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Abstrakt: Příspěvek je věnován problému konkurujících si rizik ve statistické
analýze přežití. Komplikace v analýze těchto případů je způsobena tím, že
příslušné náhodné veličiny mohou být závislé. Nejprve ukážeme, jak je možné
konzistentně odhadnout t.zv. incidenční funkce. Dále se zabýváme vztahy
mezi marginálními, simultánním a incidenčními distribucemi v případě, že je
simultánní rozdělení vyjádřeno pomocí kopuly.
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Abstract: The contribution deals with the problem of competing risks (of
competing events) in the statistical survival analysis. The case is complicated
by the fact that the potential occurrence of both events may be dependent.
We recall the notion of incidence function and the methods of statistical
incidence analysis. Then we study the relationship between marginal, joint
and incidence distributions of events when the joint distribution is modeled
via a copula.
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1. Competing risks problem

Let us consider random times to certain competing (two or more) events, for
instance a failure of a device caused by one of several possible causes. An
underlying model assumes that there are K possibly dependent random vari-
ables Tj , j = 1, . . . ,K. Typically, we also have to add a censoring variable C,
independent of all Tj ’s. It is further assumed that observation of the object
(device) ends with the first occurring event (or by censoring). Hence, we ob-
serve Z = min(T1, . . . , TK , C) and we know also what was the cause, so that
we observe an indicator δ = 1, . . . ,K, 0 if Z = T1, . . . , TK , C, respectively.
It is known (e.g. Tsiatis, 1975) that, in general, from such observations (N

i.i.d. couples (Zi, δi), i = 1, . . . , N) it is not possible to identify neither the
joint distribution of (Tj) nor their marginal distributions. On the other hand,
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the data allow to estimate consistently joint distributions of (Tj , δ = j) and
corresponding sub-distribution functions called the (cumulative) incidence
functions.
The situation can be better when our information is richer thanks to

dependence of data on observed covariates. We shall recall briefly an identi-
fiability results of Heckman and Honoré [2]. Part 3 then deals with a copula
model applied to the competing risks case. Finally, an example shows the use
of Gauss copula and estimation of incidence functions.

2. Incidence function

The structure of data observed in the competing risks setting enables us to
estimate, consistently, the following characteristics: First, the distribution of
Z = min(T1, . . . , TK), namely S(t) = P (Z > t) = P (T1 > t, . . . , TK > t) =
FK(t, . . . , t), where by FK(t1, . . . , tk) we denote the joint survival function
of T1, . . . , TK . Further, we can estimate the incidence densities

f∗j (t) = P ′(Z = t, δ = j) = −∂FK(t1, . . . , tK)

∂tj

∣∣∣∣(t1 = . . . = tK = t),

and their integrals, cumulative incidence functions F ∗j (t) =
∫ t
0
f∗j (s) ds =

P (Z ≤ t, δ = j). Notice that limF ∗j (t) = P (δ = j) < 1 if t → ∞ and

S(t) = 1−
∑K
j=1 F

∗
j (t).

Another (equivalent, however more practical for estimation) definition
of the cumulative incidence function is based on the cause-specific hazard
functions for events j = 1, 2, . . . ,K,

h∗j (t) = lim
d→0

P (t ≤ Z < t+ d, δ = j |Z ≥ t)

d
.

Overall hazard rate for Z = min(T1, . . . , TK) is then

h(t) = lim
d→0

P (t ≤ Z < t+ d |Z ≥ t)

d
=

K∑
j=1

h∗j (t),

corresponding integrals are cumulated hazard rates H∗j (t), H(t). Finally, the
overall survival function S(t) = P (Z > t) = exp(−H(t)). Then f∗j (t) =
h∗j (t) · S(t) and cumulative incidence functions can be written as

F ∗j (t) = P (Z ≤ t, δ = j) =

∫ t

0

S(s) · h∗j (s) ds.

86



Informační bulletin České statistické společnosti, 1–2/2015

2.1. Estimation method

Let us here recall some standard notation. Nij(t) is the counting process with
value 0 at t = 0 and with step +1 at the moment when event of type j is
observed on object i. Further, let Y (t) denote the number of objects in the
risk set at (just before) time t, i.e. of objects without any event and not
censored before t. All cumulative hazard rates can be estimated standardly
by the Nelson-Aalen estimator, namely

Ĥ∗j (t) =

∫ t

0

n∑
i=1

dNij(s)

Y (s)
, Ĥ(t) =

K∑
j=1

Ĥ∗j (t). (1)

Overall survival function can then be estimated by the Kaplan Meier “Prod-
uct Limit” (PL) estimator, or by Ŝ(t) = exp(−Ĥ(t)). Asymptotic properties
of estimates of incidence functions

F̂ ∗j (t) =

∫ t

0

Ŝ(s) dĤ∗j (s) (2)

follow from good asymptotic properties of Ŝ and Ĥ∗j and are derived for in-

stance in Lin [3]. In general, limit distribution of
√
n(F̂ ∗j (t) − F ∗j (t)) is that

of Gauss random process, with estimable covariance structure. As it is not
a martingale, further inference (e.g. statistical tests) is not easy. Notice, how-
ever, that in the simplest case without censoring F ∗j (t) and S(t) correspond,
at each fixed t, to probabilities in a multinomial distribution, the estimates
correspond to relative occurrence, so that their properties simplify. In gen-
eral, confidence regions for statistical testing are obtained by a Monte Carlo
random generation.

2.2. Non-identifiability

A.Tsiatis [5] has shown that for arbitrary joint model we can find a model
with independent components having the same incidences, i.e. we cannot
distinguish the models. Namely, this “independent” model is given by cause-
specific hazard functions h∗j (t). In a parametric setting it also means that
even if the MLE yields consistent estimates, we don’t know parameters of
which multivariate model are estimated.
On the other hand, Heckman and Honoré [2], and then others, have

proved, under suitable conditions, that in the case of regression models (they
considered Cox or AFT models), when our information is enriched due to
knowledge of covariate values, the competing risk data suffices for full iden-
tification of the model.
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3. Competing risk and copula

In the sequel we shall consider just a couple of competing events, K = 2,
represented by random variables S, T . From the above it follows that without
some knowledge about mutual dependence of S, T we are not able, in general,
to estimate their distribution. The copulas offer a possibility how to model
two (or multi-) dimensional distributions. Let us recall that Sklar’s theorem
ensures that to each 2-dimensional distribution function (of a continuous-type
distribution) there exists an unique function C(u, v), a distribution function
on (0, 1)2, such that

F2(s, t) = C(FS(s), FT (t)), (3)

where FS , FT are marginal distribution functions of variables S, T . The
marginals of C(u, v) correspond to random variables U = FS(S), V = FT (T )
and have uniform distribution on (0, 1). There are several classes of copulas
analyzed theoretically or used practically (cf. Cherubini et al. [1]). Zheng and
Klein [6] showed that in the competing risks setting, when the copula func-
tion is given (assumed), marginal distributions of S, T , and then also joint
distribution from (3), are estimable. They also proposed a procedure of the
non-parametric estimation, proved asymptotic results and showed that their
estimator reduces to the Kaplan-Meier PL estimator if S, T are independent.

3.1. Use of Gauss copula

Let X, Y be standard normal random variables N(0, 1) tied with (Pear-
son) correlation ρ = ρ(X,Y ). We denote ϕ, φ univariate standard normal
distribution function and density and by ϕ2(x, y), φ2(x, y) corresponding
2-dimensional functions. Then

φ2(x, y) =
1

2π
√
1− ρ2

exp
{
− 1

2
x′Σ−1x

}
(4)

with x = (x, y)′ and Σ the 2×2 covariance matrix with rows (1, ρ) and (ρ, 1).
If we define U = ϕ(X), V = ϕ(Y ), we obtain a 2-dimensional distribution
on (0, 1)2 with the copula

C(u, v) = ϕ2
(
ϕ−1(u), ϕ−1(v)

)
. (5)

Naturally, ρ(U, V ) ̸= ρ(X,Y ) (though they are rather close, as a rule), while
Spearman’s correlations coincide, namely ρSP(X,Y ) = ρSP(U, V ) = ρ(U, V ).
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We are, however, primarily interested in the model for dependence of
competing variables S, T . Let us assume that their joint distribution function
fulfils (3), where C(u, v) is the copula (5). It further follows that

F2(s, t) = ϕ2
(
ϕ−1(FS(s)), ϕ

−1(FT (t))
)
, (6)

and, inversely, S = F−1S (ϕ(X)), T = F−1T (ϕ(Y )). Hence, again ρSP(S, T ) =
ρSP(U, V ), and “initial” ρ = ρ(X,Y ) is the only parameter describing the
dependence of S and T . It, naturally, differs from ρ(S, T ), however, all val-
ues ρ(S, T ) (at least from (−1, 1]) can be achieved by convenient choice of
ρ(X,Y ). Such a flexibility is not common to many other copula types. Let us
remark here that the real dependence among S,T can be much more com-
plicated, nevertheless the use of Gauss copula model offers rather simple and
sufficiently flexible (as regards the correlation) set of distributions.

3.2. Estimation in model with Gauss copula

When parameter ρ is known, copula (5) is fully defined and from Zheng,
Klein [6] it follows that the distribution of (S, T ) can be estimated, in para-
metric and even non-parametric setting. On the other hand, when marginal
distributions FS , FT are known and both (3) and (5) hold with the same
copula, then ρ = ρ(X,Y ) is estimable, and then also is the joint distribu-
tion F2(s, t). The estimation procedure is based on the maximum likelihood
method. The data are (Zi, δi), i = 1, . . . , N . The likelihood function then has
the form

L =

N∏
i=1

{
− ∂

∂s
F 2(s, t)

}I[δi=1]

×
{
− ∂

∂t
F 2(s, t)

}I[δi=2]

× F 2(s, t)
I[δi=0],

evaluated at s = t = Zi, with F 2(s, t) = P (S > s, T > t) = 1 − FS(s) −
FT (t) + F2(s, t). It is due transformation (3) and (5) that F2(s, t) = ϕ2(x, y)
with x=ϕ−1(FS(s)), y = ϕ−1(FT (t)). Hence, when we putXi=ϕ−1(FS(Zi)),
Yi=ϕ

−1(FT (Zi)), we obtain after some computation – integration of 2-dimen-
sional Gauss density φ2(x, y), that

L =

N∏
i=1

{
fS(Zi)

[
1− ϕ1(Yi; ρXi, 1− ρ2)

]}I[δi=1] ×

×
{
fT (Zi)

[
1− ϕ1(Xi; ρYi, 1− ρ2)

]}I[δi=2] ×

×{1− FS(Zi)− FT (Zi) + ϕ2(Xi, Yi}I[δi=0]
,
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where ϕ1(x;µ, σ2) denotes the distribution function of normal distribution
N(µ, σ2), evaluated at x. It is seen that the problem of maximization has to
be solved by a convenient search procedure. Parameter ρ is hidden in ϕ1 and
in ϕ2. Distributions of S and T are present both explicitly and also implicitly,
in transformed Xi, Yi. Nevertheless, experience suggests that solution of both
problems (estimate of FS , FT for given ρ, estimate of ρ for given FS , FT ) are
solvable and have unique solution.
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Figure 1: Scatter-plots and histograms of generated representation of X,Y ,
then transformed to U, V and S, T , the case with ρ = −0.7, N=1000.

4. Example using Gauss copula

We fixed both competing risks distributions, namely S ∼ Weibull (as =
100, bs = 1.2), T ∼ Weibull (at = 130, bt = 3), and censoring variable
C ∼ |Normal(µ = 150, σ = 50)|. The rate of censoring was among 10 – 20%.
Weibull distribution function was taken in form F (s)= 1−exp

(
−
(
s
a

)b)
, s> 0.

The analysis was done for two values of ρ, namely for ρ = 0.5 and ρ = −0.7.
First, we show how the data (X,Y ) generated from ϕ2 are transformed to

(U, V ) by (5) and then to (S, T ) by (3). Figure 1 shows the scatter-plots and
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Figure 2: “True” distribution functions FS , FT , F min0 under independence
hypothesis, estimated F minest, estimated cumulative incidence functions
IFS , IFT . Case of ρ = −0.7, N = 200.

histograms of generated values (N = 1000), in the case ρ = −0.7. We also
computed distributions numerically. Numerically computed correlations yield
ρ(U, V ) = 0.432, ρ(S, T ) = 0.376 in the case with ρ = 0.5, and ρ(U, V ) =
−0.685, ρ(S, T ) = −0.625 in the case with ρ(X,Y ) = −0.7.
Further, we show an example of estimates of cumulative incidence func-

tions, following the approach described in part 2. The same type of data
as in previous example was generated. We display here just the case of
ρ = −0.7, N = 200. Figure 2 shows both underlying “true” distribution
functions FS and FT , and also F min0 of min(S, T ) under hypothesis of in-
dependence. Dashed step-wise curve is the PL-estimate of true distribution
F minest of min(S, T ). It differs from F min0, it could be taken as an evidence
that independence hypothesis does not hold. Finally, two full step-wise curves
are estimated cumulative incidence functions IFS , IFT of S, T , respectively.
Notice that they summarize to F minest. Easy generation of artificial data is
another advantage of Gauss copula.
In a particular case when marginal distribution are known, the hypothesis

of independence (i.e. that F min = F min0) can be tested easily with the

91



Vědecké a odborné statě

aid of asymptotic properties of the PLE F minest. If, moreover, the type of
copula is assumed (as in our case here), parameter ρ can be estimated by the
ML method and test of hypothesis on its value can be based on asymptotic
normality of the MLE.
True cumulative incidence functions can be obtained by integration of

expressions corresponding to the 1st and 2nd part of the likelihood function.
Namely, we used numerical integration of

dIFS(t) = fS(t)
[
1− ϕ1(y; ρx, 1− ρ2)

]
,

dIFT (t) = fT (t)
[
1− ϕ1(x; ρy, 1− ρ2)

]
,

where again x = ϕ−1(FS(t)), y = ϕ−1(FT (t)).

5. Conclusion

The problem of competing risks has been studied and the difference between
marginal distributions and observed incidence of events has been analyzed.
The main goal was to describe the procedure of estimation of incidence func-
tions and, further, to study the use of Gauss copula in modeling and random
generation of competing risks data.
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