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Abstract

In the contribution the time to the first goal in a football (soccer) match is analyzed, in
the framework of competing risks scheme. Potential random times to the first goals scored
by both teams are modelled by exponential distributions with parameters depending on
attack and defence strengths of teams. Mutual dependence of these two times is described
with the aid of a conveniently chosen copula ensuring the model identifiability. As a real
example the data from the 2014 World Championship are analyzed. It is shown that the
correlation is, as a rule, negative, and is absolutely larger in more competitive matches.
Possible extensions of the approach are discussed, too.

1 Introduction

A basic probability model for final score of a football (soccer) match, presented for instance
already in [3], consist of two conditionally independent Poisson random variables. It means that
they are dependent just through shared parameters or covariates. More flexible models are ob-
tained by generalizations, for instance the distribution of number of scored goals can be inflated
to cover certain more frequent results. Another generalization can consist in considering a time
development of model parameters as well as covariates during the match (see for instance [6]),
in such a way a model based on counting process scheme is obtained. The present contribution
concerns yet another direction of basic model improvement, namely to models considering an
explicit form of dependence of both teams scoring distributions. Thus, in [2] a special case of
bivariate Poisson distribution was employed. In the same context, McHale and Scarf [4] have
described the dependence with the aid of a copula model. Interesting is the comparison of
conclusions of both approaches. While the correlation in the former model is non-negative (by
definition), the latter concludes that the correlation is negative and is absolutely larger in more
competitive matches. It has to be also said that the use of copula in the discrete distribution
models is not easy technically (and then computationally), because marginal distribution func-
tions are as a rule expressed by sums of point probabilities, not having a reasonably closed
form.

In the present contribution we analyze continuous distribution of time to the first scored
goal in a match. Consequently, we deal with the scheme of competing risks. On the one hand
the use of copula for two-dimensional continuous distribution can lead to a ’nice’ closed form of
the model, on the other hand it is well known that in the competing risks setting the model may
be non-identifiable. A proof and an example of this phenomenon is given in [5], some instances
of identifiable (or not) models are treated in [1] – in these classical studies the notion of copula
has not been used yet. Therefore we are facing the problem of reasonable copula selection.
Fortunately, it is known (cf. [7]), that the selection of copula type is not so crucial, that the
finding proper value of its parameter (connected with correlation) is much more important.

Potential times to the first goal scored by each team are modelled by exponential distribution
following from the basic Poisson model proposed in [3]. The parameters again consist of attack
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and defence parameters of both teams. Further, for joint survival function we use a copula
derived from Tsiatis’ [5] example, its form is convenient for work with exponential distribution.
Such a combination of marginal and simultaneous distributions has already been analyzed in
[1] and proved to be identifiable. From this fact the consistency of estimates follows.

The outline of the paper is the following: The next section recalls the scheme of competing
risks and the problem of possible non-identifiability. Then the copula model and corresponding
likelihood is formulated. Section 4 then contains a real example, namely the analysis of data
from the 2014 Football World Championship (in Brazil). The results are quite comparable with
conclusions in [4], namely that estimated correlation is, as a rule, negative, and is absolutely
large in more competitive matches, i.e. the matches of teams with good defence and comparable
attack abilities.

2 Competing Risks Scheme

Let us assume that certain event (e. g. a failure of a device) can be caused by K reasons.
Therefore we consider K (possibly dependent) random variables - survival times Tj , j = 1, ...,K,
sometimes plus variable C of random right censoring (C is then independent of all Tj). Let
FK(t1, ..., tK) = P (T1 > t1, ..., TK > tK) be the joint survival function of {Tj}. However,
instead the ’net’ survivals Tj we observe just ’crude’ data (sometimes called also ’the identified
minimum’) Z = min(T1, ..., TK , C) and the indicator δ = j if Z = Tj , δ = 0 if Z = C.

Such data lead to direct estimation of the distribution of Z = min(T1, ..., TK), for instance
its survival function S(t) = P (Z > t) = FK(t, ..., t). Further, we can estimate cause–specific
hazard functions for events j = 1, 2, . . . ,K:

h∗j (t) = lim
d→0

P (t ≤ Z < t+ d, δ = j |Z ≥ t)
d

,

and the cumulative incidence functions

F ∗j (t) = P (Z ≤ t, δ = j) =

∫ t

0

S(s) · h∗j (s) ds.

As both components, i.e. S and h∗j , are estimable consistently by standard survival analysis
methods, there also exist consistent estimates of F ∗j .

2.1 Problem of Non-Identifiability

However, in general, from data (Zi, δi), i = 1, . . . , N it is not possible to identify neither
marginal nor joint distribution of {Tj}. A. Tsiatis [5] has shown that for arbitrary joint model
we can find a model with independent components having the same incidences, i.e. we cannot
distinguish the models. Namely, this ’independent’ model is given by cause-specific hazard func-
tions h∗j (t). In other words, even if the model is parametrized and the MLE yields consistent
estimates, in general we do not know parameters of which model are estimated. The situation
can be better in the case of a regression model, because the covariates provide an additional
information, especially when their structure is rich enough. On the other hand, as a conse-
quence of the Tsiatis [5] result, in competing risks models without regressors it is necessary to
make certain functional form assumptions about both marginal and joint distribution in order
to identify them. Several such cases are studied in [1] and in some other papers.
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3 Competing Risks and Copula

In the sequel we shall consider just 2 random variables S, T and data Zi = min(Si, Ti, Ci), δi =
1, 2, 0. The notion of copula offers a way how to model multivariate distributions, we prefer
here to use it for modelling the joint survival function F2(s, t) of S, T :

F2(s, t) = C(FS(s), FT (t), θ), (1)

FS , FT are marginal survival functions of S, T, C(u, v, θ) is a copula, i.e. a two-dimensional
distribution function on [0, 1]2, with uniformly on [0, 1] distributed marginals U, V . θ is a
copula parameter, which is, as a rule, uniquely connected with correlation of U, V , hence also
with correlation of S, T . It is seen that the use of copula allows to model the dependence
structure separately from the analysis of marginal distributions. From another point of view,
the identifiability of the copula (and its parameter) and marginals can be considered as two
separate steps.

Zheng and Klein [7] proved that when the copula is known, the marginal distributions are
estimable consistently (and then the joint distribution, too, from (1)), even in non-parametric
(so that quite general) setting. However, in general, also the knowledge of θ is needed. They
also discussed importance of proper selection of copula form. As it has already been said, the
knowledge (or a good estimate) of parameter θ is much more crucial for correct model of joint
distribution. As a consequence, because the knowledge of copula type is still an unrealistic
supposition, we can try to use certain sufficiently flexible class of copulas, as approximation,
and concentrate to reliable estimation of its parameter.

3.1 Copula Based on Tsiatis’ Example

Let us return to the example of Tsiatis [5], considering just K = 2 random variables S, T with
exponential distribution and the following marginal and joint survival functions,

FS(s) = e−λs, FT (t) = e−µt, F 2(s, t) = e−λs−µt−γst.

Hence, S(t) = F 2(t, t) = exp(−λt − µt − γt2). Corresponding cause-specific hazard rates and
their integrals are

h∗S(t) = (λ+ γt), h∗T (t) = (µ+ γt), H∗S(t) = (λt+
γ

2
t2), H∗T (t) = (µt+

γ

2
t2).

It follows that S∗(t) = exp(−H∗S(t) + H∗T (t)) is the same as S(t) above, which means that
independent random variables with marginal survival functions

GS(s) = e−λs−
γ
2 s

2

, GT (t) = e−µt−
γ
2 t

2

yield the same competing risk scheme. Notice, however, that ’true’ marginal distributions are
exponential while derived independent distributions are not. It gives a chance that, when the
type of marginals is assumed, they (and parameter γ, too) can be estimated, uniquely. Tsiatis’
example actually uses the following copula:

C(u, v) = u · v · exp(−θ · lnu · ln v) (2)

with θ ≥ 0, corresponding correlation ρ(U, V ) ≤ 0, θ = 0 means independence of U, V . The
parameters are connected in the following way: γ = θ · λ · µ. Figure 1 shows the dependence of
correlation on parameters.
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Figure 1: Dependence of ρ(U, V ) on parameter θ and ρ(S, T ) on γ, when S ∼ Exp(λ), T ∼
Exp(µ).

It is easy to show that the case of competing risks with two exponential marginal distribu-
tions tied together by copula (2) is identifiable. It actually has been proven already by Basu and
Ghosh [1] – though authors did not use a notion of copula yet. It is also easy to verify that the
case fulfils the regularity conditions and therefore yields unique ML estimates of parameters.
The likelihood function has the following form:

L =
N∏

i=1

(λ+ γZi)
[δi=1] · (µ+ γZi)

[δi=2] · S(Zi),

where again Zi = min(Si, Ti, Ci), δi = 1, 2, 0.

3.2 Other Two-Dimensional Exponential Distributions

The identifiability results obtained above need not hold for other selection of copula type. For
instance, let us consider the Gumbel copula

C(u, v) = exp{−[(− lnu)θ + (− ln v)θ]1/θ},

with θ ≥ 1. Here ρ(U, V ) ≥ 0, θ = 1 corresponds to independence. Let again S ∼ Exp(λ),
T ∼ Exp(µ), then

F2(s, t) = exp{−[(λs)θ + (µt)θ]1/θ}, i.e. S(z) = exp{−[λθ + µθ]1/θ · z},
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It is easy to check that the corresponding competing risks model is ’over-parametrized’, deter-
mined by any couple of parameters only, i.e. we cannot estimate λ, µ, θ uniquely.

Another often used model for bivariate exponential distribution is the Marshall–Olkin model:
Let X1, X2, X3 be independent exponential random variables with parameters λ1, λ2, λ3, respec-
tively, set S = min(X1, X3) and T = min(X2, X3). Then marginal distributions of S, T are also
exponential, with parameters λ1 +λ3, λ2 +λ3, resp., their correlation equals λ3/(λ1 +λ2 +λ3).
However, as P (S = T ) = λ3/(λ1 + λ2 + λ3), too, the joint distribution of S, T is not of contin-
uous type and, therefore, is not convenient for our purposes. Let us note that this distribution
is closely connected with bivariate Poisson model used for instance in [2].

4 Application to Time of the First Goal

We shall now use the competing risk model derived in Part 3.1 to modelling the time to first
scored goal during a football (soccer) match. Marginal variables are the ’latent’ times of 1-st
goal of each time, however only the incidence of one of them is observed. Or, in the case
of draw 0:0, we have censoring by a fixed value 90 minutes (or 120 minutes in the case of
prolonged match). Except statistical estimation of model parameters, we are interested in the
main question: How dependent are these ’latent’ times to 1-st goal of both teams?

In our rather small study we shall use the data from the Football World Championship 2014
in Brazil. 32 participating teams played together 64 matches, some of them just 3 matches
in a group. In order to improve this proportion (matches to team), we considered just 11
’teams’: 8 teams passing to quarterfinal, then ’team’ No 9 - aggregated data of 8 teams losing
in eight-final matches, No 10 - teams taking 3-rd places in groups, No 11 - teams ending 4-th
in groups. Let us recall also the final order of the championship: 1. Germany, 2. Argentina, 3.
The Netherlands, 4. Brazil.

As regards marginal models, the source was the standard model of Maher [3]. More specif-
ically, each team (i) was characterized by its attack parameter ai and defense parameter bi.
The sequence of scoring in a match between teams i and j is then described by two Poisson
processes with intensities ai · bj , aj · bi, respectively. Consequently, the time to the 1-st goal
followed from two competing exponential random variables

Sij ∼ Exp(ai · bj) , Tij ∼ Exp(aj · bi).

Further, it was assumed that their mutual dependence can be expressed via ’Tsiatis’ model
described in Part 3.1.

Thus, we were facing the problem of the maximum likelihood estimation (MLE) of 23
parameters, ai, bi of 11 teams and γ characterizing the dependence. It was assumed that γ was
the same for all couples of teams, i.e. in all matches. The results of the MLE of teams parameters
are displayed in Table 1. For computational convenience, we estimated αi = ln ai, βi = ln bi.
Finally, the MLE of parameter γ was 0.605, with half-width of approximate 95% confidence
interval 0.143.

It is possible to say that our result is comparable with the findings of McHale and Scarf
[4]. Inspection of the graph on Figure 1 indicates that in the match of teams with very good
defense (as for instance Germany and Argentina) the first goal really matters, correlation is
large (absolutely), while in a opposite case of weaker defense and sufficiently good attack ability
(here for instance Columbia and - rather surprisingly - Brazil) the correlation is smaller (but
still negative).
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Team alpha beta a b
Brazil 0.8408 (1.1756) 0.6683 (1.1519) 2.3181 1.9509

Netherlands 0.3580 (1.2784) -0.9680 (2.1790) 1.4305 0.3799
Columbia 0.8542 (1.0408) -0.2337 (2.0061) 2.3496 0.7916

Costa Rica -0.9342 (2.3540) -1.6044 (3.6409) 0.3929 0.2010
France -0.2146 (1.5123) -0.8994 (2.1512) 0.8068 0.4068

Argentina 0.4830 (0.9885) -4.6885 (13.4755) 1.6209 0.0092
Germany 0.6888 (0.9692) -5.0360 (17.2193) 1.9913 0.0065∗

Belgium -0.7982 (2.1896) -0.2884 (1.5620) 0.4501 0.7495
No 9 -0.1707 (0.6335) -0.3715 (0.6572) 0.8431 0.6897
No 10 0.1572 (0.6805) 0.4176 (0.6815) 1.1702 1.5183
No 11 -1.3428 (1.6872) 0.4444 (0.5148) 0.2611 1.5596

Table 1: Results: Estimated parameters αi = ln ai, βi = ln bi (with half-widths of approxi-
mate 95% conf. intervals in brackets), then ai, bi

5 Conclusion

We have studied the dependence of random variables – latent times of scoring the first goal in a
football matches, with the aid of the competing risk model. Achieved results lead to conclusion
that the correlation is, as a rule, negative, and is absolutely larger in more competitive matches.
The approach can be extended to the analysis of times to next goals, further generalization can
consider different copula parameters for certain groups of matches and/or teams. Further, in a
more general models the intensities can also depend on other factors and on match development
(see also [6] for an overview of models).
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