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Tensor Deflation for CANDECOMP/PARAFAC—
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Abstract—CANDECOMP/PARAFAC (CP) approximates mul-
tiway data by sum of rank-1 tensors. Unlike matrix decomposition,
the procedure which estimates the best rank- tensor approxima-
tion through sequential best rank-1 approximations does not
work for tensors, because the deflation does not always reduce the
tensor rank. In this paper, we propose a novel deflation method for
the problem. When one factor matrix of a rank- CP decomposi-
tion is of full column rank, the decomposition can be performed
through rank-1 reductions. At each deflation stage, the
residue tensor is constrained to have a reduced multilinear rank.
For decomposition of order-3 tensors of size and
rank- , estimation of one rank-1 tensor has a computational cost
of per iteration which is lower than the cost of the
ALS algorithm for the overall CP decomposition. The method
can be extended to tracking one or a few rank-one tensors of slow
changes, or inspect variations of common patterns in individual
datasets.

Index Terms—Canonical polyadic decomposition, com-
plex-valued tensor decomposition, PARAFAC, tensor deflation,
tensor tracking.

I. INTRODUCTION

C ANDECOMP/PARAFAC (CP) has found numerous ap-
plications in wide variety of areas such as in chemomet-

rics, telecommunication [1], data mining, neuroscience [2]–[4],
separated representations, blind source separation [5]. It con-
sists in decomposition of a given tensor (a multiway array of
real or complex numbers with three or more indices) as a sum
of the lowest possible number of rank-1 tensors (see illustra-
tion in Fig. 1(b)). Here, a rank-one tensor is an outer product of
vectors. This decomposition became popular due to Carroll and
Chang [6] and Harshman [7].
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Fig. 1. (a) Illustration of factorization of a matrix into rank-1 matrices
, (b) CANDECOMP/PARAFAC factorizes a rank- tensor into

rank-1 tensors . In matrix factorisation, rank-1 ma-
trices can be sequentially estimated and deflated out of the matrix . A similar
sequential estimation of rank-1 tensors in general cannot be applied to tensors.

Together with the Tucker tensor decomposition, this CP de-
composition is the most successful extension of the matrix de-
compositional approach to multiway data. In existing CP de-
composition algorithms, all rank-one tensor components are es-
timated jointly. In this paper, the main objective is to estimate
the rank-one components one by one, or only a few ones. Algo-
rithms of this type are called deflation algorithms.
One of important properties in matrix factorisation methods

like eigenvalue decomposition, singular value decomposition,
is that rank-1 matrix components can be sequentially estimated
via deflation method. An illustration of matrix factorization is
shown in Fig. 1(a). For example, the power method of the eigen-
decomposition of a matrix [8], [9] falls in this class. The power
method is especially useful when a few leading eigenvectors are
of interest, or when estimating eigenvectors while one or more
eigenpairs are known. Similar deflation methods are applied to
extract independent components in blind source separation one
by one [10], or in sparse principal components [11].
The matrix deflation procedure is possible because sub-

tracting the best rank-1 term from a matrix reduces the matrix
rank [12]. Unfortunately, this property, in general, does not hold
for multiway arrays. Subtraction of the best fitting rank-one
component works well only for symmetric decomposition
of symmetric tensors [13]. However, for general tensors, we
cannot guarantee to obtain a good rank- tensor approximation
through sequential rank-1 estimations [14]. The authors in
[15] confirmed that subtracting the best rank-1 tensor from a
tensor may increase its rank. Nevertheless, the standard defla-
tion or sequential extraction of a rank-1 tensor has been used
in practice in -way Partial Least Squares Regression (PLS)
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[16], [17]. The decomposition seeks a common rank-1 tensor
between two multiway dataset, and deflates it out of both data
to find further rank-1 tensors.
In this paper, we present a novel method for the rank-re-

duction problem in the CP decomposition. We show that for
low-rank CP decomposition, we can sequentially extract rank-1
tensors from a rank- tensor if the residue tensor is constrained
to be of multilinear rank- . It means that all matricizations
of the residue tensor have rank at most . The tensor defla-
tion can be seen as a Tucker decomposition with one scalar and
one block along the diagonal of the core tensor. In this sense,
tensor deflation is more closely related to (block) tensor diag-
onalization (TEDIA) [18] which seeks factor matrices in the
sense that the tensor can be transformed into a block diag-
onal tensor.
The tensor deflation has many applications in extracting one

or a few rank-1 tensors from a high rank tensor. For CPD, this
advantage allows to simultaneously extract rank-1 tensors in a
parallel system when using different initial points generated by
different initialization methods. It may easily occur that the esti-
mated rank-1 components are estimates of distinct components
(or belong to distinct components). It could happen that some
initial points lead to the same solutions, i.e., rank-1 one tensors,
andwe cannot extract all rank-1 tensors in one simultaneous run.
However, the extraction process should be executed further on
the residual tensor after the first run.
The tensor deflation can be used to track components of

rank-1 tensors of interest in a system for online data receiving.
When new data is coming, one only needs to inspect the change
of specific rank-one tensors in the entire data or only a partial
new data. A simple approach is to decompose the whole data
to extract all components, but this is not an efficient method for
big data and for online analysis. Alternatively, one can track
all components using a partial old and new data as proposed
in [19]. However, so far, the existing methods do not allow to
track specific components. Note that in practice, there may be
only a few components that are actually relevant while most of
them are less significant. This can be achieved using the tensor
deflation proposed in this paper.
Using the similar technique, we can inspect common load-

ings, e.g., biomarkers, in the entire data of multiway samples,
and their individual variations. This is useful to extract features
for new test data associated with some components selected
from the training data.
In the conference paper [20], we presented a deflation algo-

rithm for the CP decomposition for the first time. In this paper
we extend the method, and the main contributions are summa-
rized below
• Conditions for the tensor deflation are formulated to guar-
antee success of the rank-1 tensor extraction. In general,
a rank-1 tensor can be “pulled” out of the data if its com-
ponents do not lie in the column spaces of components of
other rank-1 tensors. In most cases, the rank-1 tensor can
even be extracted when having at least two components
which cannot be expressed by linear combination of the
other components.

• We propose new algorithms for real- and complex-valued
tensor deflations. Unlike the algorithm in [20], the novel

algorithms have a lower number of parameters to estimate,
basically two vectors and one scalar per dimension. This is
possible because determining the block part of the decom-
position is ambiguous. Complexity of the rank-1 deflation
is which is lower than the cost of the CPD-ALS al-
gorithm to estimate rank-1 tensors from a tensor of size

.
• We also briefly introduce new applications for tensor de-
composition involving tensor tracking whose major aim is
to track components of one or a few rank-1 tensors slowly
changing in an online system. The rank-1 tensor deflation
is also useful to inspect common components in individual
data entries.

• Furthermore, we illustrate an ability to extract rank-1 ten-
sors in CPDs through both sequential and parallel pro-
cesses.

Efficient initialization methods and the Cramér-Rao Bound
for the rank-1 tensor deflation are presented in Part 2 of this
work [21], whereas rank splitting for CPD, an extension of the
tensor deflation, is described in Part 3 [22], [23].
The paper is organized as follows. A tensor decomposition for

rank-1 tensor deflation with necessary conditions is discussed
in Section II. Novel algorithms for real- and complex-valued
tensor deflations based on subspace updating are presented in
Sections III and V, respectively. Section IV discusses the tensor
deflation with rank exceeding the true rank of the data. Simu-
lations in Section VI will compare performance of algorithms
using different initialization methods. The simulation results
verify validity and performance of the proposed algorithms for
real-world data and in application for tracking received signals
in a direct sequence code division multiple access (DS-CDMA)
system. Section VII concludes the paper.
Throughout the paper, we shall denote tensors by bold

calligraphic letters, e.g., , matrices by bold
capital letters, e.g., , and vectors
by bold italic letters, e.g., . An -th entry

with , ,
is alternatively denoted by with the linear index i. The
Kronecker and Hadarmard products are denoted by and
, respectively. Inner product of two tensors is denoted by

. Contraction between two tensors
along modes- , where , is denoted by

, whereas represents contraction along all
modes but mode- .
The mode- matricization of tensor is denoted by .

The mode- multiplication of a tensor
by a matrix is denoted by

. Products of a tensor with a set
of matrices are denoted
by

We say that a tensor is in Kruskal form if

(1)
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Fig. 2. Illustration of rank-1 deflation for the CP decomposition of a rank-
tensor . The proposed method estimates a rank-1 tensor and returns a tensor

of multilinear rank- and of smaller size than , that
is compression. The deflation then can be applied to to extract the second
rank-1 tensor, and receive a multilinear rank- tensor , and
so on. The CP decomposition of can be fully achieved after rank-1
deflations. (a) CPD of a rank- tensor. (b) Rank-1 deflation for CPD.

where “ ” denotes the outer product,
are factor matrices, , for

and , and .
A tensor has multilinear

rank- if for
, and can be expressed in the Tucker form as

(2)

where , and are of full column rank. For
compact expression, denotes a Kruskal tensor,
where represents a Tucker tensor [24].
Definition 1. (CANDECOMP/PARAFAC (CP) [6], [7]): Ap-

proximation of an order- data tensor by
a rank- tensor in the Kruskal form means , where

, so that is mini-
mized.
Fig. 2(a) illustrates a CPD for order-3 tensor. It is worth

noting that exact CP decomposition may not exist [25]. For
various aspects of multiway analysis and its applications in
signal processing, we refer to recent papers [26], [27].

II. A TENSOR DECOMPOSITION FOR RANK-1
TENSOR EXTRACTION

In this paper we consider an order- tensor of size
which admits the CP decomposition (CPD) of

rank with for all . Tensor can be expressed as a

summation of a rank-1 tensor and a rank- tensor ,
that is

(3)

Instead of considering as a rank- tensor, we constrain
it as a residual of multi-linear rank- whose
factor matrices form subspaces of . This motivates a pro-
cedure for factorizing into two tensor blocks of rank-1, and
multilinear rank-

(4)
where are of size . The decomposition is a
particular case of the block component decomposition (BCD)
for order-3 tensors [28], [29]. Further rank-1 tensors can be ex-
tracted from the core tensor of size

rather than the original data as illustrated in Fig. 2(b).
The process is sequentially applied times and briefly
summarized in Steps 3–4 in Algorithm 1. The rank-1 tensors
extracted from the core tensors of smaller sizes
need to project back to the size of the data tensor as in Step
4. More specifically, the projection from the second stage of de-
flation to the first stage is expressed as

In the last stage, the compressed tensor has size of
. The final solution is a Kruskal tensor whose factor matrices
comprise components of rank-1 Kruskal tensors ,

. The method is primarily applicable if the tensor
rank does not exceed the tensor dimensions, but when the rank
may slightly exceed the tensor dimension, the proposed method
still gives good results.
The main technique to extract a rank-1 tensor from a rank-

tensor is to perform a rank-1 plus multilinear rank-
BCD. This raises a question whether the rank-1 tensor in (4) is
identical to one of rank-1 tensors in (3). In order to address this
concern, we introduce the following normalization and some
additional conditions.
Lemma 1 (Orthogonal Normalization): Given an approxi-

mation of by a sum of two tensors
and , where ,

, one can construct an equivalent decomposition, denoted
by tildas, which has the same approximation error,
• Matrices are with orthonormal columns for all , i.e.,

.
• The last columns of , denoted by

form an arbitrary orthonormal basis for
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orthogonal complement to in the columnspace
of , and for

.
Lemma 2: Let (4) be a decomposition of a tensor into rank

one and multilinear rank tensors. Then,
a. does not lie in the column space of , otherwise

.
b. The coefficient is neither equal to

1 nor 1.
c. At least two components , for must

not lie within the column spaces of the corresponding
. Otherwise, the rank-1 tensor

is not uniquely identified.
The proofs are given in Appendices A and B. Hereinafter,

we assume that such normalization (and rotation with respect to
) is applied to the factor matrices .
Theorem 1 (Rank-1 Deflation): Let a rank- tensor

having
• at least one factor matrix of full column
rank,

• and an exact decomposition
, where and of size
, , which satisfies condition

(c) in Lemma 2.
Then vectors are components for
a certain , and is of rank .

Proof: Without loss of generality, we assume is
of full-column rank. According to Lemma 1, the factor ma-
trices can be rotated so that and

, where .
Assuming that . Let , then

. By multiplying with along mode-1 we have

(5)

and

(6)

where , denotes the set of indices such that
, and are taken columns of .
If has at least two non-zero entries, then is still a

full column rank matrix, hence has
a unique CPD according to uniqueness condition in [30] and
references therein. It follows that cannot be a rank-1
tensor as in (5). This implies that has only one non-zero entry,
say . Thereby, we have

(7)

which yields for . Similarly, from the
tensor-vector product , we obtain .
Finally, because , from (7) we obtain

. The results also implies is a rank- tensor
after eliminating the rank-1 tensor from
. This completes the proof.

A similar result also holds for the decomposition
, which

allows to deflate a rank- tensor from instead of one rank-1
tensor, or sequential rank-1 tensors.
Theorem 2 (Rank- Deflation): A rank- tensor

, in which at least one factor
matrix has a full column rank, has a decomposition

, where
and . Then matrices

comprise components , and the tensor is of rank
.

Preliminary conditions for deflation of a rank-1 tensor from a
high tensor are shown in Lemma 2 and Theorem 1. In general, a
rank-1 tensor whose components do not lie in the column spaces
of the other components can be considered an isolated rank-1
tensor, and thus can be extracted from the tensor. Note that the
rank-1 tensor can still be extracted, when it interacts with other
rank-1 tensors through no more than modes.

III. ALGORITHMS FOR RANK-1 TENSOR EXTRACTION
As mentioned earlier, the decomposition for rank-1 tensor

deflation can be considered a rank- BCD which
comprises only two blocks of rank-1 and multilinear rank-(

), respectively. Thereby, for three way ten-
sors, one can apply the alternating least squares (ALS) algo-
rithm for rank- BCD [28]. Alternatively, one can
use the deflation algorithm in [20] derived for such particular
tensor decomposition which sequentially updates , ,
and the core tensor through their closed-forms. This al-

ternating minimisation algorithm [20] is simple to implement.
However, it may encounter numerical issues involved in matrix
inverse in updating . Moreover, computation of the cost
function is relatively expensive, and the number of parameters
is relatively large, mainly dominated by the core tensor . For a
rank- tensor of size , the deflation algorithms
based on the BCD need to estimate parame-
ters, while the purpose of tensor deflation is to extract only one
rank-1 tensor requiring parameters.
In this section, we derive a new algorithm for the tensor defla-

tion which acts as standard cyclic minimization algorithm, and
has a lower complexity than existing algorithms for rank-1 plus
multilinear rank- BCD, and algorithms
for CPD. The main idea of the proposed algorithm is that we
use the simplified least squares cost function after replacing the
core tensor and the weight coefficient by their maximum
likelihood estimates.

A. Closed-Form of and Core Tensor
Let and

. From (4), we consider the following cost
function which minimizes the Frobenius norm between and
its estimate

(8)
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In order to estimate and , we compute derivatives of with
respect to and , , as

(9)

(10)

where denotes the linear index of the sub-index
, , and are entries

of the tensors and respectively, is the Kronecker delta.
Setting derivatives to zero will yield the optimum and as
follows

(11)

where , is a tensor of the same size as
filled with zeros up to the first element, which is 1,

and

(12)

By replacing the optimum and , the optimum value of the
cost function can be expressed as

(13)

B. The Alternating Subspace Update Algorithm
In this subsection we consider the rank-one deflation for ten-

sors of size . Tensors of larger and unequal sizes
should be compressed to this size using the Tucker decomposi-
tion [31]–[33]. In this case we show that it is not necessary to
estimate all components and for each mode, but
only update two components and one scalar parameter which is
cosine of the angle between and . All parameters are
found in closed-form through the eigenvalue decomposition. As
the result, the cost function of the algorithm can be assessed with
low complexity.
For notational simplicity, we put , and define unit-

norm vectors as

(14)

provided that . We perform a change of pa-
rameters so that instead of estimating , and , , we

derive update rules for , and for . The
updates are then cyclically iterated in the form summarized as
Alternating Subspace Update (ASU)—Algorithm 2.
Once , are estimated, the remaining columns

of can be set by an arbitrary orthogonal complement
to . Often we even need not compute the factor ma-
trices explicitly except its first component , because

appear only in products which can be com-
puted as . See more discussion in
Section III-C.
Finally, when , and are given, the components of

the rank-1 tensor are computed as

(15)

1) Closed-FormUpdate for : Assuming that , put

(16)

where

(17)

Taking into account that , where
and

(18)
(19)

we obtain the following Cauchy-Schwarz inequality1

(20)

Thereby, the cost function satisfies the following inequality

(21)

The equality holds when

(22)

indicating that the optimum when keeping other parameters
fixed is given in closed-form solution as

(23)

1
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2) Closed-Form Expressions for and : Let

(24)

Note that defined in (17) is the first column of . Since we
assumed that the tensor has the size of , it
follows that are of size for , and

(25)

(26)

With the optimum in (23), the cost function (13), i.e. the
right-hand side of (21), is now rewritten as

(27)

The two vectors and only involve in two quadratic terms
and .

Since the matrix is positive-semidefinite2

(28)

from (27), the following inequality for the cost function holds

(29)

where is the smallest eigenvalue of .
The equality in (29) holds when
1) is the eigenvector associated with the smallest eigen-

value of the matrix .
2) .

That is while . It
turns out that takes the following form

(30)

Finally, while fixing parameters , and for ,
, and are updated in closed-form. The updates (23)

and (30) form the core of the proposed Alternating Subspace
Update (ASU) algorithm, which is summarized as Algorithm
2. The core tensor and weight need to be computed only
once. The ASU acts as a standard cyclic minimization algorithm
[34], [35], which partitions the variables into groups and mini-
mizes the problem with respect to a group of parameters while
keeping the other parameters fixed. More specifically, the ASU
algorithm estimates parameters including two vectors ,
and a scalar for each mode , whereas minimization of sub-
problems is done in closed-form. As a result, this cyclic mini-
mizer generates a monotonically nonincreasing sequence of the
cost values bounded by 0. Such cyclic minimization algorithm
must converge at least to local minima as discussed in [36].

2The matrix has
eigenvalues of 1, and 2 eigenvalues of zero.

3) The Case When : When , it implies that
, i.e., for all , and . Thereby,

and the cost function in (13) becomes independent of the choice
of the vector and parameter

For such case, the tensor may violate the condition c in
Lemma 2.

C. Complexity of the ASU Algorithm
Wewill show that the ASU algorithm has a lower complexity

than the fastest existing algorithm for CPD. According to Algo-
rithm 2, for order-3 tensor, computation of , and eigen-
value decomposition of to update is of
complexity , The most expensive step in ASU is to com-
pute .
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Let for ,
and , the matrix

can be computed as

(31)

For example, for , we compute as

(32)
The tensor product returns a vector of size ,
whereas products or yield matrices of size

. Similarly, the other matrices can be computed, without
evaluating , with complexity of , while is
computed once. Finally, the total expense of ASU per iteration
to update , and is approximately . It is worth
noting that the fastest algorithm for CPD has a complexity per
iteration of [37] for estimation of
rank-1 tensors. Hence, extraction of a rank-1 tensor requires a
cost of .
For higher order tensors, construction of is still

the most expensive step. According to (31), the computational
cost is dominated by tensor products for . Taking
account that we only need to compute one tensor-vector product
for each , whereas other products are taken from the
previous construction of or . Therefore, the computa-
tional cost of ASU is of .

IV. RANK IN TENSOR DEFLATION

Deflation of a rank-1 tensor out of a rank- tensor requires
the tensor rank as prior information. This section will dis-
cuss how to apply tensor deflation when the rank is not given.
A simple way is that one can apply the deflation with sufficient
high rank (overestimated), which is higher than the expected
true rank of the data, but does not exceed the tensor dimensions.
For example, in practice, the initial rank can be set to its dimen-
sion, i.e., , or multilinear rank of the
data, i.e., .
Lemma 3 (Deflation With Overestimated Rank): Given a

data tensor whose rank does not exceed its dimensions,
a decomposition of this tensor into a rank-1 plus multilinear
rank- tensors with yields a non-unique solution with

.
Proof: The proof can be seen from condition c in Lemma

2. The multilinear rank- tensor can explain the data tensor
with a perfect fit, and the first rank-1 tensor can be chosen ar-
bitrarily. In addition, since components lie in subspaces of
mode- matriculations spanned by factor matrices , one
has .
In practice, tensor may not be of exact rank- but can be ap-

proximated by a rank- Kruskal tensor. A deflation with rank
higher than will yield at least rotational parame-
ters close to one, i.e., . Based on this observation, we
can verify whether any rank-1 tensor in the CP decomposition
or tensor deflation violates the uniqueness condition, and re-
duce rank of the further decomposition. More specifically, for

CPD, we check , where are or-
thonormal basis of matrices excluding the column
for and .
Another observation is that components of the rank-1 tensor

(the first block) in the deflation with overestimated rank may
not explain the data. The fit explained by the decomposition is
mainly due to the second block. Hence, together with verifying

, identification of rank-1 tensors which do not explain the
tensor will help us to reduce the deflation rank to be close to the
tensor rank, especially for noise-free data or data with relatively
low noise, e.g., . The procedure will be illustrated
in Example 4 in the Simulation section.
Finally, when the rank used in the deflation procedure is close

to the true rank, practical experiments show that the tensor de-
flation can extract desired rank-1 tensors with high accuracy.
This behavior of the ASU algorithm and tensor deflation proce-
dure is illustrated in Examples 4 and 5 in the Simulation section.
When the noise is high or the data tensor is not well approxi-
mated by a rank- tensor, a deflation with slightly higher rank
is recommended.

V. DECOMPOSITION OF A COMPLEX-VALUED TENSOR
This section derives an ASU algorithm for complex-valued

tensor deflation. The model is similar to (4), but is a
real-valued coefficient, while the other parameters are com-
plex-valued, i.e., , and . Simi-
larly to deflation of a real-valued tensor, and can also
be normalized to be orthogonal, i.e., ,

, and . The cost
function for the complex-valued tensor deflation is given by

(33)
Again, instead of estimating , , and explicitly,
we perform a reparameterization with

where , and are uni-
tary matrices. The vectors of and positive parameters

can be estimated in closed-form, whereas columns
can take arbitrary orthonormal basis for the or-

thogonal complement to . To this end, we will first de-
rive closed-form expressions for and the core tensor , then
rewrite the cost function (33) in term of , and .

A. Closed-Form Expressions for and
Let , then gradients of the cost function with re-

spect to and the complex conjugate can be expressed as

(34)

(35)
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where , and is a tensor whose first entry
is 1 and others are zeros. By setting the gradients to zeros we
obtain closed-form expressions for and

(36)

where and is the first entry of .

B. The ASU Algorithm
Before we derive the closed-form updates for , and ,

we introduce additional notations

(37)

The orthogonality constraints on and lead to three
real-valued vectors , , that are orthonormal, i.e.,

. As in (16), we define
, where ,

.
Using the above expressions for and , and taking into

account that

where , we can rewrite the cost function (33) as a
function of parameters , and

(38)

By the Cauchy-Schwarz inequality, the following inequality
holds

(39)

This leads to the following inequality

(40)

where and is the smallest

eigenvalue of the matrix . The
equality in (40) holds when
1) . That is

(41)

2) is eigenvector associated with the smallest eigenvalue
of the matrix .

3) .
It turns out that

(42)

Since , has closed-form solution as

(43)

Finally, we have derived closed-form updates for , and
while keeping other parameters fixed. The ASU algorithm

acts similarly to that in Algorithm 2 for real-valued tensors.

VI. SIMULATIONS

Example 1 Comparison of Algorithms for Block Tensor
Decompositions: The first example aims to compare perfor-
mance of algorithms for the rank-1 tensor extraction, including
the deflation algorithm [20], the ASU in Algorithm 2, and
two algorithms for rank- BCD which are the
ALS algorithm3 [29] and the non-linear least squares (NLS)
algorithm4 [38]. We briefly discuss efficiency of different
initialization methods including the random initialization, the
SVD-based method with pre-selection, and the joint eigenvalue
decomposition (JEVD), while a detailed comparison can be
found in Part 2 [21]. All algorithms were initialized by the same
values, while their parameters are left at default values. For
example, the NLS algorithm used the Gauss-Newton algorithm
with dogleg trust region. For each decomposition using the
random initialization method, we randomly generated 10 sets
of initial points, and selected the one achieving the smallest
approximation error after passing through the ASU algorithm
with a small number of iterations (typically, less than 10).
The data tensors considered in this example are of size

, randomly generated as

(44)

where , are matrices of size with or-
thonormal columns, represents additive Gaussian noise with
zero-mean, unit-variance, and denotes the noise variance
for specific signal-to-noise ratios SNR (dB). The parameters

3The ALS algorithm [29] is provided from website of the authors.
4The NLS algorithm is available in the Tensorlab toolbox at www.tensorlab.

net.
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was in range [0, 0.5]. The tensors were random
tensors with . Algorithms were set to run until dif-
ferences between consecutive approximation errors were small
enough, i.e., where , or
when the number of iterations exceeds 1000. There were 100
independent runs for each setting of rank and SNR, where

, 20 and 30 and , 20, 30 dB. Since the ALS al-
gorithm [29] become significant time and memory consuming
when , this algorithm only involved in decompositions
of tensors of size . Simulations were run on a com-
puter consisted of Intel Xeon 2 processors clocked at 3.33 GHz,
64 GB of main memory.
Performances of algorithms for the tensor deflation can be as-

sessed through approximation error of the components and
the factor matrices . However, as shown in Appendices C,
the approximation error between and its approximate can
be deduced from that of . We will evaluate only the perfor-
mance of estimation of . Results reported in Table I com-
pare the relative errors in dB obtained
by these algorithms using multiple random initial points and the
JEVD initialization method [21]. The results imply that algo-
rithms purely initialized by random values often yielded poor
performance or demanded a large number of iterations. When
using JEVD, the algorithms achieved small approximation er-
rors which attain the average CRB on this error for [21].
Results using the SVD-based method are similar to those using
JEVD, and are not shown in Table I. When using a good initial-
ization, the algorithms ALS, ASU and NLS converged to sim-
ilar results. This is because these algorithms minimise the same
optimization criterion. The difference between them is mainly
the computational cost as measured by execution time and com-
pared in Table II. The ASU algorithm was the fastest algorithm
in our simulations. When using the JEVD initialization, this al-
gorithm converged quickly after less than 0.02 seconds, whereas
the NLS algorithm stopped after on average 10 seconds when

and . On average, ASU was 15 times
faster than the algorithm [20], 222 times faster than NLS, and
312 times faster than ALS [29]. This example confirms that the
ASU algorithm worked well as other algorithms for the same
model, but it was much faster than the competitors.
Example 2 Tensor Deflation in Hard Scenarios: In this

example, we analyze performance of the rank-1 plus multi-
linear rank- block tensor decomposition
when the angular parameter between components of the rank-1
tensor and factor matrices of the block tensor, i.e., the pa-
rameter , was varied from 0 to 0.99. The data tensors
were of size , and their factor matrices were
randomly generated with taking values of
0, 0.1, ,0.9, 0.95 and 0.99. The core tensor was randomly
generated and normalized to have unit norm, i.e., ,
while we set . Gaussian noise was added into the
tensor with SNR=20 and 30 dB. The squared angular errors

(dB) between
the true and estimated components of the rank-1 tensor were
assessed, and compared with the Cramér-Rao Induced bound
(CRIB) on this error derived in Part 2 [21]. The results illus-
trated in Fig. 3 are reported for 400 independent runs, indicate

TABLE I
COMPARISON OF RELATIVE ERRORS (IN dB) IN ESTIMATION OF COMPONENTS

OF THE RANK-1 TENSORS BY THE ALS, ASU AND NLS ALGORITHMS IN
EXAMPLE 1. THE RESULTS ARE REPORTED OVER 100 RUNS FOR RANKS

, 20 AND 30, , 20, 30 dB. ALGORITHMS WERE INITIALIZED
BY RANDOM VALUES OR USING THE JEVD METHOD

TABLE II
COMPARISON OF EXECUTION TIME (SECONDS) OF ALGORITHMS IN EXAMPLE
1. VALUES INSIDE BRACKET ARE SPEEDUP RATIOS OF EXECUTION TIME OF

ALGORITHMS TO THAT OF ASU

Fig. 3. Illustration of squared angular errors (SAE) as function of the parameter
varying in the range [0, 0.99]. The performance is compared

with the Cramér-Rao Induced bound on the squared angular error [21] for two
different noise levels. Tensors in this example are of size .
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that the error bounds are small for small , especially when
components and are mutually orthogonal, .
The tensor deflation procedure becomes more difficult when
approaches 1. For most test cases, ASU achieved good per-

formance with its SAEs attaining the error bound, except for
the difficult case when , that is,
are highly correlated with , for , 2, 3. We note that
tensors in a such difficult case can be considered not to satisfy
the condition c in Lemma 2.
Example 3 Deflation of Tensors Obeying the CP Model: We

have shown that by using the rank-1 tensor deflation, e.g., the
ASU or ALS algorithm, one can sequentially perform CPD of
a rank- tensor through rank-1 tensor deflations. In this ex-
ample, we will show that the extraction process of rank-1 ten-
sors can be done in parallel. The main idea of this method is to
provide a good initial value to the ASU algorithm which can be
obtained using the tensor diagonalization (TEDIA) [18] or the
direct trilinear decomposition (DTLD) [39] algorithm.
We illustrate rank-1 tensor extraction through decomposi-

tions of synthetic data of size with rank
, 10, 20, 30, 40. Factor matrices were randomly gen-

erated such that their collinearity coefficients were
in the ranges of [0.2, 0.8], [0.4, 0.8], [0.4, 0.9], see, e.g., [40],
[41]. The tensors were corrupted with additive Gaussian noise
of signal-to-noise ratio , 20, 30 and 40 dB. We gen-
erated 100 Kruskal tensors with for rank
, and added an i.i.d Gaussian noise to achieve the specified

SNR level. Therefore, there were in total 2000 noisy tensors to
be decomposed.
The performance of the decomposition was evaluated

through the squared angular errors, and compared with the
Cramér-Rao induced bound for CPD (in dB) [42],
[43]. The mean SAE (MSAE) was averaged over 300
SAEs of all components in all factor matrices. Fig. 4 com-
pares the MSAEs achieved by FastALS [37], Seq-ASU which
sequentially extracts rank-1 tensors, and Par-ASU which
simultaneously extracts rank-1 tensors in a parallel loop. Algo-
rithms stop when differences between successive relative errors

were lower than , or until the maximum
number of iterations (2000) was achieved. For most of the tests,
both Seq-ASU and Par-ASU attained the CRIB, such as when

, 10, 20, 30. Only when the cases of high rank and
low SNR=10 dB, the two methods for rank-1 tensor extraction
achieved slightly lower MSAE than the FastALS algorithm for
CPD. It is worth noting that CRIB for such decomposition was
21.34 dB, implying that the standard angular deviation (square
root of mean square angular error) of the factor is cca. 5.72
degrees.
Example 4 Tensor Deflation With Overestimated Rank:

Tensor deflation developed in this paper requires tensor rank to
be known. This example will show that when the tensor rank is
not given, the ASU algorithm is still able to extract the desired
factor matrices (components). We generated rank- tensors of
size where the tensor rank did not exceed dimension
. In this example, . The rank- tensors were then
degraded by additive Gaussian noise with , 20, 30,
40 dB. The ASU algorithm was applied to sequentially extract

Fig. 4. Comparison of SAE (dB) of CPD algorithms with CRIB for decompo-
sition of noisy tensors.

TABLE III
COMPARISON OF THE MEAN SQUARED ANGULAR ERRORS (dB) IN ESTIMATION
OF COMPONENTS FROM RANK- TENSORS OF SIZE DEGRADED
BY GAUSSIAN NOISE AT , 20, 30, 40 dB. FOR EACH RANK AND
SNR, WE SHOW PERFORMANCES OF THE ASU ALGORITHM WITH EXACT

RANK AND WHEN THE RANK WAS OVERESTIMATED

rank-1 tensors of the data with a sufficient high initial rank, say
. The tensors were re-factorized with lower ranks when

there was any . The mean squared angular
errors (MSAE) in estimation of components were assessed
over 100 independent runs, and compared with the Cramér-Rao
induced bound (CRIB) [43] in Table III. When the noise was
relatively low, e.g., or 40 dB, factorisation using
ASU with inexact initial rank still achieved high performance
which attained CRIB. The loss of SAE was slightly higher and
approximately 1–2 dB with and 20 dB.
Example 5 Decomposition of the Fluorescence Data Set: In

this section, we illustrate advantage of the tensor deflation using
ASU over CPD algorithms in factorisation of a fluorescence
data set consisting of five simple samples of fluorescence excita-
tion-emission of size 5 samples 201 emission wavelengths
61 excitation wavelengths [16]. According to [16], a CP model
with is appropriate to this fluorescence data. Using the
ASU algorithm over two deflation stages, one can extract all
three components with high accuracy compared with those ex-
tracted by using CPD-ALS. However, the major aim of this ex-
ample is to show performance of ASU when the decomposition
rank exceeds the “true” rank 3. It is known that for such cases
of decomposition, CPD algorithms often cannot preserve wave-
forms of the “true” components, which are estimated with ap-
propriate rank, and tends to generate diverging components. For
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Fig. 5. (a)–(b) Illustration of components extracted from the fluorescence data
set [16] using CPD-ALS and ASU when rank , (c)–(d) components
matched with the reference components obtained by two algorithms when

.

example, in Fig. 5(a), among six components extracted using
CPD-ALS, there was only one rank-1 tensor whose components
(blue solid curves) matched with the reference components, i.e.,
ones estimated with the “true rank” using CPD-ALS.
There were also two rank-one components whose components
(red and green solid curves) were degraded from the true ones.
With the same decomposition rank , as seen solid curves
in Fig. 5(b), ASU returned the desired components which were
slightly different from the true components by less than 0.53 .
We note that since rank exceeds the first dimension, in
order to apply ASU, the fluorescence tensor was expanded along
the mode-1 by itself with a small Gaussian noise.
Further results are reported in Figs. 5(c), 5(d) and Fig. 6 for

the decompositions with various ranks . In
Fig. 5(c), we show the components estimated by CPD-ALS
which are highly matched with the “reference” components,
whereas those obtained by ASU are illustrated in Fig. 5(d).

Fig. 6. Mean squared angular errors of components extracted using ASU and
CPD-ALS which match with the reference components in Example for factori-
sation of the fluorescence data set [16].

The figures indicate that the desired components were reliably
extracted by the ASU algorithm even when the decomposition
rank was higher than the “true” rank of data. In Fig. 6, the
observation is also confirmed through the squared angular error
between the “reference” components, and the components
estimated with higher ranks. Since the reference components
are estimated by CPD-ALS with rank , there is only
one bar showing MSAE for the ASU algorithm. When ,
CPD-ALS was still able to extract the desired components.
However, when the rank was higher, , the
components estimated by CPD were significantly different
from the “true” ones with an , i.e., by an
angle of 3.6 degree. For this problem with overestimated rank,
one can apply the all-at-once optimization (OPT) algorithm for
CPD [44] which is reported to give stable results.
Example 6 Tracking Received Signals in a Direct Sequence

Code Division Multiple Access (DS-CDMA) System: This
example illustrates an application of tensor deflation in tracking
one or a few components of rank-1 tensors of interest in a
DS-CDMA system. Consider a DS-CDMA system of users
and antennas over a flat Rayleigh fading, each information
sequence of user is spread using a code
before transmission over fading channels. At the receiver side,
an array of antennas is employed to receive and decode the
signals. Sidiropoulos et al. [45] established the model of wire-
less transmission as a three-way diversity tensor
whose an entry denotes the baseband output of the -th
antenna, for symbol and chip

(45)

where fading/gain between user and antenna element .
This model can be expressed as

(46)

where is tensor of additive Gaussian noise,
denotes the compound flat fading/array response pat-

tern, is the information bearing signal matrix, and
is the spreading code matrix [45]. Approximation

of the output of antennas returns the signal matrix . Then with
an appropriate demodulation for each column , the user infor-
mation sequences can be retrieved.
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Fig. 7. Illustration of SAEs on tracking components of user-1, and constellation
of the received signals at by CPD-ALS and ASU algorithms.
(a) MSAE on estimation of , and . (b) CPD-ALS (c) ASU.

In our experiments, receivers (antennas) and
users, , spreading gain, and user sequences were
modulated byM-DPSK . There were all tensor
blocks of size , recorded at different
time points. The data tensors can be obtained sequentially in
an online system, and have the same number of users, i.e., rank
. However, we assume that only user-1 joins in all ten-

sors with the same or slowly changing array response and
spreading code , while the other users in different
blocks are different, that is components , and
are completely changed, for . In our simulations,
components of the user-1 and for were de-
graded from and by Gaussian noise at . The
task was to track rank-1 tensors corresponding to this user in ten-
sors . Note that for such formulated problem, con-
catenation of two rank- tensors and does not yield
a tensor of rank or approximate rank- . Thereby, we cannot
track all the components , and using the algorithm
proposed in [19].
In our experiment, we first decomposed using the fLM al-

gorithm [46], and selected rank-1 tensor associated with this
user. When a new data of size was available, we
compressed this tensor to the size of , and performed a
rank-1 tensor extraction from using the ASU algorithm with
components initialized by the rank-1 tensor of interest in or
in the previous observed tensors . The mean SAE (dB) on
estimation of the components of user-1 was averaged over 100
independent runs for each . Results
are compared with those obtained by full CP decompositions of

using FastALS [37]. We set algorithms to run within 1000
iterations, and stop when the relative approximation error was
lower than . As shown in Fig. 7, although both ASU and

FastALS achieved competitive median SAEs (dB), the MSAEs
of FastALS were slightly lower than those of ASU when SNR
is high, e.g., 20, 30 dB. Fig. 7 also shows constellation of the
received signals at .

VII. CONCLUSIONS

Tensor deflation approach and associated algorithms have
been proposed for both real- and complex-valued tensors
of rank- and tensors comprising rank-1 tensors and block
tensors. The algorithms update parameters in closed-form.
Together with new efficient initialization methods presented in
Part 2 [21], the proposed algorithms have been confirmed to
be superior over existing algorithms which are applicable for
the same or similar tensor decomposition. The tensor deflation
can find some potential applications related to tracking or
inspection of individual time variation of components. The
tensor deflation is also able to extract rank-1 tensors in CPD
in parallel way. The rank-1 tensor deflation can be extended
to extract dominant rank-1 tensor with the largest weight . A
more general tensor deflation is rank splitting which splits a
high rank CPD into decompositions of two blocks of smaller
ranks. For this extension, we refer to Part 3 of this study
[22]. Finally, the deflation algorithms are implemented in the
Matlab package TENSORBOX which is available online at:
http://www.bsp.brain.riken.jp/phan/tensorbox.php.

APPENDIX A

PROOF OF LEMMA 1

Proof: Let be a matrix comprising an orthonormal
basis of column space of , and
let be an orthonormal matrix, having the
first normalized column , and the remaining columns
form an orthonormal basis for the orthogonal complement
of . Note that and can be obtained by using QR
decomposition of and , respectively, or alternatively
the singular value decomposition of these matrices. Then,

with
, ,
. It can be verified that are orthogonal

and , where
. It means that the new decomposi-

tion obeys the required orthogonality condition.

APPENDIX B

PROOF OF LEMMA 2

Proof:
a. If lies in the column space of , it can be ex-

pressed as . According to the normaliza-
tion, we have and

, indicating that , or
.
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b. The rest of the proof is by contradiction. Assume that
. Since the vectors and have both unit

norm, they are identical up to sign for all . It follows
that the approximation in (13), has multilinear rank

as well (not only the latter term).
Now, we can construct new based on rank one ap-
proximation of the residual, . The new
decomposition will have a lower approximation error than
the former one—which contradicts the assumption that
the original decomposition was optimal.

c. Assume that components lie in the column
spaces of , that is, for
and . Let ,
where , then , , and

. From (4), we have

where has one at its first entry and zeros elsewhere. It
yields

For any real-valued , let ,
and . We show that the
following decomposition also achieves the same approx-
imation error

This implies that cannot be uniquely identified.

APPENDIX C
RELATION BETWEEN APPROXIMATION ERRORS AND ANGULAR

ERROR OF AND

In order to assess the approximation error between and
its estimate , as suggested in [29] in the tensor deflation,

one can rotate by an orthonormal matrix of size
such that its approximation error is minimized

(47)

It is obvious that , and the error is given by

(48)

where and are vectors of orthogonal complement to
and , respectively, and notation represents

angle between two subspaces, which can be computed using in
the Matlab subroutine “subspace”. It indicates that the approx-
imation error between and can be assessed through
the angular error of and , which is also equivalent to an-
gular error between and .
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