the
theoretical performance of the initial estimate. In experiments with real-
world data, this approach achieves a significant refinement of the RTF,
especially in scenarios with low signal-to-noise ratios.
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1 Introduction

A noisy recording of a target signal observed through two microphones can be,
in the short-term Discrete Fourier Transform (DFT) domain, described as

XL(k, �) = HL(k)S(k, �) + YL(k, �)
XR(k, �) = HR(k)S(k, �) + YR(k, �)

(1)

where k and � denote, respectively, the frequency and the frame index; let the
DFT length be M ; S denotes the target signal; XL and XR correspond, respec-
tively, to the signals observed on the left and right microphones; YL and YR are
the remaining signals (noise and interferences) commonly referred to as noise.
HL and HR denote the acoustic transfer functions between the microphones and
the target, which are assumed to be approximately constant (independent of �)
during short intervals.
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Define the relative transfer function (RTF) as HRTF(k) = HR(k)HL(k)−1.
Then, (1) can be re-written as

XL(k, �) = SL(k, �) + YL(k, �)
XR(k, �) = HRTF(k)SL(k, �) + YR(k, �)

(2)

where SL(k, �) = HL(k)S(k, �). The time domain counterpart of HRTF, called
the relative impulse response (ReIR), will be denoted as hrel.

Knowing HRTF (or hrel) enables to design an efficient spatial filter with two
inputs XL and XR such that it cancels the target source and only pass through
the noise signals. The output of the spatial filter1 is Z(k, �) = H(k)XL(k, �) −
XR(k, �), which is determined by the transfer function H. By (2), it holds that

Z(k, �) =
(
H(k) − HRTF(k)

)
SL(k, �)

︸ ︷︷ ︸
target signal leakage

+H(k)YL(k, �) − YR(k, �)
︸ ︷︷ ︸

noise reference

. (3)

ForH = HRTF the target signal leakage vanishes, andZ(k, �) = HRTF(k)YL(k, �)−
YR(k, �). Hence, Z(k, �) provides the key noise reference signal, which is important
for audio applications such as source separation or speech enhancement.

The signal-to-noise ratio (SNR) in Z(k, �) can be used as a practical evalu-
ator of H(k). We will therefore use attenuation ratio (ATR), which is the ratio
between the initial SNR in (1) and the SNR in Z(k, �).

The RTF estimation when noise is active is a challenging problem. During
noise-free intervals, conventional time-domain or frequency-domain estimators
can be used. The obtained RTF can be used later when noise is active, however,
the position of the target must remain the same. To estimate the RTF from
noisy data, Shalvi and Weinstein proposed a method assuming model where
nonstationary target signal is interfered by a stationary noise [2]. Methods based
on Blind Source Separation (BSS) can cope also with directional nonstationary
interfering sources [3]. There are also methods based on low-rank models of the
RTF that can be learned in noise-free conditions. This class embodies, e.g., an
approach utilizing bank of pre-learned RTFs [1] or a model based on diffusive
maps [4].

Recently, a possibility to estimate the RTF using its incomplete measurement
was studied in [5,6]. The incomplete RTF is an RTF estimate whose values are
known only for some frequencies. The estimate is completed (reconstructed)
through finding its sparsest representation in the time domain. The motivation
for the latter step is that typical ReIRs are fast decaying sequences, thus, appear
to be compressible (approximately sparse).

In [5], the reconstruction is done through solving a weighted LASSO opti-
mization problem. However, the optimum choice of weights is highly nontrivial,
so only a heuristic choice is proposed. In this paper, we propose to use a dif-
ferent formulation based on second-order cone programming. Parameters of this
1 The right channel XR as well as H are typically delayed by a few samples due to

possible acausality of HRTF. We omit this detail here for the sake of simplicity of
the notation.
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formulation have clear meaning: Each parameter limits the distance of the recon-
structed RTF value from its initial estimate.

2 Relative Transfer Function Estimators

Conventional Frequency-Domain Estimator. It follows from (2) that dur-
ing intervals where noise signals are not active (YL = YR = 0), it is possible to
estimate the RTF as

ĤFD(k) =
Φ̂XRXL(k)
Φ̂XLXL(k)

. (4)

Φ̂AB denotes the sample-based estimate of (cross-)power spectral density between
A and B. When signals are contaminated by noise, the estimator becomes biased
where the bias (as well as its variance) depends on noise characteristics. This esti-
mator will be abbreviated by FD (Frequency Domain estimator).

The authors of [2] considered the model where the target signal is wide-sense
stationary (WSS) during short intervals (subintervals) but nonstationary over
longer segments (piecewise stationary). The assumption about the noise is such
that V (k, �) = YR(k, �) − HRTF(k)YL(k, �) is WSS. Under this model, it was
derived that the bias2 of FD is

E[ĤFD(k)] − HRTF(k) =
ΦV XL(k)

〈Φp
XLXL

(k)〉 (5)

where E[·] stands for the expectation operator, and 〈·〉 denotes the average of
the argument over the subintervals indexed by the superscript p, p = 1, . . . , P .
Note that the model assumes that ΦV XL(k) is independent of p. To estimate the
bias, the cross-spectral densities on the right-hand side of (5) can be replaced
by their sample-based estimates; V (k, �) can be estimated as −Z(k, �) from (3).

Estimator Admitting Presence of Stationary Noise. An estimator that
is unbiased under the validity of the above model can be computed as the least-
square solution of the following overdetermined set of equations [2]

⎡

⎢
⎣

Φ̂1
XRXL

(k)
...

Φ̂P
XRXL

(k)

⎤

⎥
⎦ =

⎡

⎢
⎣

Φ̂1
XLXL

(k) 1
...

Φ̂P
XLXL

(k) 1

⎤

⎥
⎦

[
ĤNSFD(k)
Φ̂V XL(k)

]
. (6)

The variance of this estimator, from here referred to as NSFD (Non-Stationarity
based Frequency Domain estimator), is equal to

var[ĤNSFD(k)] =
1
N

ΦV V (k)〈1/Φp
XLXL

(k)〉
〈Φp

XLXL
(k)〉〈1/Φp

XLXL
(k)〉 − 1

. (7)

2 The variance of FD under the model is also derived in [2] and could be taken into
account. The bias, however, seems to have a larger influence on the entire accuracy
of FD; we therefore focus on the bias.
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Note that 〈Φp
XLXL

(k)〉〈1/Φp
XLXL

(k)〉 is close to 1 when Φp
XLXL

(k) does not depend
much on p, which happens when the target signal is almost stationary (as well
as the noise). By contrast, 〈Φp

XLXL
(k)〉〈1/Φp

XLXL
(k)〉 � 1 when the signal is

sufficiently dynamical. Therefore, NSFD is suitable in situations when the target
signal is speech and the noise is (approximately) stationary.

It is worth to point here to a problem that is unintentionally hidden in the
analysis. Speech signals are sparse in the time-frequency domain. It thus often
happens that SL(k, �) = 0 for some k, which means that HRTF(k) vanishes
from the model (2). The behavior of NSFD then depends on the character of
the (stationary) noise source. If the noise is diffused, the variance (7) approaches
infinity, so we are aware of the inaccuracy of the estimate for the given frequency.
However, if the noise comes from a spatial source, NSFD yields an estimate of
the RTF which is related to the noise source, not to the target source.

It is important to avoid the latter case. Otherwise a large error is introduced
into the estimator although (7) need not signalize it. If this case is detected
through some additional hypothesis (e.g., by means of a voice-activity detec-
tor), the RTF estimate for the given k can be dropped and replaced using the
method proposed in this paper. In experiments, we will focus on the described
situation by considering speech as the target signal interfered by a directional
quasi-stationary noise.

There are many other RTF estimators that can be taken into account in the
following considerations; see, e.g., [7,8]. Nevertheless, we will constrain our focus
on the estimators FD a NSFD in this paper.

3 Sparse Reconstruction of Incomplete RTF

As already mentioned, an incomplete RTF is obtained by taking values of an
RTF estimate but only for those frequencies where the estimate appears to be
accurate enough. Let the set of the accepted frequencies {i1, . . . , i|S|} be denoted
by S; we can constrain |S| ≤ �M/2 + 1� due to the symmetry of the DFT and
due to the fact that the ReIR is real-valued.

The method in [5] aims to find the sparsest representation of the incomplete
RTF in the time domain using weighted LASSO. The reconstructed ReIR is
sought as the solution of

hWLASSO = arg min
h

‖FSh − f‖22 + ‖w 	 h‖1, (8)

where f is a |S|× 1 vector with elements fk = Ĥ(ik), ik ∈ S, k = 1, . . . , |S|; F is
the M ×M matrix of the DFT and FS denotes its submatrix comprised of rows
whose indices are in S; h denotes an M × 1 vector of coefficients of the estimate
of hrel; w is an M ×1 vector of nonnegative weights; 	 denotes the element-wise
product.

The weights control the sparsity level of the solution. They can incorporate
a priori knowledge, because elements of hWLASSO with higher weights tend to
be closer to or equal to zero and vice versa. A heuristic selection respecting the
expected shape of hrel was proposed in [5]; similar idea is used in [10].
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A drawback of (8) is that the influence of the weights on the quality of the
reconstructed RTF (ReIR) is not clear. In this paper, we therefore consider a
different formulation where the reconstructed ReIR is defined as the solution of

hSOCP = arg min
h

‖h‖1 w.r.t. |(FSh − f)ik | ≤ εik , ∀ik ∈ S, (9)

which is a second-order cone program (SOCP). In this formulation, the distance
of the ikth element of the reconstructed RTF from Ĥ(ik) is constrained to be
less or equal to εik (in absolute value). For example, it is reasonable to choose
εik proportional to a theoretical bias or variance of the estimate Ĥ(ik).

Practical Implementation. Assume a stereo noisy recording obeying (2) is
given. Let M be the length of DFT, which corresponds to the length of the
to be estimated ReIR; for simplicity, let M be even. The proposed estimation
procedure consists of four steps.

1. Compute the initial RTF estimate Ĥ(k), k = 0, . . . , M/2 + 1, using some
known method. In this paper, we will consider FD given by (4) and NSFD
computed through (6).

2. Compute a theoretical estimation error of Ĥ(k), k = 0, . . . ,M −1, denoted as
δk. Here, we compute the theoretical bias (5) in case of FD and the theoretical
variance (7) in case of NSFD.

3. Select S. In this paper, we select p percents of frequency bins that yield the
highest SNR (oracle selection) or the highest normalized kurtosis (kurtosis-
based selection)3. The parameter p will be referred to as percentage.

4. Solve the SOCP given by (9) where εik = αδik , ik ∈ S, using the ECOS
package [9] to obtain the reconstructed ReIR; its DFT gives the reconstructed
RTF; α is a free positive constant (we select α = 1 in case of NSFD and
α = 0.2 in case of FD).

4 Experiments

In experiments, the above proposed procedures to estimate the RTF from noisy
recordings are verified on real-world audio signal mixtures. A female utterance
from SiSEC 20134 from the task “Two-channel mixtures of speech and real-world
background noise” is used as the target signal. The signal has 10 s in length; the
sampling frequency is 16 kHz.

The noise signal is a fan hum “FanRear.wav” by user Otakua taken from
the repository of free audio samples5. Note that this signal is approximately
3 The kurtosis-based selection appears to be efficient when the frequency components

of the target signal have non-Gaussian distribution while those of the noise are
Gaussian; see Sect. 5 in [5]. In real-world situations, this is often satisfied when the
target signal is speech and the noise is quasi-stationary.

4 http://sisec.wiki.irisa.fr/.
5 http://www.freesound.org/.

http://sisec.wiki.irisa.fr/
http://www.freesound.org/
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stationary (as assumed by NSFD) as well as directional (spatial source). The
densities of its spectral components are close to Gaussian, hence their kurtosis is
close to zero. By contrast, the kurtosis of active spectral components of speech
is often positive. This enables to utilize the kurtosis as a contrast to select S.

To simulate spatial sources, the target and noise signal are convolved with
room impulse responses from [11]6. The reverberation time T60 is 160 ms; the
distance of the microphones is 3 cm; the source-microphone distance is 2 m. The
target and noise source is located, respectively, in the direction of 0◦ and 75◦ on
the left-hand side.

The spatial images of the signals are mixed together at a specified input SNR
(averaged over both microphones). The mixed signal is divided into 1s-intervals
with 75 % overlap, and the RTF estimation is conducted independently on each
of total 37 intervals. The results are then given in the form of ATR averaged
over all intervals.

Results and Discussions. Figures 1 and 2 summarize results of the experi-
ments with NSFD and FD, respectively. The figures show the average ATR of
the estimated RTFs as functions of percentage p and of input SNR.

For both initial estimates, the RTFs reconstructed by SOCP yield ATR that
is comparable or higher to that obtained by weighted LASSO. This holds for
both the oracle and kurtosis-based selection of S. The improvements compared
to LASSO are achieved for low values of p (below 10−20%) and for scenarios with
the lower input SNR (see Figs. 1(a,c) and 2(a)). When input SNR is −10 dB, only
few frequency components of the initial RTF estimate are accurate “enough”,
so small p should be selected. Then, SOCP appears to be more robust than
LASSO. For higher values of p and higher input SNR, both approaches achieve
comparable ATRs (see Figs. 1(b,d) and 2(b)).

The overall ATRs with FD are significantly lower than those with NSFD;
cf. Figs. 1(a) and 2(a). This confirms the assumption that NSFD yields more
accurate RTF estimate, when target speech is interfered by a stationary noise.

Figures 1(c,d) and 2(b) show that the reconstructed RTFs from incomplete
measurements yield significant improvement in terms of ATR, especially, when
input SNR is low. When input SNR is sufficiently high, the ATR by the recon-
structed RTFs can be lower than that of the initial estimates, depending on p.
When p is too low, the loss of the ATR signalizes that too much information was
lost from the incomplete RTF (see Fig. 1(c) where input SNR> 0). By contrast,
when the RTF measurement is almost complete (p close to 100 %), the ATRs by
the reconstructed RTFs are getting closer to those of the initial estimators.

The oracle selection yields higher ATR compared to kurtosis-based selection
of Ĥ(k) for all values of p and all considered input SNR levels (by up to 3 dB).
This is due to the strong prior knowledge utilized by the oracle selection (the
true input SNR within the frequency bins).

6 http://www.eng.biu.ac.il/gannot/downloads/.

http://www.eng.biu.ac.il/gannot/downloads/
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Fig. 1. Attenuation of female speech in the presence of directional fan hum. The initial
estimate ̂H(k) is NSFD (6). (a,b) Dependence on the percentage of frequency bins
included in S (input SNR = -10 dB or 0 dB, respectively), (c,d) dependence on input
SNR (p = 15 % or p = 65 %, respectively). The more negative the value (in dBs) of
ATR is, the better the target signal blocking.

Fig. 2. Attenuation of female speech in the presence of directional fan hum. The initial
estimate ̂H(k) is FD (4). (a) Dependence on the percentage of frequency bins included
in S (input SNR = -10 dB), (b) the dependance on input SNR (p = 45%).
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5 Conclusions

We observed that the solutions by LASSO and SOCP can be very close in
the sense that an appropriate choice of weights in LASSO enables to approach
the solution by SOCP. However, the correspondence between the parameters of
LASSO and SOCP is nontrivial. In contrast to the weighted LASSO, the inter-
pretation of the parameters in SOCP is straightforward and helpful in practice,
which was demonstrated by experiments in this paper.
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