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Quaternion Wiener Deconvolution for Noise
Robust Color Image Registration

Matteo Pedone, Eduardo Bayro-Corrochano, Jan Flusser, and Janne Heikkilä

Abstract—In this letter, we propose a global method for regis-
tering color images with respect to translation. Our approach is
based on the idea of representing translations as convolutions with
unknown shifted delta functions, and performing Wiener decon-
volution in order to recover the shift between two images. We then
derive a quaternionic version of the Wiener deconvolution filter in
order to register color images. The use of Wiener filter also allows
us to explicitly take into account the effect of noise. We prove that
the well-known algorithm of phase correlation is a special case of
our method, and we experimentally demonstrate the advantages
of our approach by comparing it to other known generalizations
of the phase correlation algorithm.

Index Terms—Clifford algebra, multivector derivative, phase
correlation, quaternion, Wiener filter.

I. INTRODUCTION

T HE problem of image registration is widely recognized to
have a great importance, as many different tasks in com-

puter vision often require a set of two or more aligned images
as inputs [1]. We focus our attention on global methods and in
particular to the popular algorithm of phase correlation [2]. Sev-
eral attempts to generalize the algorithm of phase correlation to
color images are found in the literature [3], [4], however, each
of these approaches has important limitations.
In [4] the authors observe that ordinary phase correlation

computes the cross-correlation between two “whitened” im-
ages, thus they introduce an hypercomplex (i.e. quaternion)
Fourier transform, and generalize the concept of cross-corre-
lation between quaternionic 2D-signals. Due to the nature of
the quaternionic cross-correlation, their method produces a
quaternion-valued correlation spectrum that in general is not a
delta function, even in the ideal case where the two images are
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perfectly related only by a translation. The authors show that
the correlation spectrum contains information related to the
color transformation that relates the two images, and then they
empirically demonstrate that its magnitude usually manifests a
distinct peak located in correspondence of the shift. Nonethe-
less, it might be undesirable to have a spectrum in which part
of the radiometric information is mixed with the geometric
information related to the shift.
In [3] the authors argue that the formula for calculating the

phase correlation between two images is analogous to the one
for calculating the cosine of the angle between two functions,
interpreted as elements of a normed vector space. Based on this
argument, they propose to generalize the phase correlation algo-
rithm to color images by computing the cosine of the angle be-
tween the Fourier spectra of two multivector-valued images. A
drawback of their approach is that it does not yield a single peak
corresponding to the shift between the images, but rather two
peaks located in positions that are centrally symmetric to each
other. Thus, the authors suggest to use their method in those ap-
plications (e.g. image recognition) where only the magnitude of
one of the two peaks is needed, while its spatial location is not
required.
In this letter, we propose a general solution to all the afore-

mentioned issues. The key idea of the letter is a re-formulation
of the problem of translational color image registration as a par-
ticular instance of the non-blind deconvolution problem.We uti-
lize the well-known fact that an image shift can be described as
a convolution with a delta-function shifted by the same vector.
Hence, the shift can be recovered by a deconvolution of the
sensed image with the reference image being the convolution
kernel. This approach, never reported in the literature, allows
us to employ techniques previously designed for image restora-
tion purposes. We adopted a Wiener deconvolution filter [5]. To
adapt it for registration of color images, we utilize Clifford al-
gebra and a very general concept of multivector derivative in
order to easily derive a quaternionic version of Wiener decon-
volution. This is the second contribution of the letter. Taking
advantage of the Wiener filtering technique, we are able to ex-
plicitly take into account the effect of additive noise. Finally we
prove that our “color phase correlation” mathematically yields
a true delta function in correspondence of the translational shift.

II. IMAGE REGISTRATION IN TERMS OF DECONVOLUTION

Let’s consider the space of images defined as
the vector space of two-dimensional real square integrable sto-
chastic processes. Suppose an observed image is given
by:

(1)
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where is an image, is a convolution kernel function, and
is additive zero-mean noise uncorrelated with . Let’s recall

that, given , a delta function has the property:
for all . Hence, by considering a delta function

shifted by , and
a shifted and noisy version of the grayscale image , we have
that:

(2)

Clearly the above equation is just a special case of (1) obtained
by setting . If we also assume that no noise is present,
we can estimate by deconvolving with the inverse filter
of . This operation is easily performed in Fourier domain, in
fact, taking the FT of (2) yields in virtue
of the convolution theorem, and considering the inverse filter

we have:

(3)

where the symbol denotes complex conjugation, and the
second identity follows from the fact that , as
it can be easily verified by taking the FT of (2), and assuming
no noise is present. The inverse FT of (3) obviously yields the
delta function centered at : the location corresponding to
the shift between and . Interestingly, the rightmost fraction
of (3) is the well-known formula for calculating the phase
correlation [2].

III. NOISE ROBUST REGISTRATION

An interesting aspect of interpreting image registration in
terms of deconvolution is that we can investigate the use of more
advanced approaches than the simple inverse filter. In this sec-
tion we consider the application of the Wiener deconvolution
technique, also known as Wiener-Helstrom filtering [5]. This
allows us to take into account the statistics of the noise in
Equation (2) when performing image registration. In fact, if the
power spectral density is known, we
can estimate in (2) by convolving with a Wiener filter
that minimizes the mean squared error term ,
where , and the expectation is over all in-
stances of the noise. In Fourier domain such filter is given by:

(4)

The last identity follows from the fact that the Fourier transform
of a shifted delta function is a complex sinu-
soid, thus
When performing Wiener deconvolution by calculating

, one has:

(5)

This operation attenuates more the frequencies that are cor-
rupted by noise having higher variance, and it has the effect of
denoising the estimate of the delta function in space-domain.
This can be easily observed by taking a pair of images related
to each other by a translation (Fig. 1, top row), and among

Fig. 1. Original image (top left). Translated version of the original image with
additive white Gaussian noise (top right). Peak generated by computing the in-
verse FT of (3) with the kurtosis of the peak image (bottom left). Peak generated
by the inverse FT of (5) using , the power spectral density of the
noise; note how the kurtosis of the delta peak significantly increases. (bottom
right).

which one is corrupted by additive white Gaussian noise having
. By taking the inverse FT of (3), one obtains a

noisy correlation spectrum. If we repeat the procedure by re-
placing (3) with (5), one obtains a visibly less noisy correlation
spectrum. The denoising effect can be also observed quanti-
tatively when comparing the amount “peakedness” measured
by the sum of the kurtoses of the marginal distributions of the
correlation spectrum (Fig. 1).

IV. COLOR IMAGE REGISTRATION AS QUATERNIONIC
WIENER DECONVOLUTION

In this section we discuss the main result of this letter, which
is the the generalization to quaternionic signals of the Wiener-
Helstrom filter in Equation (4), and consequently the generaliza-
tion to color images of traditional phase correlation, i.e. Equa-
tion (3). Before deriving the quaternionic Wiener filter, we must
introduce the quaternion Fourier transform (QFT). Let’s recall
that a quaternion can be represented as ,
where are real numbers, and the relationship

on the imaginary units holds. Given an
image , where is the space of two-dimen-
sional quaternion-valued square integrable stochastic processes,
we map the color triplets ( ) of some luminance-chromi-
nance color space in the following manner:

(6)

where and
. These two terms can be represented as

two complex numbers (though it must be noted that is
always real), and they are respectively called even-grade part
and odd-grade part of . This representation of as an
ordered pair of complex numbers with imaginary unit has
several advantages: it allows one to compute the QFT with
two ordinary FFT’s, and it leads to a compact expression of
the Fourier convolution theorem [6], which is useful in the
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derivation of the quaternion Wiener filter. Following [7], the

QFT of (6) is defined as follows:

(7)

and can be effectively computed by two FFT’s on the two com-
plex-valued functions and , i.e. . Given

, the convolution theorem takes the following form [7]:

(8)

where and the subscripts and denote the
even and odd-grade parts of . Note that the term on the
right side denotes a sum of point-wise multiplications between
the functions and . It is important to observe that, if is
real or complex valued, the odd-grade part is zero, which
happens for instance when is a real scalar function, then Equa-
tion (8) reduces to:

(9)

A. Quaternionic Wiener-Helstrom Filter

We are now ready to introduce the quaternionic version of
the Wiener-Helstrom filter. The material found in this section
is presented only informally, and a more rigorous treatment is
published as supplementary material in http://ieeexplore.ieee.
org. Consider the space and suppose that
is defined as: , analogously to Equation (1), where
is an image, is a real-valued convolution kernel function,

and is additive zero-mean noise uncorrelated with , and with
known power spectral density . By taking

the QFT of we have, according to (9) that . If
we suppose, for now, that , it appears clear that, in
order to recover wemust simply multiply by the inverse
filter , for all (note that quaternions always have
an inverse). In fact, if we drop the assumption that no noise is
present, it is possible to prove that the filter that minimizes
the following mean squared error:

(10)

for all , where denotes the squared norm of a quater-
nion, is given by:

(11)

Note that (11) is analogous to the formula of the complexWiener
filter, with the only exception of replacing the complex conju-
gate operator with the quaternion conjugate, which is defined
as: . The unknown is thus esti-
mated by calculating:

(12)

It should be noted that, in the complex case, the functional in
(10) is typically minimized by utilizing the rules for complex

differentiation of Wirtinger calculus [8], but it is not completely
straightforward to generalize those rules to quaternions [9],
[10]. In the supplementary document we demonstrate that (11)
can be easily obtained from (10) by making use of the more
general concept of multivector derivative[11].

B. Noise Robust Registration of Color Images

Supposing are quaternionic (color) images that
follow the model in Equation (2), we can treat the image as
a quaternionic convolution filter applied to the delta function
(interpreted as a real signal), as explained in Section II. Hence,
we can form a quaternion Wiener filter according to (11) in
order to recover from . The filter will have
notationally the same form of (4), so we can write:

(13)

where

(14)

It is very important to emphasize that the numerator in (13)
should be interpreted as an ordered pair of complex numbers

, while the denominator is always a real
scalar. In analogy with (5), we calculate the Wiener filtered
version of in Fourier domain in its expanded form:

(15)

In Equation (15) for the sake of brevity we omitted the fre-
quency variable in each term, so that , .
The two terms in parentheses denote the even-grade and the
odd-grade part of the quaternion-valued numerator, and they are
obtained expanding according to the product rule
for quaternions [12, p. 177]. Again, taking the inverse QFT of
(15) we obtain an estimate of . An interesting fact is that
for grayscale images with no noise (i.e. , and

), the Wiener deconvolution in (15) coincides with the
formula to calculate the ordinary phase correlation, and the term

at the numerator would then represent the cross-correla-
tion of and in frequency domain. However it must be pointed
out that for quaternionic images, the numerator of (15) does not
coincide with the formula of quaternion cross-correlation given
in [4]. Furthermore, Equation (15) represents, to the best of our
knowledge, the only formulation of the phase correlation algo-
rithm for color images that gives exactly a delta function corre-
sponding to the shift.
The reader might have also noticed that since is, strictly

speaking, a stochastic process, we have slightly simplified our
notation, as we should interpret in the numerators of (4) and
(13) as , and similarly as . In the light of
this observation, we shall remark that the identity in (14) holds
if the color channels of are uncorrelated, hence it is con-
venient to represent the images in a color space such that the
transformation that converts from RGB into luminance-chromi-
nance values is linear and decorrelates the RGB color chan-
nels. The requirement for linearity ensures that noise remains
additive after the color transformation is applied. One linear
color transformation that decreases the correlation between the
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RGB channels in natural images is obtained by rotating the
RGB axes so that the luminance axis has RGB coordinates

(in analogy with the luminance of the YUV
color space), and the two chromaticity axes and form an
orthonormal base with . This is essentially the opponent color
space described by Van De Weijer in [13].

V. EXPERIMENTS

We compared the performance of our method in registering
color images with other known approaches according to the
following experiment. One hundred 4-megapixels color images
were acquired with a consumer camera, and from each of these
we extracted a pair of images of pixels that have
a specified amount of overlap, and such that they are related
to each other by a translation in a random direction. We fixed
the overlap between images to 20%. We also added a small
geometric perturbation by rotating one of the two images
by 2 degrees. White Gaussian noise with standard deviation
is added to all the three color channels of one of the two

images. We used (pixel intensities
range from 0 to 255). The RGB images are converted to a
luminance-chrominance opponent color space (denoted by

) as described in Section IV-B. Each pair of images is
registered with the following methods: our registration method
based on the quaternion Wiener deconvolution filter (qWF)
described in Section IV; the quaternion inverse filter (qIF)
obtained by setting in (13); the Wiener deconvolution
filter (WF) obtained by setting (e.g. discarding
the chromaticity of both images); ordinary phase correlation
(PC) [2] applied to and (e.g. the luminance channels);
the quaternion cross-correlation (qXCorr) proposed in [4]; the
trivial approach of performing phase correlation channel-wise
and summing the three correlation spectra ( ).
Results obtained by SIFT registration [14] which is a popular
landmark-based method are also included for comparison.
We did not include Mennesson’s method [3], as there is no
straightforward way to resolve its double-peak ambiguity.
Since our method requires the power spectral density of the
noise to be known, we present both the results of our qWF
using the ground-truth variance of the Gaussian noise, and
using an estimate for obtained by the approach described in
[15]. The estimate of the shift is obtained by taking the location
of the highest value in the correlation spectrum. The shift error
is defined as the Euclidean distance between the true shift and
the estimated shift. The performance is quantified according to
the criterion proposed in [16], that is, by counting the number
of misregistrations, where a “misregistration” occurs whenever
exceeds a specified threshold . We set pixels. The

results are summarized in Fig. 2.
The most important conclusions of this experiment are the

following ones. The proposed method outperforms the others
and its advantage becomesmore apparent in case of heavy noise.
The performance of our method is robust to the accuracy of the
noise variance estimation; the difference between the usage of
the estimated and ground-truth value is insignificant. The reg-
istration method based on SIFT features was the only one in
this experiment that uses landmarks. Due to the low overlap of
the images and heavy noise, it performed very poorly. This is
a common drawback of most landmark-based methods, which

Fig. 2. Percentage of misregistrations when the images were degraded by dif-
ferent levels of additive white Gaussian noise. The overlap between the images
was fixed to 20%.

Fig. 3. A pair of registered images in the experiments with illumination
changes and noise. The amount of noise in the right image corresponds
approximately to .

one can partially override by introducing additional consistency
check and by using global information about the landmark dis-
tribution, as proposed for instance in [17] and [18]. This would
be however far beyond the scope of this letter. Low overlap lead
also to a poor performance of qXCorr.
The same experiment was repeated including also a chro-

matic degradation to one of the two images, in order to simu-
late a change of illumination. This was obtained by multiplying
each of the RGB color channels by respectively three different
scalars chosen randomly in the range [0.6, 1.4]. An example of
a pair of images used in this experiment is illustrated in Fig. 3,
however we did not observe significant differences from the re-
sults in Fig. 2.

VI. CONCLUSION

We derived a quaternionic version of the Wiener deconvolu-
tion filtering technique, and we showed that it can be utilized
to recover the shift between two color images (unlike typical
usage in image restoration), which leads to a generalization of
the traditional phase correlation method [2]. This enabled us
to design a noise-robust registration method for color images.
We experimentally showed that our methods outperforms the
trivial channel-by-channel extensions of phase correlation, and
its other generalizations found in the literature, both in ideal sce-
narios (noise-free images), and with heavily noisy images, in-
cluding also illumination changes.
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