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a b s t r a c t

This paper deals with the problem of proper lifetime model selection in the context of statistical
reliability analysis. Namely, we consider regression models describing the dependence of failure
intensities on a covariate, for instance, a stressor. Testing the model fit is standardly based on the
so-called martingale residuals. Their analysis has already been studied by many authors. Nevertheless,
the Bayes approach to the problem, in spite of its advantages, is just developing. We shall present the
Bayes procedure of estimation in several semi-parametric regression models of failure intensity. Then,
our main concern is the Bayes construction of residual processes and goodness-of-fit tests based on
them. The method is illustrated with both artificial and real-data examples.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Accelerated life testing is a standard approach to gather
information on the survival time of highly reliable devices. One
of the goals of statistical analysis consists in the construction of a
model of the time to failure dependence on the ‘stressor’ (in a
quite wide sense). As a rule, the stressor is taken as a covariate in
a regression model of the lifetime. The model should be selected in
such a way that the information obtained under the over-stress
could be extrapolated to standard stress conditions. These pro-
blems, including the test design, selection of models, procedures of
statistical analysis, have been treated in a number of papers and
books, for instance [9,10,4,5]. Nowadays, many authors prefer the
Bayes approach, though mostly in the framework of parametrized
(e.g. Weibull) models. Simultaneously, computations are sup-
ported by the Markov Chain Monte Carlo (MCMC) generation of
posterior and predictive distribution, as in Van Dorp and Mazzuchi
[14]. In the same context, Erto and Giorgio [6] accent the
advantage of utilization of prior information, an experience from
past tests as well as the expert knowledge. Wang et al. [16] model
and analyze the process of degradation, instead of failure times
directly, using a Gauss or gamma process as a baseline source of
uncertainty. They provide the Bayes method and the MCMC
procedure enabling one to combine accelerated laboratory tests
with field data in order to analyze the reliability of system.

The selection of a proper stochastic model is just one of the
steps of statistical analysis. The model criticism, including the

goodness-of-fit tests, should follow. Therefore, the methods of
goodness-of-fit statistical testing are in the center of our attention.
In the present paper we consider three basic semi-parametric
regression models describing the dependence of intensity of fail-
ures on covariates, in our context on the load, stress or other
conditions of usage.

In the framework of intensity models for lifetime data, the
goodness-of-fit tests are often based on the analysis of residual
process (martingale residuals). The residual process is defined as a
difference between estimated cumulated intensity and observed
counting process of failures (see for instance [3]). Hence, the
residual process is constructed from the observed data, its proper-
ties depend on the properties of the estimator of the cumulated
hazard rate. In a case without regression, as well as in Aalen's
additive regression model, residual processes are the martingales
[15]. In some other cases, as is Cox's model or the accelerated
failure time (AFT) model, the behavior of estimates, and therefore
of residuals, is more complicated. That is why the tests are often
performed just graphically [1]. Approximate critical regions for
tests can also be obtained by random generation from asymptotic
distribution of residual processes. Relevant theoretical results can
be found for instance in Andersen et al. [3], Lin et al. [11], and
Bagdonavicius and Nikulin [4]. In such cases, the Bayes approach
can offer a reasonable alternative, especially when connected with
the MCMC methods (an overview of the MCMC is given for
instance in [7]). The present paper deals prevailingly with semi-
parametric intensity models consisting of a parametric regression
part and a nonparametric baseline hazard rate. For the Bayes
solution, its representation can be made from piecewise-constant
functions (or from splines or from other functional basis), in the
way used in Arjas and Gasbarra [2]. Once a posterior sample of
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hazard rate (i.e. representation of its posterior distribution
obtained by the MCMC procedure) is available, we can construct
a sample representing cumulated intensities and corresponding
residuals.

Let us here also recall another approach to the Bayes analysis in
the AFT model. It utilizes logarithmic model formulation. Instead
of the baseline hazard rate of a baseline survival time T0 it deals
with the density for log T0. Often, its prior is constructed as a
mixture of the Gauss densities with weights given by Dirichlet
distributions (as for instance in [8]). However, complications are
caused by censoring and have to be overcome by an additional
generation of would-be non-censored values, i.e. by a data
augmentation. It is actually a randomized version of the EM
algorithm.

The present paper has the following structure: In the next
section, the notion of martingale residuals is recalled, then the
Bayes nonparametric approach to intensity modeling is described.
While these sections are more-less introductory, the core of the
paper lies in Sections 4–6 dealing with regression models, methods
of analysis and their Bayesian counterparts. Utilization of the MCMC
procedures leads to the Bayes ‘empirical’ construction of residual
processes. The method is finally, in Section 7, illustrated with both
artificial and real-data examples.

2. Martingale residuals

In order to introduce the notion of martingale residuals, we
shall first consider a standard survival data case, without any
dependence on covariates. Let us imagine that a set of i.i.d. random
variables Ti, survival times of n objects of the same type, is
observed. Alternatively, we may consider their counting processes
Ni(t), each having maximally 1 count (at the time of failure, Ti), or
being censored without failure. Further, let us also consider
indicator processes (of being at risk) Yi(t), YiðtÞ ¼ 0 after failure
or censoring, YiðtÞ ¼ 1 otherwise. As the lifetimes are i.i.d., corre-
sponding counting processes have the same common hazard rate
hðtÞZ0. The cumulated hazard rate is then HðtÞ ¼ R t

0 hðsÞ ds. It
follows that the intensity of Ni(t) is aiðtÞ ¼ hðtÞ � YiðtÞ. Notice a
difference between those two notions: the hazard rate is a
characteristic of distribution, namely here hðtÞ ¼ �dðln F ÞðtÞ=dt,
where F ðtÞ ¼ 1�FðtÞ is a survival function, complement to the
distribution function, while the intensity depends on realizations
of processes Yi(t). It is assumed that the data are observed on a
finite time interval tA ½0; T �, Nið0Þ ¼ 0.

Let us also define sums of individual characteristics, namely
counting process NðtÞ ¼∑n

i ¼ 1NiðtÞ counting number of failures,
further YðtÞ ¼∑n

i ¼ 1YiðtÞ, cumulated intensities AiðtÞ ¼
R t
0 aiðsÞ ds

and AðtÞ ¼∑n
i ¼ 1AiðtÞ, so that here AðtÞ ¼ R t

0 hðsÞYðsÞ ds.
In theoretical studies on lifetime models, many results are

based on martingale—compensator decomposition of counting
process, namely that NiðtÞ ¼ AiðtÞþMiðtÞ, so that also NðtÞ ¼ AðtÞþ
MðtÞ, where MiðtÞ and MðtÞ are martingales with zero means,
conditional variance processes (conditioned by corresponding
filtration, a nondecreasing set of s-algebras F ðt� Þ) are
〈Mi〉ðtÞ ¼ AiðtÞ and 〈M〉ðtÞ ¼ AðtÞ. Naturally, martingales have non-
correlated increments, and Mi(t) are also non-correlated mutually
(for different i).

Then it is quite reasonable to consider a residual process
(martingale residuals)

RðtÞ ¼NðtÞ� ÂðtÞ ¼MðtÞþAðtÞ� ÂðtÞ
as a tool for testing model fit. Here ÂðtÞ is the estimated cumulated
intensity. Hence, the residual process is constructed from the
observed data, and its properties depend mainly on the properties
of the estimator of the cumulated hazard rate, because

ÂðtÞ ¼ R t
0 YðsÞ dĤðsÞ. Tests are then performed either graphically

or numerically, critical borders for assessing the goodness-of-fit
are based on the asymptotic properties of estimates.

2.1. Properties of residuals

The most common estimator of cumulated hazard rate H(t) is
the Nelson–Aalen estimator, which has the form

ĤðtÞ ¼
Z t

0
∑
n

i ¼ 1

dNiðsÞ
∑n

j ¼ 1YjðsÞ
¼

Z t

0

dNðsÞ
YðsÞ ;

so that it is a piecewise constant function with jumps dĤðsÞ ¼
dNðsÞ=YðsÞ at times where failures have occurred. Its asymptotic
properties, namely uniform on ½0; T� consistency in probability and
asymptotic normality when n-1, are well known (for review of
survival analysis, see for instance [10]). More precisely, the
following convergence in distribution on ½0; T � to the Brown
motion process B holds

ffiffiffi
n

p ðĤðtÞ�HðtÞÞ-dBðVðtÞÞ; VðtÞ ¼
Z t

0

hðsÞ ds
c0ðsÞ

;

where we assume the existence of c0ðsÞ ¼ P� lim YðsÞ=n, uniformly
in ½0; T �, c0ðsÞZε40. Hence, it is possible to construct Kolmo-
gorov–Smirnov type confidence bands for H(t) as well as point-
wise confidence intervals. Again, a consistent, uniformly in ½0; T �,
estimator of V(t) is available: V̂ ðtÞ ¼ R t

0 n dNðsÞ=YðsÞ2.
In the present contribution we are interested mainly in the

properties of residual process RðtÞ ¼NðtÞ� ÂðtÞ. Notice that here
ÂðtÞ ¼NðtÞ directly, so that it is preferred to construct residuals in
data subsets (strata), S� f1;‥;ng. Thus, let us define

RSðtÞ ¼NSðtÞ� ÂSðtÞ ¼MSðtÞþASðtÞ� ÂSðtÞ;
where we denote again NðtÞ ¼∑n

i ¼ 1NiðtÞ, NSðtÞ ¼∑iA SNiðtÞ, similarly
for YðtÞ;MðtÞ, AðtÞ; ÂðtÞ. As

ÂSðtÞ ¼
Z t

0
∑
iAS

dĤðrÞYiðrÞ ¼
Z t

0

dNðrÞ
YðrÞ � YSðrÞ

¼
Z t

0

dHðrÞYðrÞþdMðrÞ
YðrÞ � YSðrÞ ¼ ASðtÞþ

Z t

0

dMðrÞ
YðrÞ � YSðrÞ;

we obtain that (with notation S – complement of S)

RSðtÞ ¼MSðtÞ�
Z t

0

dMðrÞ
YðrÞ � YSðrÞ ¼

Z t

0

dMSðrÞYS ðrÞ�dMS ðrÞYSðrÞ
YðrÞ :

From its structure it follows that the process RS(t) has non-
correlated increments, conditioned variance (by s-algebras
F ðt� Þ) of ð1= ffiffiffi

n
p Þ dRSðtÞ is

dHðtÞ
nYðtÞ2

ðYS ðtÞYSðtÞ2þYS ðtÞ2YSðtÞÞ � dHðtÞcSðtÞcS ðtÞ
c0ðtÞ

;

where we again assume that there exist P-limits YSðtÞ=n-cSðtÞ;
YS ðtÞ=n-cS ðtÞ, YðtÞ=n-c0ðtÞ, uniform in tA ½0; T �, bounded away
from zero. Then ð1= ffiffiffi

n
p ÞRSðtÞ-dBðVRðtÞÞ, i.e. it converges to the

Brown motion process, too, and the asymptotic variance function
VR(t) is consistently estimable by

V̂ RðtÞ ¼
Z t

0

dĤðrÞYSðrÞYS ðrÞ
nYðrÞ ¼

Z t

0

dNðrÞYSðrÞYS ðrÞ
nYðrÞ2

:

Hence, if assumptions of our model hold, the process

1ffiffiffi
n

p RSðtÞ
ð1þ V̂ RðtÞÞ

should behave asymptotically as the Brown bridge process. It can
be tested by the Kolmogorov–Smirnov criterion (or other similar
criteria, as is the Cramer–von Mises test). Therefore, in such a
simple case of survival model without any non-heterogeneity,
the method can be used for assessing the model fit in different
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subsets S. However, in cases of regression models, the test are not
so straightforward. That is why we shall continue by description of
the Bayes variant of residual analysis.

3. Bayes residuals

The Bayes approach to statistical analysis assumes that all
model components (i.e. the parameters as well as non-
parametrized parts) are random quantities, initially with a prior
probability distribution. The result of statistical analysis is then a
posterior distribution of those model components, i.e. their
estimate is a distribution. Actually it is the likelihood function
‘modulated’ by prior distribution.

From another point of view, it is possible to say that while the
“standard statistics” studies the variation of data and its conse-
quence when inserted to given functions (estimators), in the Bayes
statistics the main concern is the variation of ‘parameters’, data are
taken as fixed.

In the case considered here we deal with the nonparametric
hazard rate. For the Bayes solution, its representation can be made
from piece-wise constant functions, as in Arjas and Gasbarra [2].
Parameters are then the points of changes of hazard rate, also their
number in ½0; T �, and the levels of hazard rate in intervals between
these points. Arjas and Gasbarra [2] show how the MCMC
generation can follow the Gibbs sampler combined with an
‘accept–reject’ sampling method.

Once we have a posterior sample of ‘hazard rates’, hðmÞðtÞ (i.e.
last M representatives of posterior distribution obtained by the
MCMC procedure), we can construct from them a sample of
cumulated intensities in subgroup S and corresponding residuals:

AðmÞ
S ðtÞ ¼

Z t

0
hðmÞðrÞYSðrÞ dr; RðmÞ

S ðtÞ ¼NSðtÞ�AðmÞ
S ðtÞ:

3.1. Bayes confidence regions

Point-wise (at each t) sample quantiles in a set RðmÞ
S ðtÞ are

obtained immediately, showing the so-called credibility intervals
(Bayesian version of confidence intervals) for RS(t). Methods for
construction of confidence bands (of Bayes type) on the whole
interval ½0; T � are studied intensively nowadays. Theoretically, this
problem is connected with the concept of ‘depth of data’ (see for
instance [17]). Practically, the solution corresponds to the con-
struction of multivariate quantiles, for instance in the following
way: Let us consider a sample of functions f ðmÞðxÞ, m¼ 1;‥;M,
given empirically by values at the same set of points xj; j¼ 1;‥; J:
For each koM=2 point-wise sample k=M and ðM�kÞ=M quantiles
(i.e. at each xj) can be constructed. If we join them to bands, we can
try to find such k that, approximately, a given proportion (95%, say)
of functions lies inside. As an additional finer criterion we can
compare numbers of points at which the quantiles are crossed.

4. Residuals in regression models

In the follow-up, it is assumed that the distribution of time-to
failure depends on some covariates, hence we have to select a
proper regression model of hazard rate. As it has been already said,
we shall consider three basic types of regression models, namely
the additive Aalen's model, the proportional hazard or Cox's
regression model and the accelerated failure time (AFT) model.
More details about regression models in reliability and survival
analysis can be found in many monographs, let us mention here
again [3,10].

4.1. Additive regression model

In the additive (also Aalen's) model, the hazard function is
specified as hðt; zÞ ¼ z0 � βðtÞ, where z represents the values of
covariates, βðtÞ are functions of time, both z and β are p-dimen-
sional. Their domains should ensure that hðt; zÞZ0. As a rule, the
first covariate component is taken fixed to 1, so that β1ðtÞ has
the meaning of a ‘baseline’ hazard function. In the sequel, by
index i; i¼ 1;‥;n, we shall denote individual objects, while by
k; k¼ 1;‥; p, components of vectors β; z.

The covariates Zi(t) are different for each object and can change
in time. Individual intensity of Ni(t) is then

aiðtÞ ¼ ZiðtÞ0 � βðtÞ � YiðtÞ; i¼ 1;…;n:

Cumulated functions BkðtÞ ¼
R t
0 βkðsÞ ds are estimated by a

weighted least squares method. As dNiðtÞ ¼ XiðtÞ0dBðtÞþdMiðtÞ,
where XiðtÞ ¼ ZiðtÞ � YiðtÞ

B̂ðtÞ ¼
Z t

0
ðXðrÞ0WðrÞXðrÞÞ�1XðrÞ0WðrÞ dNðrÞ;

whereW(r) is a matrix of weights; the simplest choice is WðrÞ ¼ In,
an identity matrix, optimal weights are WðrÞ ¼ diagf1=aiðrÞg, in
practice, âiðrÞ are used, computation is iterated.

Consistency and asymptotic normality of B̂ðtÞ are straightfor-
ward, it holds that the term

ffiffiffi
n

p ðB̂ðtÞ�BðtÞÞ ¼ ffiffiffi
n

p Z t

0
X ðrÞ dMðrÞ;

where X ðrÞ ¼ ðXðrÞ0WðrÞXðrÞÞ�1XðrÞ0WðrÞ is asymptotically distrib-
uted as a Gauss process with independent increments (Brown
motion process), its covariance function is estimable by an
empirical version of

n
Z t

0
X ðsÞDðs;BðsÞÞX 0

ds;

where Dðs;BðsÞÞ is a diagonal matrix with components ai(s).
It follows that the case is similar to the case of non-

parametrized hazard rate treated in the preceding part. Therefore
it is possible to derive tractable asymptotic distribution of resi-
duals. It is described in detail in Volf [15]. Then, the Bayes residual
analysis can follow the same scheme as in the preceding section,
each function βkðtÞ has to be modelled separately, again for
instance by the approach of Arjas and Gasbarra [2].

5. Cox's regression model

The case differs in certain aspects from the preceding one,
which is caused by more complicated asymptotic properties of
estimates. The hazard rate is specified as hðt; zÞ ¼ h0ðtÞ � expðz0 � βÞ,
with processes of covariates Zi(t) and parameter β (both p-dimen-
sional), h0ðtÞ is a baseline hazard rate, a nonnegative function. The
intensity of i-th process Ni(t) is then

aiðtÞ ¼ hðt; ZiðtÞÞ � YiðtÞ:

Parameter β is estimated from the so-called partial log-likelihood

Lp ¼ ∑
n

i ¼ 1

Z T

0
log

expðZiðtÞ0βÞ
∑n

k ¼ 1expðZkðtÞ0βÞ � YkðtÞ

( )
dNiðtÞ;

by an iterative procedure (of Newton–Raphson, as a rule), cumu-
lated baseline hazard H0ðtÞ ¼

R t
0 h0ðrÞ dr is then estimated as

Ĥ0ðtÞ ¼
Z t

0

dNðrÞ
∑n

k ¼ 1expðZkðtÞ0β̂Þ � YkðtÞ
:
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Theory on the properties of estimates is collected elsewhere [3,10].
Estimates are consistent, asymptotically normal, however, neitherffiffiffi
n

p ðĤ0ðtÞ�H0ðtÞÞ nor residual process is the martingale.

5.1. Residuals in Cox's model

Residuals are sometimes formulated more generally, as

dRðtÞ ¼ ∑
n

i ¼ 1
KiðtÞ � ðdNiðtÞ�dÂiðtÞÞ;

with some (convenient) ‘weight’ processes Ki(t), for instance if
KiðtÞ ¼ ZiðtÞ (p-dimensional), R(t) is then the estimated score
process (the first derivative) of Lp, while KiðtÞ ¼ 1½iAS� yields
stratified residuals. Stratified residuals (the simplest case) are then
expressed as

dRSðtÞ ¼ dMSðtÞþdH0ðtÞCSðβ0; tÞ�dĤ0ðtÞ � CSðβ̂ ; tÞ;

where

dĤ0ðtÞ ¼
dNðtÞ
Cðβ̂ ; tÞ

;

CSðβ; tÞ ¼ ∑
iAS

expðZiðtÞ0βÞ � YiðtÞ;

Cðβ; tÞ ¼ ∑
n

i ¼ 1
expðZiðtÞ0βÞ � YiðtÞ:

If we take approximately β̂ � β0, we obtain expression similar to
cases without regression. The exact approach uses the Taylor
expansion of the last term at β0. RSðtÞ=

ffiffiffi
n

p
is then expressed with

the aid of a martingale and a nonrandom function, with asympto-
tic distribution of a Gauss process, however with rather compli-
cated covariance structure (compare [4, Chapter 12]). Hence,
random generation of would-be residual processes under the
hypothesis of model fit is possible, but not easy. It is actually
based on a bootstrapping, by which we obtain a sample of ‘ideal’
residual processes. Then, certain characteristics of generated
residuals are compared with the same characteristics obtained
from the data. That is why practical tests of Cox's model fit are
often performed just graphically, comparing visually how far are
residuals in group S from zero line, or, equivalently, ÂSðtÞ from
NS(t), as in Arjas [1]. Thus, it seems that in the case of Cox's model
the Bayes analysis could offer an easiest tool for the model fit
assessing.

5.2. Bayes procedure in Cox's model

The procedure of Bayes analysis in the Cox model setting
consists of two steps, similarly as a standard estimation method.
First, the samples representing posterior distributions of β are
obtained with the aid of the Metropolis–Hastings algorithm. In
this framework, values of β are proposed from a prior (for instance
from a sufficiently wide uniform distribution) and accepted or
rejected with the use of partial likelihoods proportion. Then, to
each β, a representation of h0ðtÞ is generated, similarly as in
preceding parts, i.e. from a piecewise constant prior. In such a
way, a sample of both βðmÞ and hðmÞ

0 ðtÞ; m¼ 1;‥;M, are obtained,
from them the intensities and residuals (in a group S, say) can be
derived,

AðmÞ
S ðtÞ ¼

Z t

0
hðmÞ
0 ðrÞ∑

iA S
expðZiðrÞβðmÞÞ � YiðrÞÞ dr;

RðmÞ
S ðtÞ ¼ AðmÞ

S ðtÞ�NSðtÞ;

and used for assessing the model fit.

6. AFT regression model

The accelerated failure time model is often considered as an
alternative to Cox's proportional hazard model, when the propor-
tionality of hazards does not hold, cf. Newby [12]. The model
assumes that individual speed of ageing is changed by a factor
depending on covariates. Quite commonly this factor has the form
expðα0zÞ, where z is a covariate vector, constant in time. It follows
that the distribution of time to failure Ti of an object with covariate
value z has the distribution function FðtÞ ¼ F0ðt � eα0zÞ, where F0
characterizes a baseline distribution (of a random variable T0 with
covariate z¼0). It also means that T0i ¼ Ti � expðα0ziÞ is an i.i.d.
representation of T0. Logarithmic transformation yields that

log Ti ¼ �α0 � ziþ log T0i: ð1Þ
Statistical inference based on (1) has to deal with unknown
distribution of log ðT0Þ, analysis is not straightforward and could
be complicated further by the presence of censored data. There-
fore we shall prefer here the approach based on hazard rates,
similarly as in the case of Cox's model. Namely, let fTi; zi; di,
i¼ 1;‥;ng be observed times of failures or censoring of i-th object,
their covariates, indicators of censoring, respectively, then the
likelihood reads

L¼ ∏
n

i ¼ 1
hiðTiÞdi � exp �

Z Ti

0
hiðtÞ dt

� �
; ð2Þ

where hiðtÞ ¼ h0ðt � expðα0ziÞÞ � expðα0ziÞ is the hazard rate of i-th
object at time t, h0 is the baseline hazard rate of T0. Theory of
estimation and asymptotic properties are derived in Lin et al. [11]
and further also developed in Bagdonavicius and Nikulin
[4, Chapter 6]. Nevertheless, as the practical computation of asymp-
totic characteristics is rather complicated, the Bayes approach can
again offer a reasonable alternative.

Lin et al. (1993) have showed that instead of an exact score
function for α (i.e. obtained by derivation of log-likelihood (2)), it
is possible to use approximate score functions. Namely, the score
function has the form

UðαÞ ¼ ∑
n

i ¼ 1
ziWiðsÞ�

∑jzjWjðsÞYn

j ðT0iÞ
∑kY

n

kðT0iÞ

* +
di; ð3Þ

where Yn

kðtÞ are indicators of risk in the scale of T0i ¼ Ti � expðαziÞ.
While exact weights Wi(s) depend actually also on h0ðsÞ;h0

0ðsÞ, they
may be substituted by a set of simpler functions, among them also
by WIðtÞ ¼ 1 for all i and t. Lin et al. [11] have proved that the
corresponding estimator of α retains good asymptotic properties.
Hence, from such a score function it is possible to estimate α
without knowledge of h0ðtÞ, similarly like with the aid of partial
likelihood in Cox's model case. Recently, Novák [13] has proposed
a method of goodness-of-fit test based on the random generation
of residual processes, and has studied the test behavior in various
situations.

6.1. Bayes analysis in the AFT model

Similarly as in Cox's model case, we employ the MCMC
procedure consisting of two steps. The first step generates α in
order to minimize jUðαÞj from (3) with WIðtÞ ¼ 1. New α is
proposed from a prior, the Metropolis–Hastings algorithm uses
the acceptance rule based on the proportion of expð�jUðαÞjÞ with
new and current α�s. Then, in the second step, to each αðmÞ

obtained in Step 1, a representation of baseline hazard rate h0ðtÞ is
updated from the likelihood

L¼ ∏
n

i ¼ 1
½h0ðT0iÞ � eαzi �di � exp �

Z T0i

0
h0ðtÞ dt

� �
;
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where T0i ¼ Ti � expðαziÞ, Ti are observed times. Again, the method
of Arjas and Gasbarra [2] can be utilized.

In such a way, the MCMC procedure yields a sequence of
estimates αðmÞ;h0ðtÞðmÞ. Corresponding m-th estimate of the inten-
sity of failure for i-th object equals aðmÞ

i ðtÞ ¼ hðmÞ
0 ðt � expðαðmÞziÞÞ �

expðαðmÞziÞ on ½0; Ti� and equals zero for t4Ti. Cumulated inten-
sities are then AðmÞ

i ðtÞ ¼ R t
0 a

ðmÞ
i ðsÞ ds, and, finally, residual processes

in a subset S� f1;2;…;ng are again the differences

RðmÞ
S ðtÞ ¼ ∑

iAS
½AðmÞ

i ðtÞ�NiðtÞ�; ð4Þ

where Ni(t) is the counting process of failure of i-th object, i.e. with
maximally one step þ1 at Ti provided di¼1.

7. Examples

In order to illustrate the performance of proposed approach, we
shall present two examples. The first analyzes randomly generated
data, while the second deals with real data study.

7.1. Artificial example

A sample of n¼100 data was generated randomly from the
following AFT model: Baseline distribution of log T0 followed
normal distribution with μ¼ 0;s¼ 0:5, values of covariate Z were
distributed uniformly in ð0;2Þ, the corresponding accelerating
parameter was set to α¼ 1. Further, values Tn

i ¼ T0i expð�α0ziÞ
were randomly right-censored by i.i.d. variables distributed uni-
formly in ðmin Tn

i ;max Tn

i Þ. Final censored data (in log scale) are
displayed in Fig. 1.

Then, data were analyzed in the framework of both AFT and
Cox's models, by the Bayes approach described in preceding parts.
In the AFT setting, 5000 MCMC iterations of αwere performed, last
2000 were used for the analysis. Posterior representation of α had
the mean 1.0105 and the standard deviation 0.0309. Then, to each
αðmÞ 200 instances of H0ðtÞ were generated, we always took just
the last of them. In such a way, M¼2000 ‘models’ were obtained
representing the posterior distribution of the AFT model. Fig. 2
shows the characteristics of corresponding posterior sample of
residual processes, namely their point-wise medians and then also
approximate 95% credibility bands, i.e. such a region that approxi-
mately 95% of residual processes lie fully inside. The bands are
dashed, they are plotted against counts NS(t), separately for two
groups Zo1; Z41. It is seen that graphs are concentrated around
zero, thus assessing good AFT model fit. Several trajectories of
residual processes are displayed by dots.

The same data (i.e. generated in the AFT model) were then
analyzed in Cox's model framework, following the procedure of
Section 4.2. Again, 5000 β-s were generated, and last 2000 were
taken as a representation of posterior distribution of β. It had the
mean 2.3665 and standard deviation 0.2688. Further, to each βðmÞ

200 instances of H0ðtÞ were generated, we took the last of them.
Thus, a representation with M¼2000 members was obtained.
Fig. 3 shows again the characteristics of posterior sample of
residual processes, i.e. their point-wise medians and approximate
95% credibility region, for two groups with Zo1; Z41. Similarly as
above, several trajectories of residual processes are displayed by
dots. Departures of sample of residuals from the zero level is now
rather significant, especially for low times in the first group.
Graphs indicate that Cox's model overestimates the failure inten-
sity for small covariate values and also underestimate it for larger
covariate values.

In Cox's model setting, standard analysis was performed, too.
It yielded the estimate β¼ 2:3687 with asymptotic standard
deviation 0.2786.

7.2. Real data example

Data collected in Table 1 have their origin in accelerated testing
of resistance of certain steel parts made for suspension system of
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Fig. 1. Data of Example 7.1: Covariate is on the x-axis, log of survival on y axis,
censored items are denoted by ‘o’.
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Fig. 2. Characteristics of residuals in the AFT model, in two subgroups with Zo1
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Fig. 3. Characteristics of residuals in the Cox model, in two subgroups with Zo1
and Z41.
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trucks Tatra. The parts were tested, in a laboratory, by cycles of
high-frequency vibrations under different loads. Load remained
constant during each experiment. It is given in N/cm2, survival in

cycles, censoring indicator is 0 when the experiment was termi-
nated before any defect occurred.

The data, with a log scale of survival, are displayed also in Fig. 4.
We considered the AFT model, with a log-hyperbolic trend,
actually a variant of Arrhenius model, namely

log T ¼ �β � ðC�1=ZÞþ log T0;

where Z was the load, β40 was an unknown parameter and we
selected C¼0.1. It means that T0 corresponded to load
Z ¼ 10 N=cm2. There were two reasons for such a choice: The data
show that the log-hyperbolic trend is more likely than log-linear,
the shift by C gives a reasonable meaning to T0. Naturally, Z¼10 is
here just a reference value, during real use both frequency and
load of vibrations vary.

The method of solution followed the Bayes approach described
in Section 6.1. In the MCMC procedure, 5000 instances of β-s were
generated, last 2000 considered as representation of posterior
distribution of β, with the mean 178.34, median 178.12 and
standard deviation 0.70. Fig. 4 also contains the median curve
med 〈�βðmÞ � ðC�1=ZiÞþ log T ðmÞ

0;i 〉, m¼ 1;2;…;2000. The graphical
result of the goodness-of-fit test is displayed in Fig. 5. The figure
again contains point-wise medians of generated residual pro-
cesses, in two subgroups (full curves), and also approximate 95%
credibility bands (dashed). Some of residual processes are dis-
played by dots. As the graphs are concentrated around zero, we
can conclude that the selected model fits well.

8. Conclusion

In the field of statistical reliability analysis, the models for
lifetime often have to reflect a dependence on covariates, for
instance, on the load, degradation or conditions of usage. The
present paper was devoted to the method of corresponding
regression models selection, with the aid of the goodness-of-fit
based on martingale residuals. While in the case of Aalen's
additive regression the residual process retains the martingale
property and therefore the critical region for the test can be
derived easily. However, it is not the case of Cox's and AFT
regression models. That is why the main objective was to propose
the Bayes variant of the martingale residuals construction and to
derive a test procedure based on them. It was shown that in the
cases of mentioned models the Bayes approach offers a reasonable
alternative to standard methods.
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