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a División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055 col.

Lomas 4a Sección, San Luis Potosí, 78216, SLP, México
b Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Kilometro 1 Carretera a Santo Domingo,

78600, Salinas de Hidalgo, San Luis Potosí, México
c Institute of Information Theory and Automation, Czech Academy of Sciences, Pod vodarenskou vezi 4,

Prague, 18208, Czech Republic
d Colegio de la Frontera Sur CHETUMAL, Av. del Centenario Km. 5.5, Chetumal, 77900, Q. Roo, México

a r t i c l e i n f o

Keywords:

Hyperchaotic encryption

Piecewise linear systems

Stream cipher

Pseudo-random bit generator

Chaos theory

Multi-scroll attractors

a b s t r a c t

A hyperchaotic multi-scroll piecewise linear system in R4 is binarized to generate a pseudo-

random sequence which encrypt a grayscale image via symmetric-key algorithm. The se-

quence is analyzed throughout statistical tests according to the National Institute of Standards

and Technology (NIST) specifications. The scrolls of the system are the result of a switching

law that changes between the saddle hyperbolic equilibria of piecewise linear systems with

eigenvalues as follows: two negative real and one pair of complex conjugate eigenvalues with

positive real part. Thus, the encryption quality is evaluated depending on the variation of the

number of scrolls.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The idea of transmitting sensitive information in a secure way, safely hidden to potential hackers and eavesdroppers, has

generated really strong impact in the scientific community inspiring nowadays many researchers to combine a great variety of

approaches in order to tackle this challenging issue. Several methods that mask the transmitted information have been proposed

during recent years. These encryption methods are based on many different techniques, for example, partial encryption [1], scan

patterns [2], cellular automata [3,4] and splay trees [5] among others [6–8].

One of the areas that has begun to caught attention in cryptography is chaos. This is due to the intrinsic dynamics of this

type of systems and the relationship between chaos and cryptography. In [9], Alvarez and Li determined that many properties of

chaotic systems have their corresponding counterparts in traditional cryptosystems, for example:

• Ergodicity and confusion: The output has the same distribution for any input.

• Sensitivity to initial conditions and diffusion with a small change in the plaintext: A small deviation in the input can cause

a large change at the output.

• Deterministic dynamics and deterministic pseudo-randomness: A deterministic process can cause a random-like (pseudo-

random) behavior.
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• Structure complexity and algorithm complexity: A simple process has a very high complexity.

Approaches based on discrete-time systems (maps) have been commonly used during the last decade to encrypt images

using block and stream cipher cryptosystems [10–13]. More recently, the scientific community has started to implement con-

tinuous time systems as cryptosystems, see [14–18] and the references therein. However, some approaches [19–22] have not

demonstrated the statistical properties of the pseudo-random generators and some others [23,24] have already been proven to

be unsafe for encryption.

Recently, some encryption theories have implemented 2D continuous systems whose solutions result in multi-scroll attrac-

tors generated through hysteresis [25]. Taking in consideration all these approaches, a new Pseudo-Random Bit Generator (PRBG)

based on hyperchaotic multi-scroll piecewise linear (PWL) systems is presented. Whose dynamics in addition to live in a space

with four degrees of freedom are also safe to be used in cryptography.

Among all the theories on generating multi-scroll attractors, for example: extension of the Chua’s diode, saturation and hys-

teresis among others [26], here, the generation of multi-scroll by PWL systems with unstable dissipative equilibria [27,28] is

considered. One of the advantages of unstable dissipative systems is that with a corresponding switching law the resulting tra-

jectory between two of these systems may be contained in a double-scroll attractor. The number of scrolls is given by the number

of saddle equilibrium points of each unstable subsystem. These equilibria are characterized by fast stable eigendirection and a

complex unstable spiral-like eigenplane corresponding to appropriate eigenvalues. The relation between the number of scrolls

and the resulting pseudo-random sequence will be analyzed throughout by some statistical tests.

The article is organized as follows: Section 2 introduces the theoretical basis for the hyperchaotic multi-scroll systems; while

Section 3 derives the PRBG along with some statistical tests showing that its use is safe in cryptography according to the National

Institute of Standards and Technology (NIST). Furthermore Section 4 applies a scheme for grayscale image encryption based on

the symmetric key stream cipher using the generator like a keystream. Section 5 endorses the method proposed by some security

analysis and finally some conclusions are drawn in Section 6.

2. Hyperchaotic multi-scroll attractors

Continuing the work based on PWL systems in R3 by [27,29] and extending to R4 as described in [28], we consider the class

of affine linear system given by:

Ẋ = AX + B, (1)

where X = [x1, x2, x3, x4]T ∈ R4 is the state vector, A = [ai j] ∈ R4×4, i, j = 1, 2, 3, 4, denotes a real matrix and B =
[B1, B2, B3, B4]T ∈ R4 stands for a real vector. We are interested in a dissipative system having a hyperbolic equilibrium point

at X∗
, i.e. AX∗ + B = 0. The corresponding set of eigenvalues � = {λi}, i = 1, . . . , 4 of A are as follows: two λi are negative real

eigenvalues, and two λi are complex conjugate eigenvalues with positive real part Re{λi} > 0. In order to assure dissipativeness

of (1), these eigenvalues are assumed to satisfy
∑4

i=1 λi < 0.

Nevertheless, the system given by Eq. (1) is unstable, therefore, we need to consider a switching system in order to generate

bounded trajectories as follows:

Ẋ = AX + B(X),

B(X) =

⎧⎪⎪⎨
⎪⎪⎩

B1, if X ∈ D1;
B2, if X ∈ D2;
...

...
Bk, if X ∈ Dk,

(2)

where R4 = ∪k
i=1

Di. The system given by Eq. (2) has the equilibria X∗
1 ∈ D1, . . . , X∗

k ∈ Dk with AX∗
i + Bi = 0, i = 1, . . . , k. The goal is

to choose vectors Bi, in such a way that system (2) becomes chaotic. Namely, for any initial condition X0 the trajectory converges

to some chaotic strange attractor presenting strong dependance on initial conditions, recurrence behavior and topological tran-

sitivity. To achieve that, a collection of heteroclinic orbits φ(X0) trapped in a hyperchaotic attractor A is needed, upon defining at

least two vectors B1 and B2 connecting neighboring equilibria. Note that all these heteroclinic connections would be structurally

stable, as it will be shown later for a 2-dimensional stable and 2-dimensional unstable manifolds in a transversal way. Thanks

to these heteroclinic connections, each trajectory is taken from the domain corresponding to one of the equilibria to the next

domain, thereby visiting all domains in a topologically transitive way. Besides, heteroclinic orbits are known to indicate chaos

existence.

The system generated by this method can display k multi-scroll attractors as a result of a combination of several unstable

“one-spiral” trajectories, where k is the number of subsystems introduced.

The location of the scrolls occurs in one direction grid (1D-grid) in which the equilibrium points of the subsystems are in-

troduced. Although many systems may satisfy the discussion aforementioned, the matrix A and the vector B will be defined as

follows:
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A =

⎛
⎜⎝

0 1 0 0
0 0 1 0

−1.5 −1 −1 0
0 −1 0 −1

⎞
⎟⎠, B =

⎛
⎜⎝

0
0
B3

B4

⎞
⎟⎠. (3)

The case of B3 = B4 is considered throughout the paper. For this particular case of matrix A and vector B, the equilibrium

points (obtained from X∗ = −A−1B) are displaced in 1D-grid onto the plane (x1, x4). By considering a different matrix A and a

different vector B, the displacement can be made in different directions inside a n-dimensional grid. For example the case of

B = (0, B3, B3, 0)T will result in a displacement along 1D-grid onto the (x1, x3) plane.

For the sake of simplicity and in order to understand the 2-dimensional stable and 2-dimensional unstable manifolds of the

system given by (3), consider the linear transformation T: R4 → R4 with the following transformation of coordinates:

Ẏ = ÂY + B̂. (4)

Here Y = Q−1X, where Q is an invertible matrix that satisfies Â = Q−1AQ and B̂ = Q−1B, taking the following values:

Â =

⎛
⎜⎝

−1 0 0 0
0 0.1020 + 1.1115i 0 0
0 0 0.1020 − 1.1115i 0
0 0 0 −1.2041

⎞
⎟⎠,

B̂ = B3

⎛
⎜⎝

3
0.4223 + 0.3434i
0.4223 − 0.3434i

2.1329

⎞
⎟⎠. (5)

Therefore, the set of eigenvalues of the system given by Eq. (3) results in � = diag(Â) = {−1.0000, 0.1020 ±
1.1115i,−1.2041}, according to the saddle hyperbolic equilibrium point of the unstable system required.

Now, a switching law depending on the value of x1 that results in a double-scroll attractor is defined as follows:

B3(x1) =
{

0.9, if x1 ≥ 0;
0 otherwise.

(6)

The system given by Eq. (3) with the switching law given by Eq. (6) presents the following equilibrium points: X∗
1 =

(0, 0, 0, 0)T and X∗
2 = (0.6, 0, 0, 0.9)T. Since R4 is divided in two domains so two subsystems are needed to determine the dynam-

ics of the system. Each subsystem introduces an equilibrium point in its corresponding domain and a scroll emerges in the overall

attractor. The projection of the double-scroll attractor onto the (x1, x2) plane with initial condition X0 = (1, 0, 0, 0)T depicts a

double-scroll (Fig. 1(a)).

Now, if the switching law is designed considering more subsystems commuting B3, then more scrolls can be obtained in the

resulting attractor. For example, to obtain a 4-scroll attractor, B3 can be given as follows:

B3 =

⎧⎪⎨
⎪⎩

1.8, if x1 ≥ 0.9;
0.9, if 0.3 ≤ x1 < 0.9;
0, if −0.3 < x1 < 0.3;
−0.9, if x1 ≤ −0.3,

(7)

this switching law introduces two additional subsystems with corresponding equilibrium points located at X∗
3 = −X∗

2 and X∗
4 =

(1.2, 0, 0, 1.8)T . The projection of the 4-scroll attractor onto the (x1, x2) plane given by the switching law (7) with initial condition

X0 = (1, 0, 0, 1)T is shown in (Fig. 1(b)). Now, by means of adding 6 subsystems results in the case of a 10-scroll attractor given

by the following switching law:

B3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.5, if x1 ≥ 2.7;
3.6, if 2.1 ≤ x1 < 2.7;
2.7, if 1.5 ≤ x1 < 2.1;
1.8, if 0.9 ≤ x1 < 1.5;
0.9, if 0.3 ≤ x1 < 0.9;
0, if −0.3 ≤ x1 < 0.3;
−0.9, if −0.9 ≤ x1 < −0.3;
−1.8, if −1.5 ≤ x1 < −0.9;
−2.7, if −2.1 ≤ x1 < −1.5;
−3.6, if x1 ≤ −2.1.

. (8)

The 10-scroll attractor given by the switching law (8) with initial condition X0 = (4, 0, 0, 1)T can be appreciated from the

projection of the attractor onto the (x1, x2) lane as Fig. 1(c) depicts. The positive Lyapunov exponents of the system are (0.136181,

0.135918), indicating that the system is hyperchaotic. These exponents remain the same regardless of the number of scrolls

presented in the attractor. The integration of these systems was considered by a fourth order Runge Kutta method with a 0.01

integration step.
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Fig. 1. Projection of the attractor given by Eqs. (2) with (3) onto the (x1, x2) plane for different switching laws: (a) 2 scrolls with Eq. (6); (b) 4 scrolls with Eq. (7);

(c) 10 scrolls with Eq. (8).
3. Pseudo random bit generator

This generator is based on the time series obtained from the hyperchaotic multi-scroll system states given by Eqs. (2) with (3)

for different number of scrolls (2, 4, or 10).

The idea is to iterate the system n times to obtain a sequence X after 1000 iterations of the transient state. Taking advantage

of the sensitivity to initial conditions in chaotic systems, it is considered that each set of initial conditions X0p with p ∈ Z+ results

in p different time series, where X01 �= . . . �= X0p. Therefore, each X0p can be considered as a key to the cipher, if the number of

scrolls is augmented then the dynamics of the system is more complex and the encryption quality is increased.

Thereupon the PRBG is defined as follows

κi =
⌊

4∑
j=1

x j(i) · 1014

⌋
mod 256. (9)

Here κi ∈ {0, 1, 2, . . . , 255} and i = 1, . . . , n, where n = l × m with l, m accordingly to the size of the grayscale image to be

encrypted. The operation 	 · 
 stands for the floor function, namely 	x
 ∈ Z, s.t. 	x
 ≤ x ≤ 	x
 + 1. Since the numerical simulator

works with floating point and double precision, the sum can be scaled to 1014. Thus each ith value of κ is an integer number

which can be represented by 8 bits sequence, resulting in an overall binary κ sequence of 8n = l × m × 8 bits.

First the correlation coefficient is determined by two sequences with nearby keys and the sensitivity to initial conditions

is analyzed. The correlation coefficients CE,F for each pair of sequences E = [e1, . . . , eN] and F = [ f1, . . . , fN] are computed as

follows [30]:

CE,F =
∑N

i=1 (Ei − Ē)(Fi − F̄)[∑N
i=1 (Ei − Ē)2

]1/2[∑N
i=1 (Fi − F̄)2

]1/2
, (10)
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Table 1

Correlation coefficients of pseudo-random sequences with nearby initial

conditions.

Number of scrolls X0 CE,F

2 scrolls 0.05624 CE1 ,F1
= 0.1754

0.14957 CE2 ,F2
= 0.2262

0.49637 CE3 ,F3
= 0.2284

0.32378 CE4 ,F4
= 0.1624

κ i Cκi ,κ
′
i
= −0.0103

4 scrolls 0.93147 CE1 ,F1
= 0.2833

0.13678 CE2 ,F2
= 0.1789

0.71548 CE3 ,F3
= 0.1401

0.05621 CE4 ,F4
= 0.2877

κ i Cκi ,κ
′
i
= −0.0046

10 scrolls 0.35489 CE1 ,F1
= 0.3696

0.18957 CE2 ,F2
= 0.2969

0.75621 CE3 ,F3
= 0.2791

0.42687 CE4 ,F4
= 0.3707

κ i Cκiκ
′
i
= −0.0008

Table 2

Part 1 of results from statistical suite of tests. F = Fail; S = Success.

Test name 2 scrolls 4 scrolls 10 scrolls

Portion Result Portion Result Portion Result

passing passing passing

Frequency test 0.6760 F 0.9840 S 0.9880 S

Frequency test within a block 0.6860 F 0.9920 S 0.9860 S

Runs test 0.6800 F 0.9920 S 0.9840 S

Test for the longest run 0.6880 F 0.9900 S 0.9960 S

Binary matrix 0.6840 F 0.9940 S 0.9980 S

Discrete fourier transform 0.6840 F 0.9920 S 0.9760 S

Overlapping template matching test 0.6820 F 0.9940 S 0.9920 S

Maurer’s universal statistical test 0.6820 F 0.9780 S 0.9780 S

Approximate entropy 0.6860 F 0.9900 S 0.9960 S

Linear complexity 0.6780 F 0.9860 S 0.9960 S
where Ē = 1
N

∑N
i=1 Ei and F̄ = 1

N

∑N
i=1 Fi are the mean values of E and F , respectively. The coefficients CE,F are computed for

each pair of generated sequences with nearby initial conditions, i.e., X0 and X′
0 = X0 + δ, this has been done for every state of the

system (xi, i = 1, . . . , 4) and for 2, 4 and 10 scrolls. The corresponding data with δ = 1 × 10−15 · (1, 1, 1, 1)T demonstrates that

Cκiκ
′
i

≈ 0 (Table 1), meaning that there is no correlation between the generated sequences with nearby initial conditions. This

value decreases when the number of scrolls is increased, for example, from 2 scrolls to 4 scrolls the percent of decrease is of

55.3%, and from 2 to 10 scrolls is 92.2%.

In order to determine whether or not the series generated by Eq. (9) possess the same statistical properties as a truly random

sequence, first they must be analyzed through statistical tests to demonstrate that they are suitable to be used in cryptography.

Among some of the possible tests [31–33], here, the statistical tests proposed by NIST [34] were implemented, which describe

a combination of tests that detect any deviation from randomness. The idea is to define a significance level σ , typically chosen

between 0.001 and 0.01. For example, considering a value of σ = 0.01 which indicates that 1 out of 100 sequences may be rejected

by the tests in the case of having a random sequence.

The NIST has adopted two ways to interpret empirical results: (1) the examination of the proportion of sequences that pass

statistical tests and (2) the distribution of P-values to check for uniformity, only the examination of the proportion of sequences

that pass a statistical tests will be considered. For this, it is necessary to define a confidence interval as:

(1 − σ) ± 3

√
σ

θ
, (11)

where θ = 500 is the sample size of sequences, i.e. the amount of sequences that were checked and each of this sequences has

1 × 106 elements. This statistical suite of tests is applied to different sequences which are generated by hiperchaotic systems

with different number of scrolls. By means of Eq. (11), the confidence interval is given by 0.99 ± 0.01342, thus, if the statistic test

result is within this interval then it is considered that passed the test, and the result is success (S), otherwise fail (F), as is shown

in the Tables 2 and 3.

For a generated series with a double scroll hyperchaotic system, the proportion is outside of the confidence interval for 20

of the tests (Fig. 2(a) and (b)), meaning that the hyperchaotic system with 2 scrolls is not useful to cipher information. Similar

results have been obtained for a 3 scroll attractor, so this number of scrolls is also unsafe for encryption. If the hyperchaotic
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Table 3

Part 2 of results from statistical suite of tests. F = Fail; S = Success.

Test name 2 scrolls 4 scrolls 10 scrolls

Portion Result Portion Result Portion Result

passing passing passing

Serial test 1 0.6860 F 0.9920 S 0.9900 S

Serial test 2 0.6840 F 0.9860 S 0.9820 S

Cumulative sums test

a) Forward 0.6780 F 0.9860 S 0.9880 S

b) Backward 0.6720 F 0.9820 S 0.9880 S

Non-overlapping template matching test

a) 0.6800 F 0.9920 S 0.9800 S

b) 0.6860 F 0.9920 S 0.9880 S

c) 0.6860 F 0.9920 S 0.9920 S

d) 0.6880 F 0.9840 S 0.9940 S

Random excursions test

a) −4 0.9950 S 0.9935 S 0.9865 S

b) −3 0.9849 S 0.9902 S 0.9899 S

c) −2 0.9849 S 0.9805 S 0.9966 S

d) −1 0.9899 S 0.9837 S 0.9899 S

e) 1 0.9899 S 0.9870 S 0.9966 S

f) 2 0.9849 S 0.9870 S 0.9932 S

g) 3 0.9799 S 0.9837 S 0.9966 S

h) 4 0.9849 S 0.9837 S 0.9797 S

Random excursions variant test

a) −9 0.9899 S 0.9967 S 0.9966 S

b) −8 0.9899 S 0.9935 S 0.9966 S

c) −7 0.9899 S 0.9935 S 0.9966 S

d) −6 0.9899 S 0.9902 S 0.9932 S

e) −5 0.9849 S 0.9902 S 0.9932 S

f) −4 0.9749 F 0.9870 S 0.9899 S

g) −3 0.9899 S 0.9837 S 0.9932 S

h) −2 0.9950 S 0.9870 S 0.9899 S

i) −1 0.9950 S 0.9739 S 0.9932 S

i) 1 0.9899 S 0.9870 S 0.9899 S

k) 2 0.9950 S 0.9837 S 0.9831 S

l) 3 0.9950 S 0.9837 S 0.9932 S

m) 4 0.9899 S 0.9935 S 0.9865 S

n) 5 0.9899 S 0.9870 S 0.9831 S

o) 6 0.9849 S 0.9837 S 0.9797 S

p) 7 0.9849 S 0.9870 S 0.9865 S

q) 8 0.9799 S 0.9902 S 0.9865 S

r) 9 0.9698 F 0.9837 S 0.9831 S

Fig. 2. Part 1 and 2 of the results of the sequences with 2 scrolls according to the suite of statistical tests of the NIST using the confidence interval given by (11).
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Fig. 3. Part 1 and 2 of the results of the sequences with 4 scrolls according to the suite of statistical tests of the NIST using the confidence interval given by (11).

Fig. 4. Part 1 and 2 of the results of the sequences with 10 scrolls according to the suite of statistical tests of the NIST using the confidence interval given by (11).
attractors present 4 and 10 scrolls then the sequences result is inside the confidence interval, (see Fig. 3 (a) and (b) and Fig. 4(a)

and (b)). Hence the sequences are generated by hyperchaotic attractors with 4 and 10 scrolls therefore, they are safe to be used

like a keystream.

4. Design of the encryption and decryption scheme

After proving that sequences generated by hyperchaotic systems with four or more scrolls are safe as PRBG for cryptography,

we encrypt the image using a similar stream cipher as the ones reported in [6,35,36]. The purpose of ciphering information with

the proposed PRBG is to demonstrate that sequences with different number of scrolls generate different cipher image i.e., the

encryption quality is improved if the number of scrolls is increased. The process for cipher the image is pixel by pixel in the

following way:{
C1 = P1 ⊕ κ1 ⊕ IV ;
Ci = Pi ⊕ κi ⊕ Ci−1.

(12)

Where Ci and Pi with i = 2, . . . , n are the pixels of the cipher image and the plain image, respectively. To improve security in the

process, a feedback in the encryption (Ci−1) and an initial vector are considered, where IV ∈ {0, 1, . . . , 255} is an initialization

vector used once, κ i is the pseudo-random bit sequence, the symbol ⊕ is the XOR operation, which is executed bit by bit in the

block of 8 bits by pixel.
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Fig. 5. Image of Lenna: (a) original; (b) encrypted; (c) decrypted.
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Fig. 6. Histogram of the images of Lenna: (a) original image; (b) encrypted image.
In order to decrypt the image correctly the receiver must have the same keystream (formed by the initial conditions X0, the

initialization vector IV and the decryption function). This function takes the following form:{
P′

1 = C1 ⊕ κ1 ⊕ IV ;
P′

i
= Ci ⊕ κi ⊕ Ci−1.

(13)

If the correct key κ i and the correct initialization vector IV are used, then the original image will be obtained correctly, i.e.,

P′
i

= Pi. In order to prove the encryption–decryption method, the common grayscale image of Lenna was considered, thus Fig. 5(a)

shows the plain image; the cipher image is presented in Fig. 5(b) and the decrypted image is shown in Fig. 5(c).

5. Security analysis

The proposed algorithm can successfully encrypt and decrypt the image. However, it is imperative to verify the security of the

cryptosystem in order to detect if the scheme is robust against any statistical attack. To do so six security tests were implemented:

(i) key space analysis; (ii) the histogram analysis; (iii) entropy; (iv) calculation of the correlation coefficients of adjacent pixels;

(v) encryption quality and (vi) security test against differential attack.

5.1. Key space analysis

A good encryption algorithm must have a key space large enough to make brute-force attacks infeasible. The key space for

a cryptographic algorithm should not be less than 2128 to resist brute force attacks [38]. For the proposed image encryption

algorithm the key is given by the initial condition X0, where each state has a double precision. Here, a system with 4 states

is considered. According to the IEEE floating-point standard [37] the computational precision of the 64-bit double-precision

number is about 10−15, thereby the total space is �6.582 × 1063 � 2212, therefore the algorithm exceeds the standard for 284.

5.2. Histogram analysis

The histogram depicts how pixels are distributed in an image. It plots the number of pixel according to the grayscale level. A

property that should satisfy an encryption system is that the histogram of the encrypted image presents a uniform distribution.

Therefore, the histograms between the original image and the encrypted image must be completely different. Fig. 6 depicts both

histograms, Fig. 6(a) shows the histogram of the original image and Fig. 6(b) of the encrypted image. Notice that the latter depicts

a uniform distribution as expected.

5.3. Correlation analysis

It is well known that adjacent image pixels are highly correlated in vertical, horizontal and diagonal directions. This property

can be quantified by means of the correlation coefficient, between adjacent pixels using Eq. 10. Now, E and F denote the intensity
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Table 4

Correlation coefficients of two adjacent pixels.

Plain image Cipher image Cipher image Cipher image

with 2 scrolls with 4 scrolls with 10 scrolls

Lenna

Vertical 0.9829 0.0207 0.0306 −0.0343

Horizontal 0.9687 −0.0515 0.0044 0.0017

Diagonal 0.9520 0.0284 −0.0146 0.0013

Einstein

Vertical 0.9832 0.0450 0.0086 0.0082

Horizontal 0.9795 −0.0205 0.0168 0.0152

Diagonal 0.9677 −0.0440 −0.0258 −0.0206

Baboon

Vertical 0.8186 0.0184 0.0179 0.0001

Horizontal 0.8641 −0.0333 0.0201 0.0055

Diagonal 0.7766 0.0253 −0.0175 0.0018
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Fig. 7. (a) plain image Baboon; (b) correlation in vertical direction of plain image; (c) correlation in horizontal direction of plain image; (d) encrypted image

Baboon; (e) correlation in vertical direction of encrypted image; (f) correlation in horizontal direction of encrypted image.
value pixels which are adjacent, N is the total number of duplets (E,F) which for this particular case N = 2000. A plain image is

expected to present a value of 1, meaning that every pixel is highly correlated and the image transitions result smoother. On the

other hand an encrypted image is expected to present values equal to zero, assuring that there is no relation between the pixels

in any vertical, horizontal and diagonal direction. The result of this test is shown in Table 4, Figs. 7 and 8.

5.4. Information entropy

Entropy is one of the most significant features of randomness [39], it can be used to characterize the texture of and image and

is defined as follows:

E(s) = −
2M−1∑

i=0

Pr(si)log2Pr(si), (14)

where M is the number of bits to represent a symbol si ∈ s, and Pr(si) represents the probability of a symbol si, therefore the

entropy is expressed in bits. For a cipher grayscale image with 256 levels, the entropy should ideally be E(s) = 8.

The entropies for plain image and cipher images using different number of scrolls are calculated and listed in Table 5. Notice

that in the cipher image for any number of scrolls the entropy is close to the ideal value.

5.5. Encryption quality

The encryption creates large changes in the amount of pixels which should be completely different from the original image.

These changes are irregular and more changes in the value of pixels show more effectiveness of encryption algorithm and thus
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Fig. 8. (a) plain image Einstein; (b) correlation in vertical direction of plain image; (c) correlation in horizontal direction of plain image; (d) encrypted image

Einstein; (e) correlation in vertical direction of encrypted image; (f) correlation in horizontal direction of encrypted image.

Table 5

Entropy for plain image and cipher image with 2, 4 and 10 scrolls.

Entropy Plain image 2 scrolls 4 scrolls 10 scrolls

Lenna 7.8059 7.9986 7.9989 7.9989

Einstein 7.4913 7.9988 7.9989 7.9989

Baboon 7.7091 7.9967 7.9973 7.9973

Table 6

Encryption quality for cipher images with 2, 4 and 10 scrolls.

Encryption quality 2 scrolls 4 scrolls 10 scrolls

Lenna 271.1094 271.5391 271.6563

Einstein 314.4609 314.6250 314.8906

Baboon 118.6953 119.7188 119.9688
better quality. The encryption quality represents the average number of changes to each gray level according to [40] and it can

be expressed as:

Q =
∑255

L=0 |HL(C) − HL(P)|
256

, (15)

where L’s are the gray levels of the images, HL(C) and HL(P) are the number of repetition from each gray value in the original and

the encrypted image, respectively. The results of this test are shown in Table 6 where it is possible to see if the number of scrolls

increases then the encryption quality of the cipher image is increased.

5.6. Differential attack

In the differential attack the opponent may perform a slight change modifying only one pixel of the original image to observe

the changes on the corresponding cipher image, trying to find a relationship between the plain image and the cipher image. To

make this attack practically useless the encryption algorithm should be such that a small change in the plain image produces a

significant change in the cipher image. Usually, in this attack the first pixel is changed, in this work this is the case. Nevertheless

if the last pixel is modified, in the cipher image only one pixel is modified, it is possible to avoid such situation with a second

round encryption. This property can be measured by two criteria, the number of pixel change rate (NPCR) and the unified average

changing intensity (UACI).
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Table 7

Correlation coefficients of two adjacent

pixels.

Proposed scheme

NPCR 99.6078

UACI 33.4182
The NPCR measures the number of different pixels between two cipher images.

NPCR =
∑

i, j δa(i, j)

ν
× 100%; (16)

δa(i, j) =
{

0 if C(i, j) = C′(i, j);
1 if C(i, j) �= C′(i, j).

(17)

Where ν is the total number of pixels in the image, C and C′ are the cipher images with one modified pixel in the original image.

The second criterion, UACI can be defined as:

UACI = 1

ν

[∑
i, j

|C(i, j) − C′(i, j)|
28 − 1

]
. (18)

Results of these tests are shown in Table 7. These results show that the scheme is very sensitive with respect to small changes

in the plain text and the two cipher images C and C′ behave like two random images.

5.7. General specifications and extension of the work

In order to use the presented approach, some specification need to be established. First of all, the same integration method

and step must be considered in order to encrypt and decrypt. This work may also be extended to audio, video and text signals

if the information to be ciphered is arranged as a matrix of size l × m. The numerical simulation regarding this matter will be

studied and reported elsewhere.

6. Conclusions

Based on the intrinsic property of sensitiveness to initial conditions, a new PRBG capable of generating binary sequences

using the four states of a multi-scroll hyperchaotic system was presented. The trajectory of these complex systems based on PWL

systems can result in any number of scrolls with a correct switching law. It has been demonstrated that the number of scrolls

on the system affects the properties of the sequences, allowing them to pass the statistical test of the NIST. The pseudo-random

sequence is used like keystream to encrypt grayscale image using the XOR operation. The encrypted image has been proved to

pass several security tests assuring that it is safe to use in encryption. Moreover the results show that increasing the number of

scrolls improve the encryption quality of the image.
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