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Abstract. This study continues in the theme of contribution Volf (2010) and
extends it considerably. While the previous paper was devoted mainly to the
analysis of real incidence of competing events, the present one is much more
concerned with the analysis of dependence of these events (more precisely, of
random variables - latent times to events). To do it, we discuss first the prob-
lem of identifiability of marginal and joint distributions of competing random
variables. Then, the copula models are utilized in order to express the depen-
dence. Finally, the Gauss copula is used to solution of a real example with
unemployment data.
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1 Introduction

The problem of competing risks, except in the field of reliability, biostatistics and medical studies, is
also often studied in demography, labour statistics, and in econometrics generally. In the insurance
mathematics the setting of competing risks is sometimes called the multiple decrement model (c.f. Arnold
and Brockett, 1983). The interest in the problem dates back to 70-ties of the last century. From
the beginning it was revealed that in the competing risks setting the background model may not be
identifiable. A proof and an example of this phenomenon is given in Tsiatis (1975), some instances of
identifiable (or not) models are presented in Basu and Ghosh (1978). In these classical studies the notion
of copula has not been used yet. Just later it was recognized that the use of copula for multi-dimensional
continuous distribution can lead to a ’nice’ closed form of the model. Therefore we are facing the problem
of reasonable copula selection. Fortunately, it is known (cf. Zheng and Klein, 1995), that the selection
of copula type is not crucial to a good fit of the model, that the finding proper value of its parameter
(connected with correlation) is much more important.

The outline of the paper is the following: The next section introduces the scheme of competing risks,
presents the method of analysis of competing events incidence, and points to the problem of possible
non-identifiability of their marginal distributions. We shall mention also certain identifiability results
in the framework of regression models. Then the notion of copula is recalled and used in competing
risks model formulation. As a particular example, in Section 3 the Gauss copula is introduced and the
procedure of simultaneous maximum likelihood estimation of marginal distributions and correlation is
shown. This approach is applied in Section 4 containing a real example. We use the data on unemployed
people from Han and Hausman (1990). There are two competing chances to re-gain an employment, we
analyze their marginal and joint distribution (i.e. also their dependence), with the aid of Gauss copula
model.

2 Competing risks and incidence

Let us recall the competing risks situation: Certain event (e. g. a failure of a device) can be caused by
K reasons. It means that there are K (possibly dependent) random variables Tj , j = 1, ...,K, some-
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Republic, volf@utia.cas.cz

Mathematical Methods in Economics 2015

882



times accompanied by a variable C of random right censoring (C is then independent of all Tj). Let
FK(t1, ..., tK) = P (T1 > t1, ..., TK > tK) be the joint survival function of {Tj}. However, instead the
’net’ survivals Tj we standardly observe just ’crude’ data (sometimes called also ’the identified mini-
mum’) Z = min(T1, ..., TK , C) and the indicator δ = j if Z = Tj , δ = 0 if Z = C. Such data lead
us to direct estimation of the distribution of Z = min(T1, ..., TK), for instance its survival function
S(t) = P (Z > t) = FK(t, ..., t). Further, we can estimate so called incidence densities

f∗j (t) = dP (Z = t, δ = j) = −∂FK(t1, ..., tK)

∂tj
|(t1 = ... = tK = t),

and also their integrals, cumulative incidence functions

F ∗j (t) =

∫ t

0

f∗j (s) ds = P (Z ≤ t, δ = j).

Notice that limF ∗j (t) = P (δ = j) < 1 if t→∞, S(t) = 1−∑K
j=1 F

∗
j (t).

A more practical form of the cumulative incidence function (more convenient for statistical estimation)
uses so called cause–specific hazard functions for events j = 1, 2, . . . ,K:

h∗j (t) = lim
d→0

P (t ≤ Z < t+ d, δ = j |Z ≥ t)
d

.

Overall hazard rate for Z = min(T1, ..., TK) is then:

h∗(t) = lim
d→0

P (t ≤ Z < t+ d |Z ≥ t)
d

=

K∑

j=1

h∗j (t),

by integration the cumulated hazard rates H∗j (t), H∗(t) are obtained. Consequently, S(t) = P (Z > t) =
exp(−H∗(t)). Then f∗j (t) = h∗j (t) · S(t) and the cumulative incidence functions can be written as

F ∗j (t) = P (Z ≤ t, δ = j) =

∫ t

0

S(s) · h∗j (s) ds.

As both components, i.e. S and h∗j , are estimable consistently by standard survival analysis methods, it
follows that there also exist consistent estimates of F ∗j , see for instance Lin (1997), Scheike and Zheng
(2008) in a regression context, also Volf (2010).

2.1 Problem of non-identifiability

However, in general, from data (Zi, δi), i = 1, . . . , N it is not possible to identify neither marginal nor
joint distribution of {Tj}. A. Tsiatis (1975) has shown that for arbitrary joint model we can find a model
with independent components having the same incidences, i.e. we cannot distinguish the models. Namely,
this ’independent’ model is given by cause-specific hazard functions h∗j (t). In other words, even if the
model is parametrized and the MLE yields consistent estimates, in general we do not know parameters
of which model are estimated.

The situation can be better in the case of a regression model, because the covariates provide an
additional information, especially when their structure is rich enough. There are numerous results showing
conditions for full model identifiability, let us mention here Heckman and Honoré (1989) and their proof
of identifiability in the Cox or the AFT model cases. Lee (2006) investigated more general transformation
models of regression. Berg et al. (2007) have studied two competing transition rates from unemployment
state. They have used a discrete-time multiplicative regression model with latent heterogeneities and
their main identifying assumption is basically the same as that of Heckman and Honoré, namely that exit
rates should not vary with the observed covariates in exactly the same way. However, all these studies
rely on an assumption that the dependence structure (in the next section given by a copula parameter)
does not change with covariates. If it is not the case, the problem of identifiability arises anew.

Further, as a consequence of the Tsiatis (1975) result, in competing risks models without regressors it
is necessary to make certain functional assumptions about the form of both marginal and joint distribution
in order to identify them. Several such cases are studied in Basu and Ghosh (1978) and in some other
papers.
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2.2 Competing risks and copula

In the sequel we shall consider just 2 competing events, i.e. random variables S, T , censoring variable
C, and observed data – realizations of N i.i.d. random variables Zi = min(Si, Ti, Ci), δi = 1, 2, 0,
i = 1, 2, ..., N . The notion of copula offers a way how to model multivariate distributions, namely the
joint distribution function F2(s, t) of S, T :

F2(s, t) = C(FS(s), FT (t), θ), (1)

FS , FT are marginal distribution functions of S, T, C(u, v, θ) is a copula, i.e. a two-dimensional distribu-
tion function on [0, 1]2, with uniformly on [0, 1] distributed marginals U, V , θ is a copula parameter. The
parameter is, as a rule, uniquely connected with correlation of U, V , hence also with correlation of S, T .
It is seen that the use of copula allows to model the dependence structure separately from the analysis
of marginal distributions. Hence, the identifiability of the copula (and its parameter) and marginals can
be considered as two separate steps.

Zheng and Klein (1995) proved that when the copula is known, the marginal distributions are estimable
consistently (and then the joint distribution, too, from (1)), even in non-parametric (so that quite general)
setting. However, in general, also value of θ is needed, because (again due to Tsiatis, 1975) without fully
determined copula we are not able to distinguish between the ’true’ model and corresponding independent
one. On the other hand, Zheng and Klein also discussed importance of proper selection of copula form.
As it has already been said, the knowledge (or a good estimate) of parameter θ is much more crucial for
correct model of joint distribution. As a consequence, because the knowledge of copula type is still an
unrealistic supposition, we can try to use certain sufficiently flexible class of copulas, as approximation,
and concentrate to reliable estimation of its parameter.

3 Gauss copula

There exist a large number of different copula functions, among them for instance a set of Archimedean
copulas. However, we concentrate here to one rather universal and flexible copula type, namely to Gauss
copula (in our setting used for connecting just two random variables). Let X, Y be standard normal
random variables ∼ N(0, 1) tied with (Pearson) correlation ρ = ρ(X,Y ). We denote φ, ϕ univariate
standard normal distribution function and density and by φ2(x, y), ϕ2(x, y) corresponding 2-dimensional
functions. Then

ϕ2(x, y) =
1

2π
√

1− ρ2
exp

{
− 1

2
x′Σ−1x

}

with x = (x, y)′ and Σ the covariance matrix [1, ρ; ρ, 1]. If we define U = φ(X), V = φ(Y ), we obtain a
2-dimensional distribution on (0, 1)2 with the copula

C(u, v) = φ2
(
φ−1(u), φ−1(v)

)
. (2)

Naturally, ρ(U, V ) 6= ρ(X,Y ) (though they are rather close, as a rule), while Spearman’s correlations
coincide, namely ρSP(X,Y ) = ρSP(U, V ) = ρ(U, V ). We can connect also density functions. Let c(u, v)
be the joint density of (U, V ), then

c(u, v) =
ϕ2(x, y)

ϕ(x) · ϕ(y)
,

again with u = φ(x), v = φ(y). As we are primary interested in the model for dependence of competing
variables S, T , let us assume that their joint distribution function is given by Gauss copula (2),

F2(s, t) = φ2
(
φ−1(FS(s)), φ−1(FT (t))

)
, (3)

and S = F−1S (φ(X)), T = F−1T (φ(Y )). Again ρSP(S, T ) = ρSP(U, V ), and “initial” ρ = ρ(X,Y ) is the only
parameter describing the dependence of S and T . It, naturally, differs from ρ(S, T ), however, all values
ρ(S, T ) can be achieved by convenient choice of ρ(X,Y ). Let us remark here that the real dependence
among S, T can be much more complicated, nevertheless the use of Gauss copula offers here certain rather
simple and sufficiently flexible (as regards the correlation) set of distributions.
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3.1 Estimation in Gauss copula model

When parameter ρ is known, copula (2) is fully defined and from Zheng, Klein (1995) it follows that the
distribution of (S, T ) can be estimated, in parametric and even non-parametric setting. However, without
knowledge of ρ nonparametric model is not identifiable and in the parametric setting explicit proofs of
identifiability are available for just certain types of marginal distributions. That is why in the following
example we shall assume log-normal marginal distributions. Their identifiability in a framework of Gauss
copula follows from the result of Basu and Ghosh (1978, Sect. 7), as log-normal variables are the same
monotone transformation of normal variables. It also means that after log transformation of data we can
work with Gauss marginal distributions. Naturally, the fit of chosen model to the data has to be tested.

The estimation procedure will be based on the maximum likelihood method. The data are (Zi, δi), i =
1, . . . , N , the likelihood function then has the form

L =

N∏

i=1

{
− ∂

∂s
F 2(s, t)

}I[δi=1]

·
{
− ∂

∂t
F 2(s, t)

}I[δi=2]

· F 2(s, t)I[δi=0],

evaluated at s = t = Zi, with F 2(s, t) = P (S > s, T > t) = 1 − FS(s) − FT (t) + F2(s, t). From
transformation (3) it follows that F2(s, t) = φ2(x, y) with x = φ−1(FS(s)), y = φ−1(FT (t)). Hence,
when we put Xi = φ−1(FS(Zi)), Yi = φ−1(FT (Zi)), we obtain after some computation – integration of
2-dimensional Gauss density ϕ2(x, y), that

L =

N∏

i=1

{
fS(Zi)

[
1− φ1(Yi; ρXi, 1− ρ2)

]}I[δi=1] ·

·
{
fT (Zi)

[
1− φ1(Xi; ρYi, 1− ρ2)

]}I[δi=2] · {1− FS(Zi)− FT (Zi) + φ2(Xi, Yi}I[δi=0]
, (4)

where φ1(x;µ, σ2) denotes the distribution function of normal distribution (N(µ, σ2), evaluated at x.
Parameter ρ is hidden in φ1 and in φ2. Distributions of S and T are present both explicitly and also
implicitly, in transformed Xi, Yi. It is seen that the problem of maximization is not an easy task and has
to be solved by a convenient search procedure.

4 Application

Han and Hausman (1990) have analyzed the data on unemployment duration, with two competing chances
to leave the unemployment state, either by obtaining a new job (our variable S) or by a recall to the former
employer (variable T ). Some histories of unemployment were censored (by a variable C), independently,
i.e. terminated from other reasons. The data on together 1051 people are collected in Table III of Han
and Hausman (with several insignificant misprints which we have corrected), the time is in fact discrete,
data are aggregated to weeks. The data show some (rare, however) non-regularities, visible also in the
graph of cause-specific hazard rates in Figure 1, for instance significantly larger numbers of events in
26-th week which may be related to a change of support after the first half-year of unemployment. We
analyzed first the incidence of both competing variables separately. It was assumed that cause-specific
hazards were constant during each week and that each person could experience just one (potential) event
in a week (i.e. that for each person i the values Si, Ti, Ci – though two of them ’not-realized’ – must
be different). Figure 1 shows estimated cause-specific hazard rates, their cumulated sums, and finally
estimated cumulated incidence functions, together with estimated distribution function of min(S, T ).

Han and Hausman had also an information on several covariates which was not available to us. They
therefore used a discrete version of Cox regression model. It has to be said that they also used certain
not fully correct approximations, for instance substituting Gumbel distribution by the Gauss one. In fact
their estimate of correlation was not significant, i.e. they actually have shown that in the framework of
their model (with their approximations) the risks are conditionally independent, given the covariates.

We concentrated to the analysis of competing risks in the framework of the Gauss copula model.
Further, we assumed log-normal marginal distributions of S and T in order to assure the identifiability.
Reasonability of such an assumption was checked in the following graphical way: M = 500 samples of
new competing-risks data, each of extent N = 100, were randomly generated from estimated model.
From each sample, the cumulated incidence function was estimated. They are plotted on Figure 2 and
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Figure 1 Estimated cause-specific hazard functions (above), cumulated cause-specific hazards (middle),
cumulated incidence functions (below), for S (full) and for T (dashed curves). Dotted is estimate of Fmin.

compared with cumulated incidence functions obtained from real data (thick curves). It is seen that
the ’clouds’ of generated curves are around real ones, in both cases. It could be taken as a graphical
goodness-of-fit test supporting our idea of log-normal distributions.

A random search procedure for maximum of likelihood (4) brought us to the following final results:

µS = 2.7966, σS = 1.2299, µT = 2.4749, σT = 1.5852, ρ = 0.8620.

Here ρ = ρ(X,Y ) of corresponding standard Gauss variables (see definition of Gauss copula in preceding
section), while numerically computed ρ(U, V ) = 0.849 and, finally, ρ(S, T ) = 0.519. It is large positive,
indicating strong dependence between both competing variables. As the solution of the MLE was based on
a numerical optimization procedure, we were not able to assess confidence intervals of involved parameters.
In fact, graphs on Figure 2 provide at least partial information on the whole model reliability. As an
alternative we have considered also Weibull marginal distributions, also connected by Gauss copula. While
estimated correlation was comparable, achieved maximum of likelihood was smaller and the graphical
comparison as in Figure 2 indicated significantly worse fit of this model.

5 Conclusion

We have studied the problem of competing risks with the focus on assessing the dependence of competing
random variables and identifying their marginal as well as joint distributions. The joint distribution was
expressed with the aid of a copula, the case of Gauss copula was investigated in more details. Proposed
model was then utilized in an example with real unemployment data. Statistical analysis revealed positive
correlation between times to both competing events. On the other hand, even the experience with artificial
data indicates that in the framework of chosen Gauss copula competing risks model the log-likelihood is
flat and the convergence of computations to its (hardly detectable) maximum is rather slow.
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Figure 2 Set of cumulated incidence functions estimated from generated data, above for S, below for T ,
thick curves – cumulated incidence functions from real data (the same as in Figure 1 below)
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