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Abstract

The observer design problem for Switched Linear Systems (SLS) subject to an unknown switching signal
is addressed in this work. Based on known observability results for SLS, an appropriate SLS observer is
proposed and its convergence is analysed showing that the corresponding estimates converge in finite-time
to the SLS state. More precisely, the observers of the continuous state evolution and the observers of the
switching signal are investigated and their convergence studied separately. The main tool to analyse the
observability is the well-known geometric concept of (A, B)-invariant subspaces. The developed SLS
observers are then applied to construct synchronized chaotic generators based on the SLS with chaotic
behavior. Finally, an example of a non-trivial chaotic SLS and its detailed analysis are presented to illustrate
the achieved results.
& 2015 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The goal of this paper is to address an observer design for Switched Linear Systems (SLS)
subject to an unknown switching signal. A SLS may be viewed as a subclass of the class of
rg/10.1016/j.jfranklin.2015.01.036
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Hybrid Dynamical Systems (HDS) formed by a collection of Linear Systems (LS) together with a
time dependent exogenous switching signal. The system state evolution is then uniquely
determined by a given initial condition and by the mentioned switching signal determining at
each time instant the unique active linear system driving the state.
The study of the fundamental properties of SLS has received a great deal of attention during

the last decade. In particular, SLS observability has been thoroughly analysed depending on
whether the switching signal is known or unknown.
On one hand, if the switching signal is known, the focus has been on determining the

continuous state after a finite number of switchings [1–4]. It has been shown that the
observability of each LS is not a necessary condition [1,4]. On the other hand, if the switching
signal is unknown (for instance when switchings may occur in an unpredictable way), the
observability of the continuous phase and the observability of the switching signal [5–8] were
shown to be mutually independent properties [7]. Moreover, if the switching signal is unknown,
the observability of each LS is not sufficient for the overall SLS observability [7]. As a matter of
fact, the unknown switching signal computation requires the so-called distinguishability property
[5] enabling to detect the current evolving LS based on the input–output information only. Last
but not least, for the unknown switching signal the controlled inputs also play a central role
leading to two different distinguishability notions [9]: (i) distinguishability for every nonzero
state trajectory [10] and (ii) distinguishability for “almost every” input [6–8]. The latter case, as
expected, requires less restrictive conditions to be fulfilled, in particular, the observability of each
LS is not required.
To be more specific, the unknown switching signal is usually estimated using the so-called

“location observer” based on the SLS continuous-time input–output information. In [11], a multi-
observer structure based on Luenberger observers together with a residual generator (similar to
those used in fault detection) is used as a location observer. The reported results, however,
require a careful selection of the threshold for the residue generation. Moreover, as noticed in
[11] it can occur that the residue remains true after switching to another subsystem, thus missing
the detection of switching. In [12], the location observer algorithm that requires the numerical
computation of derivatives of inputs and outputs has been proposed as the location observer.
Nevertheless, the analysis presented there is restricted to monovariable SLS. In [13], the location
observer uses a super twisting based step-by-step observer for switched nonlinear systems that
can be transformed into the normal form.
However the focus is on autonomous systems and the super twisting based step-by-step observer

requires the knowledge of the bound of the state velocity. In [14] the location observer is formed by a
set of Luenberger observers with an associated super twisting based differentiator [15] used to obtain
the exact error signal which updates the estimate. Using the results on distinguishability for every
nonzero state trajectory, the authors of [14] showed the convergence of the observer. Unfortunately,
this distinguishability notion requires the observability of each LS.
Furthermore, multi-observer structures have been proposed in the framework of supervisory

control of a class of SLS composed of a LS with an unknown parameter [16–18] and in adaptive
control [19,20] where the aim is to decide, based on the size of the output estimation error, which
candidate controller (from a bank of controllers) should be used in the feedback loop with the
process. Unfortunately, as noticed in [21], this scheme cannot be used to recover the switching
signal because the smallness of the output estimation error is not sufficient to infer the evolving
LS [21].
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The observability and the observer design problem have also been addressed in discrete-time
SLS, see e.g. [9,22–24]. Nevertheless, as pointed out in [7], continuous and discrete–time SLS
have notable differences requiring these two classes of systems to be studied separately.

In this framework, the aim of this paper is twofold. First, to introduce a finite-time SLS observer
guaranteeing that the observers and controllers can be designed separately. To the best of our
knowledge, no result exists allowing such separation using Luenberger multi-observers. Such a task
will be addressed for a rather general class of SLS for which the observability of each LS is not required.
Since the observability of the switching signal is independent from the observability of the continuous
state, the proposed observer is capable of estimating the continuous state and the switching signal of the
SLS independently. The corresponding convergence analysis is based on the global finite-time stability
[25], higher-order sliding modes techniques [26] and the SLS observability results [7,27].

Secondly, based on the developed observers, this paper addresses the design of a
synchronization scheme for several chaotic SLS. As a matter of fact, while dealing successfully
with the issue of the unknown switching signal detection, the paper opens new possibilities for
chaotic SLS synchronization. This is an important task enabling the possible use of SLS with
chaotic behavior in various chaotic encryption schemes, such as chaos shift keying, in which
different chaotic attractors are associated to different digital symbols, and two-channel
transmission, in which the output of the chaotic SLS is sent to the receiver through the first
channel, while the encrypted message (encrypted using the chaotic state) is conveyed by the
second channel, see [28,29] and further references within there. To the best of our knowledge,
even though it has been shown that new and novel chaotic behavior can be generated by SLS
(see e.g. [30–35]), the synchronization of general classes of SLS with chaotic behavior (e.g. those
presented in [32,31,36]) has not been reported yet in the literature.

This work is organized as follows. Section 2 introduces the basic notation and preliminaries
while Section 3 reviews the observability results of SLS needed later on. The main paper results
are presented in Sections 4 and 5. Section 4 is devoted to the SLS observer design and its
convergence analysis while in Section 5 the later results are used it to construct an efficient
synchronization scheme of SLS with chaotic behavior. The final section draws some conclusions
and provides some outlooks for the related future research.
2. Notation and preliminaries

2.1. Linear systems

A LS ΣðA;B;CÞ or simply Σ is represented by

_xðtÞ ¼ AxðtÞ þ BuðtÞ; yðtÞ ¼ CxðtÞ ð1Þ

where xAXRn is the state vector, uAU ¼Rp is the control input, yAY ¼Rq the output signal
and A, B, C are constant matrices of appropriate dimensions. The input function space is denoted
by U f and is considered to be LpðUÞ. Through the paper B stands for IB and K for ker C.
A subspace S �X is called A-invariant if AS � S and A;Bð Þ-invariant if there exists a state
feedback uðtÞ ¼ FxðtÞ such that ðAþ BFÞS � S or equivalently if AS � S þ B. The class of
(A, B)-invariant subspaces contained in a subspace L�X is denoted by IðA;B;LÞ. It is well
known that this class is closed under addition, hence, there exists a supremal element denoted
sup IðA;B;LÞ. An algorithm for computing sup IðA;B;LÞ is presented in [37].
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2.2. Switched linear systems

A SLS ΣσðtÞ ¼ F ; σh i is a HDS where F ¼ fΣ1;…;Σmg is a collection of LS and σ :
½t0;1Þ-f1;…;mg is a switching signal determining, at each time instant, the evolving LS
ΣiAF . The state equation of the SLS is

_xðtÞ ¼ AσðtÞxðtÞ þ BσðtÞuðtÞ; yðtÞ ¼ CσðtÞxðtÞ; xðt0Þ ¼ x0; σðt0Þ ¼ σ0: ð2Þ
where σðtÞ is assumed to be unknown and generated exogenously. If σðtÞ ¼ i, iAf1;…;mg then
the evolving LS is ΣiðAi;Bi;CiÞ.
The notation, xiðt; xðτ1Þ; u½τ1;τ2�Þ stands for the state trajectory x(t) obtained when

σðtÞ ¼ i; 8 tA ½τ1; τ2� and the input u½τ1;τ2� (i.e. the restriction of the functions u(t) to ½τ1; τ2�) is
applied to the system with initial condition xðτ1ÞAX , i.e.

xiðt; xðτ1Þ; u½τ1;τ2�Þ ¼ eAi t� τ1ð Þxðτ1Þ þ
Z t

τ1

eAiðt� ςÞBiuðςÞ dς; tA τ1; τ2½ �: ð3Þ

In a similar way, the notation yiðt; xðτ1Þ; u½τ1;τ2�Þ stands for the output of Eq. (3).
Through this work we make the following assumptions on Eq. (2).

2.2.1. Assumptions
The initial condition of the SLS (2) is bounded, i.e. Jx0 Joδ with a known constant δ. A

minimum dwell time in each LS is assumed, i.e. if tk�1 and tk are two consecutive switching
times, then tk� tk�14τdk . However, only the dwell time for the first switching time τd1 is
assumed to be known. A maximum dwell time is not considered. For simplicity, the state x(t) in
Eq. (2) is assumed to be continuous, i.e. at the switching time tl, xðtlÞ ¼ xðt�l Þ. Zeno behavior,
which is characterized by infinite switching in a finite-time interval, is excluded.

3. Observability of switched linear systems

Basic results on observability of SLS needed later on are reviewed here, see [5–7,27] for more
details. These results are based on the geometric approach. An interested reader can find their
extension to the perturbed case in [8] while the discrete-time case is treated in [9].

Definition 1. The continuous state trajectory x(t) (resp. the switching signal σðtÞ) of the SLS (2)
is said to be observable if there exists a finite-time τsuch that the knowledge on the structure (2)
and the input u½t0;τ� and output y½t0;τ� over a finite-time interval tA ½t0; τ� suffices to uniquely
determine the signal x(t) (resp. the signal σðtÞ).

SLS observability problem with unknown switching signal is critically related to the so-called
distinguishability concept defined as follows.

Definition 2. Let u½τ1;τ2�; y½τ1;τ2� be a measurable input–output behavior of the SLS ΣσðtÞ ¼ F ; σh i
in the time interval ½τ1; τ2� and let Σi;ΣjAF , then the LS Σi and Σj are said to be
ðu½τ1;τ2�; y½τ1;τ2�Þ-indistinguishable, if there exist state trajectories (not necessarily starting from the
same initial condition) xiðt; xðτ1Þ; u½τ1;τ2�Þ of Σi and xjðt; x0ðτ1Þ; u½τ1;τ2�Þ of Σj, such that

yiðt; xðτ1Þ; u½τ1;τ2�Þ ¼ yjðt; x0ðτ1Þ; u½τ1;τ2�Þ ¼ y½τ1;τ2�:

Otherwise, Σi and Σj are said to be ðu½τ1;τ2�; y½τ1;τ2�Þ-distinguishable. The indistinguishability
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subspace, W ijDR2n of Σi, Σj is defined as

W ij ¼
xT0
x0T0

" #T

: (uðtÞ; τ4t0 such that yiðt; x0; u½t0;τ�Þ ¼ yjðt; x00; u½t0;τ�Þ
( )

: ð4Þ

In [27], it has been shown that the indistinguishability subspace, W ij, is equal to the supremal
Aij;Bij

� �
-invariant subspace contained in Kij ¼ ker Cij (see also [9]), denoted as sup IðAij;Bij;

KijÞ, where

Aij ¼
Ai 0

0 Aj

" #
Bij ¼

Bi

Bj

" #
; Cij ¼ Ci �Cj

h i
: ð5Þ

This implies that the extended LS Σ ijðAij;Bij;CijÞ with matrices (5) gives zero output in the
interval ½τ1; τ2�. Thus, the inputs for which two LS may become indistinguishable are closely
related to the systems zeros of ΣijðAij;Bij;CijÞ [8].

Clearly, the LS Σi and Σj are distinguishable for every nonzero state trajectory iff W ij ¼ 0 [27].
However, since the LS becomes indistinguishable for particular inputs [10,27], less restrictive

conditions can be obtained by studying the observability for almost every input [7,9].

Definition 3. On a functional space a property is said to hold “almost everywhere” or “for
almost every” in the sense of prevalence [38] if the set of exceptions is a Haar null set, also
known as a “shy set”. For instance, every proper subspace of the function space is a shy set [38],
this property is used in [8] to show that the property holds for almost every input, by showing
that it only fails to hold on a proper subspace of the input space.

Although we do not report here the formal definition of a shy set S� V , the following
important properties give an insight on its meaning [38]:
�
 A set S�Rn is shy if and only if it has Lebesgue measure zero. Thus, the concept of shy set is
a natural extension of the concept of null set because both concepts coincides in Rn.
�
 A shy set has no interior. Thus, “almost every” implies dense.

�
 Every countable set in V and every proper subspace of V are shy with respect to V.

Definition 4. The continuous state trajectory x(t) (resp. switching signal σðtÞ) of the SLS (2) is
said to be observable for almost every input if almost every input ensure the computation of the
continuous state x(t) (resp. switching signal σðtÞ).

Clearly, an input u½τ1;τ2� can be used to make the LS ðu½τ1;τ2�; y½τ1;τ2�Þ-distinguishable iff u½τ1;τ2�
drives every state trajectory of Σij outside the indistinguishability subspace. Then, it follows that
this holds iff Bij⊈W ij [27]. Now, due to the superposition property of the extended LS Σ, the set
of exceptions,

u½t0;τ� : ( x0; x
0
0; yiðt; x0; u½t0;τ�Þ ¼ yj t; x

0
0; u½t0;τ�Þ

� �� ð6Þ
i.e. the set of inputs for which the evolving LS cannot be determined, is a subspace of U f , in
which u(t) takes values. Since Bij⊈W ij implies the existence of a smooth input steering the state
trajectory outside W ij, then Eq. (6) is a proper subspace of U f , and thus a shy set with respect to
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U f [38]. Hence, almost every input u½t0;τ� guarantees the ðu½τ1;τ2�; y½τ1;τ2�Þ-distinguishability between
Σi and Σj, under this situation the LS are simply said to be distinguishable for almost every input.
Thus, we can state the following proposition.

Proposition 5. If Bij⊈W ij then for almost every input and for every nonzero time interval
½τ1; τ2�, yiðtÞayjðtÞ holds almost everywhere in ½τ1; τ2�.

Thus, if the LS are distinguishable for almost every input the equality yiðtÞ ¼ yjðtÞ cannot hold
during a nonzero time interval, i.e. yiðtÞ ¼ yjðtÞ then yiðtþÞayjðtþÞ.
If the LS are observable and distinguishable, then the continuous state can also be estimated.

However, if every ½xT x0
T �TAW ij is of the form x¼ x0 (i.e. W ij is symmetric), then the

continuous state trajectory for which the LS become indistinguishable is the same in both systems
and the continuous state can be estimated even though the LS are indistinguishable, clearly, in
this case the observability of each LS is required. From the previous discussion, the next theorem
follows easily.

Theorem 6 (Gómez-Gutiérrez et al. [10], Babaali and Pappas [7]). Let ΣσðtÞ ¼ F ; σh i be a SLS
with no maximum dwell time set. Then
1.
 The switching signal σðtÞ of ΣσðtÞ is observable for almost every input iff 8Σ i;ΣjAF , ia j Σi

and Σj are distinguishable for almost every input, i.e. Bij⊈W ij.

2.
 The continuous state x(t) of ΣσðtÞ is observable for almost every input iff each LS ΣiAF is

observable and 8Σi;ΣjAF ia j, either Bij⊈W ij or W ij is symmetric.

3.1. Illustrative example

Consider, the SLS ΣσðtÞ ¼ F ; σh i with F ¼ fΣ1ðA1;B1;C1Þ, Σ2ðA2;B2;C2Þg with σðtÞ an
exogenous switching signal, where Σ1 and Σ2 with matrices
A
 B
 C
Σ1
 0:9 15 0

�15 0:9 0

0 0 0:5

2
64

3
75
0

0

1

2
64

3
75
 1

0

1

2
64

3
75
T

2 3 2 3 2 3

Σ2
 �0:5 0 0

0 �1 20

0 �20 �1

64 75

0

0

0

64 75
 1

0

1

64 75
T

do not have property being observable for every nonzero input as W12a0. For instance, since
λ¼ �1

2 is a system zero of the extended LS Σ12 then, when Σ1 is evolving and the input
uðtÞ ¼ e�ð1=2Þt is applied to the initial condition x0 ¼ ½0 0 �1�T produces the same output
yðtÞ ¼ �e�ð1=2Þt as when Σ2 is evolving and the input uðtÞ ¼ e�ð1=2Þt is applied to the initial



D. Gómez-Gutiérrez et al. / Journal of the Franklin Institute 352 (2015) 1595–1612 1601
condition x0 ¼ ½�1 0 0�T . Thus, Σ1 and Σ2 are ðe�ð1=2Þt; �e�ð1=2ÞtÞ� indistinguishable.
However, Σ1 and Σ2 are � 3

2e
� t; e� t

� �
-distinguishable because the input–output behavior

� 3
2e

� t; e� t
� �

can only be produced by Σ1 when the input u tð Þ ¼ �3
2e

� t is applied to the initial
condition x0 ¼ ½0 0 1�T .

However, since B12⊈W12, the SLS is observable for almost every input. In particular, Σ1 and
Σ2 cannot become indistinguishable if the input uðtÞ ¼ 1 is applied, because λ¼0 is not a system
zero of the extended system Σ12 [8].

4. Observer design

The proposed SLS observer uses a bank of extended finite-observers designed one for each LS
in the SLS. Thus, let us first introduce the extended finite-time observers for LS.

4.1. The extended finite-time observer for multivariable LS

The finite-time observer for each LS is based on the result of global finite-time stability of
scalar systems presented in [25], this observer is described in the following for the multivariable
case. This finite-time observer is preferred because it provides a simple way to choose the
observer's gains. However, different gain selection can be used following the results on high-
order sliding modes presented in [26].

Let r¼ n�dimðN Þ, where N is the unobservable subspace of the LS, and assume that C is
composed of linearly independent rows, then, by a similarity transformation T, Σ can be
transformed into the observable/unobservable form with the observable subsystem expressed in a
multivariable observer form. This transformation leads to the similar system

_x ¼ Ao 0

A21 Ao

" #
;

xo
xo

" #
þ Bo

Bo

" #
u; y ¼ Co 0

h i xo
xo

" #
ð7Þ

where x¼ Tx and the state vector xo ¼ ½x1⋯xr�T represents the observable variables. The
subsystem ΣoðAo;Bo;CoÞ is observable [39,40] with matrices

Ao ¼
Ar1 ⋯ Or1;rq

⋮ ⋱ ⋮
Orq;r1 ⋯ Arq

2
64

3
75; Co ¼

C1;r1 ⋯ 01;rq
⋮ ⋱ ⋮

O1;r1 ⋯ C1;rq

2
64

3
75

where 01;ri is a 1� ri zero matrix, Ori ;rj is a ri � rj zero matrix with possible nonzero first
column and Ari is a ri � ri matrix, C1;ri is a 1� ri matrix of the form

Ari ¼

n 1 0 ⋯ 0

n 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
n 0 0 ⋯ 1

n 0 0 ⋯ 0

2
6666664

3
7777775
; C1;ri ¼ 1 0 ⋯ 0

� �

where the entries marked by “n” represent possible nonzero values, The Bo matrix has no
particular structure. Notice that, Σo is formed by q single output subsystems of dimensions
r1;…; rq (with

Pq
i ¼ 1 ri ¼ r), coupled only by the measured variables. The similarity

transformation leading to the multivariable observer form can be found in [39,40].
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Thus, an observer is designed for each block k¼1,…,q, with an additional variable ξ, which is
used as a measurement of the effort required by the observer to maintain a zero output estimation
error, this signal will be useful in the detection of the evolving LS. The observer for the k-th
block is given as follows:

_~xk1 ¼ ak1ðyÞ þ ~xk2 þ ρk1⌈e
k
1cα1 þ B

k
1u

_~xk2 ¼ ak2ðyÞ þ ~xk3 þ ρ2k2⌈e
k
1cα2 þ B

k
2u⋮

_~xkrk ¼ akrk ðyÞ þ ρrk krk⌈e
k
1cαrk þ B

k
rk
uþ ξk

_ξ
k ¼ �ρrkþ1krkþ1⌈e

k
1cαrkþ1 ð8Þ

where ek1 ¼ xk1� ~xk1, ⌈e
k
1cαj ¼ jek1jαj signðek1Þ and aijðyÞ; j¼ 1;…; ri is a known linear combination

of the measured signal y, this function is associated with the entries marked by “n” shown in Ao.
Notice that, since the R subsystems are only coupled by the measured variables, the error
dynamics of the subsystems are independent from each other and is given by

_ek1 ¼ ek2�ρk1⌈e
k
1cα1

_ek2 ¼ ek3�ρ2k2⌈e
k
1cα2

⋮
_ekrk ¼ ξk�ρrk krk⌈e

k
1cαrk

_ξ
k ¼ �ρrkþ1krkþ1⌈e

k
1cαrkþ1 ð9Þ

which, according to [25, Corollary 2], ρ, ki and αi can be designed such that the estimation error
of each block ϵi ¼ ½ei1 ⋯eiri ξ

i�T is globally finite-time stable. Notice that, Eq. (9) also coincides
with the differentiation error of the high-order sliding-mode differentiator [26] when presented in
the non-recursive form. Thus, a different choice of the observers parameters ρ, ki and αi for a
finite-time convergence can be taken from [26].

Proposition 7. Let the initial conditions of the observer (8) be taken as zero and let the
continuous initial condition of the SLS (2) be bounded by δ, i.e. Jx0 Joδ, with a known constant
δ, as in Assumption 2.2.1. Then for every constant τk the gains of Eq. (8) can be designed in such
a way that the estimation error (9) convergences to the origin with upper convergence bound
less than τk.

Proof. Consider the error dynamics given in Eq. (9). Take ρZ1 and consider the time-scaling
~t ¼ tρ together with the coordinate change ϵk ¼ P~ϵk with P¼ diagð1; ρ;…; ρrk Þ and
~ϵk ¼ ½~ek1 ⋯~ekrk

~ξ
k�. These transformations and time scaling take Eq. (9) into the following form:

dð~ek1Þ
d~t

¼ ~ek2�k1⌈~e
k
1cα1

⋮
dð~ekrk Þ
d~t

¼ ~ξ
k�krk⌈~e

k
1cαrk

dð~ξkÞ
d~t ¼ �krkþ1⌈~ek1cαrkþ1

ð10Þ

which does not depend on ρ. Therefore, due to the finite-time stability of Eq. (10), 8δ40, exists
~τk such that it holds

~ϵð~t ; ~ϵ0Þ ¼ 0; 8 ~ϵ0 such thatJ ~ϵ0 Joδ and 8 ~tZ ~τk
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where ~ϵ0 ¼ ~ϵðt0Þ. Going back to original coordinates ϵand real time t the above implies that

ϵðt; ϵ0Þ ¼ 0; 8ϵ0 such that Jϵ0 Joδ and 8 tZ ~τk=ρ:

Indeed, the above implication is correct as the inequality Jϵ0 Joδ clearly implies that
J ~ϵ0 Joδ due to the straightforward inequality

J ~ϵ Jr JϵJ ; 8ρZ1:

Therefore 8δ; τk40 there exists ρðδ; τkÞ such that ϵðt; ϵ0Þ ¼ 0, 8ϵ0 such that Jϵ0 Joδ and
8 tZτk. □

So, one really has to make the assumption that the initial conditions are bounded by some δ40, as in
Assumptions 2.2.1, but for every bound δ and every time τk40 there exist gains such that the error
dynamics (9) goes to zero in finite time less than τk. Another alternative is to design the individual
observers such that the convergence error coincides with the error of the uniformly convergent robust
exact differentiator proposed in [41]. The main advantage of that algorithm is that it has a fixed time-
convergence bound that is independent of the initial condition, where a similar argument can be made to
show that an uniformly convergent observer can also be designed with upper convergence bound less
than τk.

Notice that, whenever ϵðtÞ ¼ ½eTy ðtÞ ξT ðtÞ�T ¼ 0 the observer becomes an exact copy of the
observable subsystem of its associated LS producing the same input–output information as the evolving
LS. We next show that under distinguishability conditions the i-th observer will give ϵðtÞ ¼ 0 whenever
Σi is evolving and ϵðtÞa0 otherwise, thus allowing to infer the evolving LS.

Roughly speaking, the additional variable ξ can be seen as a measure of the effort of the
observer to maintain a zero output estimation error. Thus, when Σi is evolving the observer will
converge to eTy ðtÞ ¼ 0 with ξT ðtÞ ¼ 0. Furthermore, it is possible to compute the values that the
i-th observer will take under the evolution of Σj. However, for the sake of brevity such analysis is
not presented here. We would like to highlight that by simple using multi-observers structures of
finite-time observers, without this additional variable, more than one observer may give zero
output estimation error, provided that they are robust observers.

Thus, using the distinguishability property the evolving system can be inferred from the signal
ϵðtÞ of each observer, as stated below.

4.2. SLS observer

Let ΣσðtÞ ¼ F ; σh i be a SLS with minimum dwell time τd1 for the first switching time then an
observer Σ̂ σ̂ ðtÞ for ΣσðtÞ is designed as depicted in Fig. 1, where
�
 A global finite-time observer is designed for the observable subsystem of each LS ΣAF with
an extra variable ξ (as described in Section 4.1) and with upper time convergence bound
τk5τd1 . The estimation of the observable variables of Σk is given by ~xo;k .
�
 If for the LS observer ~Σ k , ey ¼ yðtÞ� ~yðtÞ ¼ 0 and ξðtÞ ¼ 0 for all tA ½τ; τ þ ε� with ε� 0 and
some time τ then as long as ϵðtÞ ¼ ½eTy ξT ðtÞ�T ¼ 0, σ̂ðtÞ ¼ k.
�
 If σ̂ðtÞ ¼ k then the next switching time is detected as the minimum time tl4t satisfying
ϵkðtlÞ ¼ 0 and ϵkðtþl Þa0.
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�

1

sub
If σ̂ðtÞ ¼ i and the switching time tl is detected, then the variables of the k-th observer, k¼1,
…,m, are reinitialized, ~xkðtlÞ as T �1

j Ti ~xiðtlÞ and ξk as zero,1 where ~xk ¼ ½~xTo;k ~xTo;k�T with
~xo ;k ¼ 0.
�
 If for the LS observer ~Σ k , ϵðtÞ ¼ 0 then x̂ðtÞ ¼ Tk ~xkðtÞ.

In Fig. 1 the SLS is depicted for the estimation of both, the continuous state and the switching
signal. In the following we show how this scheme can be used for the separate estimation of the
continuous state and the switching signal.
4.3. Detection of the evolving linear system

Notice that when using the observability for almost every input, the observability of each LS is
not required for the distinguishability and Σi and Σj are ðu½τ1;τ2�; y½τ1;τ2�Þ-distinguishable iff Σi and
Σo;j are ðu½τ1;τ2�; y½τ1;τ2�Þ-distinguishable with Σo;j the observable subsystem of Σj (see Eq. (7)).
Thus, we can establish the following lemma.

Lemma 8. Let ΣσðtÞ be a SLS and Σ̂ σ̂ ðtÞ be its observer designed in such a way that each finite-
time observer has an upper convergence bound τk and let ϵjðtÞ be the signal ϵðtÞ ¼ ½eTy ðtÞ ξT ðtÞ�T
of the observer associated to the observable subsystem ofΣj. Then, if σðtÞ ¼ i; 8 tA ½t0; t1Þ,
t14τk4t0, and Σi and Σj are ðu½τk ;t1Þ; y½τk ;t1ÞÞ-distinguishable then ϵjðtÞ ¼ ½eTy ðtÞ ξT ðtÞ�Ta0 almost
everywhere in ½τk ; t1Þ. On the contrary, if Σi and Σj are ðu½τk ;t1Þ; y½τk ;t1ÞÞ-indistinguishable then
8 tA ½τk ; t1Þ, ϵjðtÞ ¼ 0.

Proof. Let Σo;jðAo;j;Bo;j;Co;jÞ be the observable subsystem of Σj and assume by contradiction
that ϵjðtÞ ¼ 0 for all tA ½τk ; t1Þ which implies that the finite-time observer associated to Σj

becomes a copy of Σo;j and its observable variables ~xo;jðtÞ are such that yiðtÞ�yjðtÞ ¼ CixðtÞ�Co

; j~xo;jðtÞ ¼ 0 for all tA ½τk; t1Þ. Therefore Σi and Σo;j as well as Σi and Σj are ðu½τk ;t1Þ; y½τk ;t1ÞÞ-indis-
tinguishable, which contradicts the initial assumption. Thus, if Σi is evolving then the observer
associated to the observable subsystem of Σj gives ϵðtÞa0 almost everywhere in ½τk; t1Þ,
according to Proposition 5. The second part of the theorem follows trivially from Eq. (9). □

Since according to Theorem 6 the observability of the switching signal for almost every input
requires the LS in F to be distinguishable from each other, then the evolving LS can be detected
after the finite-time τk, because only the observer associated with the evolving LS gives
ϵðtÞ ¼ ½eTy ðtÞ ξT ðtÞ�T ¼ 0 for all tA ½τk; t1Þ, as formally stated in the following proposition.

Proposition 9. Let ΣσðtÞ be a SLS and let Σ̂ σ̂ ðtÞ be the proposed observer. Then if the switching
signal of ΣσðtÞ is observable for almost every input then only the observer of Σi will give ϵðtÞ ¼ 0
for all tA ½τk; t1�. Furthermore only ϵiðtÞ can be zero in a nonzero interval, and the index of the
evolving system can be obtained by the only observer giving ϵðtÞ ¼ 0 for all tA ½τk; τk þ ε�, with
ε� 0.

Proof. The proof follows from Lemma 8 and Proposition 5. □
Tk, kAf1;…;mg is the similarity transformation taking Σk into the observable/unobservable form with the observable
system represented in the multivariable observer form (for the multivariable observer form see [40]).
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4.4. Detection of the switching times and state reinitialization of the observers

In this subsection we show how each switching can be detected and how to completely
estimate the switching signal.

Let us assume that the LS Σi is evolving and detected by the proposed observer and that at time
t1 a switching occurs from Σi to Σj. Then, the output of the evolving state trajectory is
yðtÞ ¼ yiðt; x0; u½t0;t1ÞÞfor tA ½t0; t1Þ and yðtÞ ¼ yjðt; xðt1Þ; u½t1;t2ÞÞ for tA ½t1; t2Þ. Thus, the switching
time t1 can be detected iff

yjðt; xðt1Þ; u½t1;t2ÞÞayiðt; xðt1Þ; u½t1;t2ÞÞ: ð11Þ

Notice that, if the switching signal is observable for almost every input, then Σi is detected by the
SLS observer before the first switching time t1 and Eq. (11) holds because Σi and Σj are
distinguishable. Thus, after the switching time, Σi cannot produce the same input–output
information than Σj, and according to Lemma 8 and Proposition 5 Σi can no longer give ϵðtÞ ¼ 0
during a nonzero interval. Thus, the switching time t1 can be detected as established in the
following lemma.

Lemma 10. Let ΣσðtÞ be a SLS and let Σ̂ σ̂ ðtÞ be the proposed observer and let ϵiðtÞ ¼ be the
signal ϵðtÞ ¼ ½eTy ðtÞ ξT ðtÞ�T of the observer associated to the observable subsystem of Σi. Then if
the switching signal of ΣσðtÞ is observable for almost every input then the switching time is
detected as the time t4τd for which ϵiðtÞ is no longer zero. In fact, ϵiðtÞa0 almost everywhere in
½t1; t2Þ. In a similar way any subsequent switching time can be detected.
4.5. Estimation of the continuous state and estimation of the switching signal independently

Recall that, under the observability for almost every input, the switching signal is observable
even if each individual LS is unobservable. However, since the continuous state cannot be
completely estimated, in general, the state of the observers cannot be reinitialized as proposed
and the switching signal can only be estimated after the convergence of the observers. Thus, in
general, a known minimum dwell time between each switching is required to detect the evolving
LS before another switching occurs. Fortunately, if a switching occurs from Σi to Σj andN i ¼N j

where N k, is the unobservable subspace of Σk, k¼ i; j, then at the switching time the observable
variables of the LS Σj can be completely determined from the observable variables of the LS Σi.
Thus, the state of the individual observers can be reinitialized as proposed, hence the state of the
switching signal can be computed right after a switching occurs and the switching signal can be
completely estimated in finite-time.

The estimation of the switching signal independently from the estimation of the continuous
state is formally stated below.

Theorem 11. Let ΣσðtÞ be a SLS, Σ̂ σ̂ ðtÞ be the proposed observer and let N i ¼N j 8Σi;ΣjAF .
Then if the switching signal of ΣσðtÞ is observable for almost every input, then for almost every
input σ̂ðtÞ ¼ σðtÞ for all t4τk .

Proof. According to Proposition 9 σ̂ðtÞ ¼ i 8 tA ½τk; t1Þ and from Lemma 10 each switching time
is detected. Now, let Tij ¼ T �1

j Ti be a non-singular transformation such that Tk is the
transformation leading to the observable/unobservable form of the LS Σk, k¼1,2. Since



Fig. 1. SLS observer.

Fig. 2. Chaotic behavior of the SLS for different continuous and discrete initial conditions. (a) σ0 ¼ 2, x0 ¼ ½10 0 0�T and
tA ½0; 20�. (b) σ0 ¼ 1, x0 ¼ ½�1 1 2�T and tA ½0; 20�.
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N i ¼N j 8Σi;ΣjAF , it is easy to see that Tij is of the form

Tij ¼
T ij 0

n n

� 	
such that ~xo;j ¼ T ij ~xo;i:

Thus, if σðtÞ ¼ i 8 tA ½tl�1; tlÞ and σðtÞ ¼ j 8 tA ½tl; tlþ1Þ then, at the switching time tl, the
observable state variables of Σj are a linear combination only of the variables that were estimated
by the previous observer. Thus, ~xo;jðtlÞ ¼ xo;jðtlÞ, with xo;j the observable states of the evolving
system Σj and, only the observer associated with the evolving LS Σj will give 8 tA ½tl; tlþ1Þ,
ϵðtÞ ¼ 0. Hence, σ̂ðtÞ ¼ σðtÞ for all t4τk . □



Fig. 3. Estimation of the switching signal σðtÞ.
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Theorem 12. Let ΣσðtÞ be a SLS and let Σ̂ σ̂ ðtÞ be its observer. Then if the continuous state of ΣσðtÞ
is observable for almost every input, then for almost every input x̂ðtÞ ¼ xðtÞ for all t4τk with τk a
finite time.

Proof. Since only the continuous state of the SLS is observable then in the proposed SLS
observer more than one finite-time observer may give ϵðtÞ ¼ ½eTy ðtÞ ξT ðtÞ�T ¼ 0, however, by
Theorem 6 in such a case the indistinguishability subspace is symmetric which implies that the
estimation of the continuous state in such observers is the same and any one gives x̂ðtÞ ¼ xðtÞ.
Furthermore, even if not every switching time is detected, an exact estimation of the continuous
state is maintained because the symmetry of the indistinguishability subspace holds whenever
Eq. (11) is not satisfied. Thus, the proposed SLS observer with its corresponding reinitialization
procedure (whenever a switching is detected) gives x̂ðtÞ ¼ xðtÞ for all t4τk, even if the switching
signal is unknown. □

Remark 13. If noise is present, instead of detecting the evolving system by the observer with
ϵðtÞ ¼ 0 a threshold ς needs to be considered. Thus, detecting the evolving system if JϵðtÞJoς in
a short interval. However, further investigation on the conditions on the noise and the model
mismatching, and its relation with ς is required and is considered as future work. However, we
would like to highlight that even without this analysis the contribution has practical applications
in chaotic synchronization and secure communications, for instance visible light communication
systems in indoor have very high signal-to-noise-ratio (SNR) in the range 40–70 dB [42–44].
Under such SNR the effect of noise is negligible.



x1(t)
x̂1(t)

x2(t)
x̂2(t)

x3(t)
x̂3(t)

time (s)

Fig. 4. Estimation of the continuous state of the SLS.
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Remark 14. Since a finite-time estimation is achieved and no finite escapes can occur in SLS,
the proposed observer can be designed separately from the controller.

5. Synchronization of SLS with chaotic behavior

SLS can exhibit highly nonlinear behavior such as chaos when a suitable switching signal is
applied. This property is exploited to create new chaotic attractors as well as to synthesize by SLS
well known chaotic systems such as the Lorenz and Rössler attractors [45]. A chaotic system can
be used in encryption and secure communications, where a message encrypted using the chaotic
system is transmitted through an open channel which is then decrypted by the receiver by using a
synchronized copy of the same chaotic system, see [28,29] and further references within there.
The synchronization problem can be naturally reformulated as an observer design problem
[28,29]. As a matter of fact, for a selected chaotic SLS, the currently evolving LS and the current
switching signal value may be considered to be unknown at the receiver.

5.1. Switching law for generating chaotic behavior

In [32] the following switching law was proposed for generating chaotic and chaotic-like
behavior in SLS. Let Σ1ðA1;B1;C1Þ and Σ2ðA2;B2;C2Þ be an unstable and a stable scalar affine
LS, respectively. And let xn0 ¼ 1

2 xn1 þ xn2
� �

and l¼ 1
2Jx

n
1�xn2 J , where xn1 and xn2 are such that

A1xn1 þ B1 ¼ 0 and A2xn2 þ B2 ¼ 0, respectively.



x1

x2

x3

Fig. 5. Chaotic attractor generated by the SAS in Eq. (12).
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Define the following three regions: R1 ¼ fx : Jx�xn0 Jrkg, R2 ¼ fx : koJx�xn0 Jomg,
R3 ¼ fx : Jx�xn0 JZmg with lokomoþ1. Then the switching rule is constructed as follows.
When Σ1 is active, it will switch to Σ2 at time tj if xðtjÞAR3. Similarly, when Σ2 is active, it will switch
to Σ1 at time tk if xðtkÞAR1. In addition, in order to fulfill the minimum dwell time assumption, the first
switching time cannot occur before the dwell time τd. Furthermore, the initial evolving LS can be either
Σ1 or Σ2. With this switching rule σðtÞ, Eq. (2) will has a chaotic behavior if the system parameters are
properly chosen [32]. For a sufficient condition for a SLS to be chaotic see [31].
5.2. Illustrative example

Consider the SLS described in Section 3.1. Since, Σ1 and Σ2 cannot become indistinguishable
if a constant input uðtÞ ¼ 1 is applied. Thus, the continuous state and the switching signal of the
affine SLS proposed in [32] are observable and the proposed observer can be applied where
F ¼ fΣ1ðA1;B1;C1Þ;Σ2ðA2;B2;C2Þg are described in Section 3.1, and σðtÞ is as described in
Section 5.1 with k¼3 and m¼10. This SLS have a chaotic behavior with the strange attractor
shown in Fig. 2.

The estimation of the switching signal and the continuous state is shown in Figs. 3 and 4,
respectively. For this simulation, we are assuming no knowledge on the parameters k and m from
Section 5.1. Clearly, that knowledge simplifies the estimation process. The parameters for both
observers were chosen as k1¼3.8, k2¼4.55, k3¼2.05, k4¼0.3, ρ¼10 and α¼0.8. The
estimation process for the switching signal is shown in Fig. 3. According to Proposition 9, only
the observer associated to the evolving system can give ϵðtÞ ¼ ½eyðtÞ ξðtÞ�T ¼ 0 for a nonzero
interval which is shown in Fig. 4- . Hence, according to Proposition (9) the evolving LS Σ2 is
detected, Fig. 3- . After a switching occurrence the observer associated with Σ2 can no longer
maintain ϵðtÞ ¼ 0, thus detecting the switching time as stated in Lemma (10), Fig. 3- . Whenever
the switching time is detected the states of every observer are reinitialized with the final state of
observer Σ2, Fig. 3- . Notice that only the observer associated with the evolving LS will
maintain ϵ¼0 for a nonzero interval, Fig. 3- , thus detecting the next evolving LS, Fig. 3- .
Finally, Fig. 4 shows that the state of the SLS is estimated and the synchronization occurs after a
finite-time interval.
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5.3. Comments on the applicability of the observer for SLS under a class of Zeno behavior

Although the focus of the paper is for SLS with excluded Zeno behavior, we would like to
comment that the proposed observer could be used under Zeno behavior as long as the evolution
during Zeno can be represented by an equivalent AS, as in sliding motion on a switching
hyperplane (recall that sliding motion is a class of Zeno [46]). Consider for instance the chaotic
SAS proposed in [47] which is described by

_x ¼ Ax�B signðhÞ; h¼Dx; ð12Þ
where

A¼
�ð2ζωþ λÞ 1 0

�ð2ζωλþ ω2Þ 0 1

�λω2 0 0

2
64

3
75; B¼

k

2kβρ

kρ2

2
64

3
75 and D¼

1

0

0

2
64

3
75
T

and k¼1, λ¼0.05, ω¼10, ρ¼1, β¼�1 and ζ¼�0.078.
This SAS exhibits chaotic behavior and sliding motion [48] over the switching hyperplane, the

state evolution of this system is shown in Fig. 5. For the estimation purpose an equivalent SAS
not exhibiting Zeno behavior can be used in the observer design. Notice that sliding motion
occurs since h _ho0 in a neighborhood of submanifold fxARnjhðxÞ ¼ 0g and that in the sliding
motion h¼ _h ¼ 0 and thus the evolution is constrained in an ðA; Im BÞ-controlled invariant
subspace contained in ker D. Using Utkin's equivalent control method [49] it can be found that
during the sliding motion the evolution is equivalent to that of the system _x ¼ Axþ Bueq where
ueq ¼ Kx and K ¼ �ðDBÞ�1DA [47]. Thus, the evolution during the sliding motion is given by
the LS _x ¼ Âx with Â ¼ ðAþ BKÞ and hence, by designing the proposed observer for the
switched affine system

ð13Þ

both x(t) and the switching signal σðxÞ of Eq. (13) can be estimated. Thus, detecting also the Zeno
occurrence. Notice that, if y¼ x1 then a single observer can be designed in such a way that the
error dynamics is not a switched system, otherwise the evolving LS and the continuous state need
to be estimated from the continuous output.
6. Conclusions

An observer design for SLS with unknown switching signal has been presented here. The
corresponding observer estimates in finite-time both the state evolution during the continuous
phase and the originally unknown SLS switching signal. Moreover, efficiency of these observers
has been demonstrated by their application to the chaotic SLS synchronization scheme
construction being an important topic of the current research with possible applications to secure
encryption. Future and ongoing research of the related topics is focused to the possible
extensions of the presented results to the case when the output of the SLS is affected by noise
while its inner dynamics is affected by (unknown) disturbances.
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